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Abstract: In silico screening of 10,143 metal−organic frameworks (MOFs) and 218 all-silica zeolites
for adsorption-based and membrane-based He and N2 separation was performed. As a result of
geometry-based prescreening, structures having zero accessible surface area (ASA) and pore limiting
diameter (PLD) less than 3.75 Å were eliminated. So, both gases can be adsorbed and pass-through
MOF and zeolite pores. The Grand canonical Monte Carlo (GCMC) and equilibrium molecular
dynamics (EMD) methods were used to estimate the Henry’s constants and self-diffusion coefficients
at infinite dilution conditions, as well as the adsorption capacity of an equimolar mixture of helium
and nitrogen at various pressures. Based on the obtained results, adsorption, diffusion and membrane
selectivities as well as membrane permeabilities were calculated. The separation potential of zeolites
and MOFs was evaluated in the vacuum and pressure swing adsorption processes. In the case of
membrane-based separation, we focused on the screening of nitrogen-selective membranes. MOFs
were demonstrated to be more efficient than zeolites for both adsorption-based and membrane-
based separation. The analysis of structure–performance relationships for using these materials for
adsorption-based and membrane-based separation of He and N2 made it possible to determine the
ranges of structural parameters, such as pore-limiting diameter, largest cavity diameter, surface area,
porosity, accessible surface area and pore volume corresponding to the most promising MOFs for
each separation model discussed in this study. The top 10 most promising MOFs were determined
for membrane-based, vacuum swing adsorption and pressure swing adsorption separation methods.
The effect of the electrostatic interaction between the quadrupole moment of nitrogen molecules and
MOF atoms on the main adsorption and diffusion characteristics was studied. The obtained results
can be used as a guide for selection of frameworks for He/N2 separation.

Keywords: helium recovery; adsorption-based separation; membrane-based separation; metal−organic
frameworks; zeolites; in silico screening; molecular simulation

1. Introduction

Helium is widely used in aviation, space and electronic industries, science and
medicine due to its unique physical properties [1–3]. Today helium is mostly recovered
from natural gas by the cryogenic distillation method. The traditional process used for
helium separation [3–5] consists of the following stages: preliminary purification (sep-
aration from C2+ hydrocarbons, water, H2S and CO2), cryogenic separation of methane
followed by cryogenic separation of nitrogen in a nitrogen rejection unit (NRU) yielding
feedstock with helium concentration 1–3%, separation of the N2/He mixture in a helium
recovery unit yielding 50–70% crude helium vapor stream, purification of crude helium in
a helium upgrade unit producing outcoming gas with helium concentration about 90%,
deep purification in a helium purification unit producing helium with 99.995% purity and
liquefaction of commodity helium. Membrane-based separation, vacuum swing adsorption
(VSA) and pressure swing adsorption (PSA) processes are alternatives for the cryogenic
distillation method [3,6,7]. Specific feature of these methods is that they can be used both
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as independent technological processes for helium recovery directly from the natural gas
or as intermediate stages at existing factories using cryogenic distillation. According to
the existing estimates [8,9], adsorption-based and membrane-based technologies are most
expedient to be used at the stages of crude helium separation from the N2/He mixture and
deep purification. The efficiency of these processes is mostly determined by the physical
properties of sorbents and materials used to produce membranes. In the case of the swing
adsorption separation method, the sorbent must have high adsorption selectivity and work-
ing capacity. In the case of membrane-based separation, the material should possess high
membrane selectivity and permeability [10–13]. Therefore, the search and development of
novel efficient materials for both membrane-based and adsorption-based separation of the
N2/He mixture is an important problem.

Due to the diversity of the framework types, varying cation composition, high adsorp-
tion capacity, thermal stability and relatively low cost, zeolites are widely used in industry
as sorbents in adsorption-based gas separation processes. Commercial zeolites potentially
applicable for N2/He separation are ZSM-5, HISIV 3000 (UOP), 5A (UOP, Sigma, St. Louis,
MO, USA) and 13X (UOP) [3]. It is very difficult to estimate the adsorption selectivity of
porous materials in separation of He and N2 under ambient conditions because helium
is poorly adsorbed on them. We are aware of only one paper [14] reporting an experi-
mental estimation of helium sorption on zeolites 13X, 5A and 4A at room temperature
and atmospheric pressure. Using these data as well data on nitrogen adsorption on these
materials [15], it is possible to estimate their adsorption selectivity as 221, 458 and 54 for
zeolites 13X, 5A and 4A (Table S1), respectively. For membrane-based separation, zeolites
with framework types of DDR, MFI, STT and CHA are used. High membrane selectivity to
helium can be achieved using porous frameworks with effective pore diameter close to the
kinetic diameter of the nitrogen molecule. Polycrystalline membranes always have defects
in the crystallite packing resulting in the loss of selectivity and increase of permeance. For
example, a membrane based on zeolite STT [16] having strong size-exclusion effect for ni-
trogen demonstrated the He/N2 selectivity equal to 11 at the average thickness of 2 µm and
59 at the average thickness of 6.6 µm. Zeolite 4A has weaker size-exclusion effect resulting
in lower membrane He/N2 selectivity ranging from 1.4 to 3.7 [17–20]. Membranes from
zeolite DDR have selectivity close to 3 [21,22]. At low temperatures, zeolites membranes
are nitrogen selective, since adsorption selectivity dominates over diffusion selectivity. The
dependence of the membrane selectivity on temperature for ultrathin MFI membranes was
evaluated in a wide temperature range by Yu et al. [23]. It was shown that the N2/He
membrane selectivity reaches 52 at 174 K for equimolar CH4/N2/He mixture at 3 bar feed
pressure and 0.2 bar permeate pressure.

Metal−organic frameworks form a promising class of crystalline porous materials that
can be used in the adsorption-based and membrane-based gas separation. The great variety
of available organic and inorganic building blocks makes it possible to tune their adsorption
properties, surface area, pore sizes and pore volume. Compared to zeolites, in the literature
there are not as many experimental data on the selectivity and permeance of MOF membranes
for the He/N2 separation. MOF that is most widely used for synthesis of membranes is
ZIF-8. According to the literature data [24–26], polycrystalline membranes made of ZIF-8 with
the thickness varying from 17.5 to 80 µm are characterized by the He/N2 selectivity in the
range of 4.22–5.45 and He permeability between 3137 and 11354 Barrer. ZIF-8 single crystals
with the size of 500 µm were used as membranes [27]. The He/N2 selectivity of two studied
single-crystal membranes was equal to 74.5 and 77.7 with the He permeability of 1935 and
2309 Barrer. Note that ZIF-8 has channels with an aperture of 3.4 Å, which is smaller than the
kinetic diameter of the nitrogen molecule. The N2 diffusion in the framework is possible due
to the structural flexibility of ZIF-8. Hindered N2 diffusion is reflected in low N2 permeability
equal to 26.0 and 29.7 Barrer for two different single-crystal membranes. Another studied
MOF is HKUST-1. A polycrystalline membrane made of this material with the thickness of
40 µm was prepared on α-Al2O3 support [28]. Such membrane had the He/N2 selectivity
of 3.7. In the literature, there are also data on the He/N2 selectivity of a membrane made of
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IRMOF-1, which was equal to 2.4 [29]. Another representative of the IRMOF family IRMOF-3
demonstrated the selectivity of 2.5 [29]. In addition, the He/N2 selectivity of membranes made
of MIL-53 [30] and [Cu2(bza)4(pyz)]n [31] was reported to be equal to 2.4 and 3.9, respectively.

If the experimental measurement of the selectivity, adsorption capacity and permeabil-
ity is not possible, simulation of adsorption and diffusion characteristics can give valuable
information for estimation of the suitability of different materials for the He/N2 separation.
The development of zeolite database IZA [32] and MOF databases CSD MOF [33] and CoRE
MOF [34] containing the unit cell parameters and atomic coordinates initiated in silico screen-
ing of efficient materials for adsorption-based [35–39] and membrane-based [40–42] separation.
For example, Zarabadi-Poor et al. carried out in silico screening of almost 500 MOF structures
from the DFT-optimized CoRE MOFs database [43] for helium separation from natural gas
via N2/He separation [44]. The API (Adsorbent Performance Indicator) metric [45] and mem-
brane selectivity were used to determine the top performing MOF structures in the case of
adsorption-based and membrane-based separation, respectively. We used the results obtained
in this work as a reference for comparison. Most of the studies are focused on the screening
of materials for membrane-based helium recovery from natural gas [10,46]. Kadioglu et al.
screened 139 MOF structures for He/CH4 membrane-based separation [47]. It was shown
that the top performing MOF structures had a pore limiting diameter in the range of 3.8–4 Å.
Qiao and coworkers predicted gas permeability and selectivity of MOFs for membrane-based
separation of He/CH4 and He/N2 at infinite dilution condition [48]. Based on the obtained
results, the Top 5 MOF structures for He/N2 separation show selectivity in the range of 3.02
to 3.53 and permeability in the range of 8.72 × 102 to 8.72 × 103 Barrer. Daglar et al. studied
incorporation of MOF fillers into polymers to obtain mixed matrix membranes (MMM) for
11 different gas separations processes [49]. It was shown that all MOF fillers improve He
permeability with slight changes in He/N2 membrane selectivity. Helium permeability and
He/N2 selectivity of such MMM varied from 39.2 to 1.13 × 104 Barrers and from 0.8 to 622,
respectively. Gas permeabilities and selectivities for covalent organic frameworks (COFs) from
the CURATED COF database [50] and COF/polymer MMMs for helium separation were
predicted in two studies by different groups (Aydin et al. [51] and Feng et al. [52]). It was
shown that COFs had a linear correlation between He permeability and He/N2 selectivity.
For He/N2 separation, the selectivity of COF structures varies from 5.8×10–2 to 8.7. In both
studies it was shown that the addition of COF fillers improved the He permeability of MMMs
without significantly changing the He/N2 selectivity. Based on the results of these studies,
we think that MOF/COF membranes have low He selectivity at room temperature, while
polymer membranes with high He/N2 selectivity have low He permeability. Thus, two strate-
gies are possible for creating efficient membranes for the He/N2 separation: incorporation
of porous fillers into the polymers to obtain MMMs with high He/N2 selectivity and He
permeability, or the use of nitrogen-selective porous medium membranes. Since the first
approach has been extensively studied in the literature, we have focused on the screening of
nitrogen-selective membranes. The goal of this study was to perform screening of zeolites
and MOFs for search of relationships between their structural parameters and performance
characteristics for adsorption-based and membrane-based He/N2 separation.

2. Results and Discussion
2.1. Adsorption-Based Gas Separation

To test the force field models used in this study, calculated N2 adsorption isotherms for
a number of well-known MOFs at 295–298 K and pressure up to 20 bar were compared with
the corresponding literature data [53–59]. Figure 1 (left) demonstrates that the suggested
force field model can be used to predict the nitrogen adsorption in various MOFs with good
precision. Several force fields were used to simulate the nitrogen adsorption in zeolites:
Dreiding [60], TraPPE [61] and the force field developed by Vujić and Lyubartsev [62]. For
each force field model, N2 uptake values at 303 K and 1 bar pressure were calculated for five
different pure silica frameworks, and the obtained results were compared with the corre-
sponding experimental data [63] (Figure S1). The model by Vujić and Lyubartsev was used
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hereafter because it predicts the experimental data with the best precision. Figure 1 (right)
demonstrates that this force field makes it possible to predict nitrogen adsorption isotherms
with good precision both on pure silica zeolites and on several aluminophosphates [64,65].
The experimental conditions used to measure the nitrogen adsorption isotherms and the
corresponding references are reported in Tables S2 and S3. Testing the used force field
models for helium adsorption simulation is very difficult because the value measured in
the adsorption experiment is excess adsorption. However, before the experiment, dead
space is measured using the same helium. So, it is not possible to measure the helium
adsorption isotherm by traditional methods.
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The performed screening of MOFs demonstrated that Henry’s constants for He adsorp-
tion are in the range from 1.25 × 10−8 to 6.89 × 10−6 mol/kg/Pa, and for N2 adsorption
they vary from 7.08 × 10−8 to 1.21 × 10−3 mol/kg/Pa. The N2/He adsorption selectiv-
ity at infinite dilution exceeds one for all the studied frameworks reaching a maximum
value of 13,829. The highest Henry’s constants for N2 adsorption (Figure S4) and nitro-
gen adsorption selectivity (Figure S5) were observed at PLD about 4.5 Å and LCD about
6 Å. This result can be explained by the fact that the intermolecular interaction potentials
overlap in small cavities leading to an increase in the heats of adsorption and Henry’s
constants. The analysis of the relationship between structural parameters and Henry’s
constants for He adsorption (Figure S4) revealed a trend to the K0

He growth with an increase
in accessible surface area, porosity and accessible pore volume. Meanwhile, a trend to
the K0

He decrease with an increase in the framework density was observed. In the case of
K0

N2, these trends were less evident due to the presence of an additional contribution from
electrostatic interaction between the quadrupole moment of the nitrogen molecule and
partial atomic charges of the MOF atoms. The analysis of the correlation between the struc-
tural parameters and N2 adsorption selectivity (Figure S5) showed a trend of the decrease
in S0

ads,N2/He with an increase in accessible surface area and porosity, and a decrease in
density. Similar relationships between the structural parameters and adsorption selectivity
to nitrogen were also observed for zeolites (Figure S5). The highest adsorption selectivity
to nitrogen calculated at infinite dilution for zeolites was as high as 26. A large variety of
the MOFs chemical composition leads to a greater variety of their structural parameters
compared to zeolites (Figure S3). As a result, the selectivity of the most promising MOFs in
adsorption-based separation of nitrogen–helium mixtures exceeds the best of the zeolite
frameworks by several orders of magnitude.

To move from the estimation of ideal adsorption properties of MOFs and zeolites at infi-
nite dilution to gas mixtures, adsorption of an equimolar mixture of helium and nitrogen was
simulated at 0.01, 0.1, 0.3 and 1 Mpa and 298 K. The obtained results (Figure S6) demonstrate
that at low adsorption selectivity S0

ads,N2/He and Smix
ads,N2/He are almost equal. However, when

the adsorption selectivity increases, the Smix
ads,N2/He/S0

ads,N2/He ratio becomes less than one.
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When the pressure increases, the difference between the two selectivity values grows as well.
So, the higher the pressure in the system, the greater the effect of competitive adsorption.

Two models of He/N2 adsorption-based separation at room temperature were con-
sidered in this study. In the first model, corresponding to the conditions of vacuum swing
adsorption, the adsorption pressure was equal to 0.1 Mpa and the desorption pressure
was equal to 0.01 Mpa. In the second model, corresponding to conditions of pressure
swing adsorption, the adsorption pressure was equal to 1 Mpa and the desorption pressure
was equal to 0.1 Mpa. As regenerability tended to decrease with the APS increase, only
frameworks with regenerability above 80% were considered. The highest APS values were
observed for frameworks with high nitrogen ∆N and Smix

ads,N2/He. Top 50 best MOFs have
APS > 57 mol/kg and APS > 70 mol/kg for the VSA and PSA gas separation models,
respectively. (Figure 2a,b). In the case of PSA, the APS metric of the most promising
MOFs is higher by more than an order of magnitude than that of the most efficient zeolites
(Figure 2d). In the case of VSA, this difference reaches two orders of magnitude (Figure 2c).
This result clearly demonstrates how promising MOFs are for adsorption-based separation
of helium and nitrogen. In addition to the APS metric, sometimes a more complex API (Ad-
sorbent Performance Indicator) metric [45], which additionally takes into account enthalpy
of adsorption, is used in the literature:

API =

(
Smix

ads,N2/He − 1
)A
·∆NN2

B∣∣∆Hads,N2
∣∣C (1)

Here, ∆Hads,N2 is enthalpy of nitrogen adsorption; constants A, B and C are equal to 0.5,
2 and 1 [45]. As adsorption is an exothermal process, for large-scale industrial installations
for separation based on vacuum swing adsorption, the use of an adsorbent with high
adsorption enthalpy of results in an increase of the adsorber temperature leading to the
decrease of the target component adsorption. On the other hand, heat is absorbed during
the adsorbent regeneration leading to the decrease in the adsorber temperature, which
makes the adsorbent regeneration more difficult. So, the higher the enthalpy of adsorption,
the greater the difference of regenerability from the ideal model value. Therefore, an
efficient adsorbent should have high adsorption capacity, high selectivity and low enthalpy
of adsorption. In this study the API metric was calculated for all the studied MOFs and
zeolites with regenerability above 80%. Figure S7 demonstrates a linear correlation between
API and APS for both VSA and PSA. So, the use of both metrics leads to the same set of the
most promising frameworks.

In this study, structure–adsorption performance relationships were investigated. Two
databases with Top 50 MOFs based on the APS metric were constructed for the VSA
and PSA separation processes. Then, smoothed probability density distributions (PDF)
were built for several structural parameters for the database of all studied MOFs and
for the databases of Top 50 MOFs for the VSA and PSA separation processes. These
structural parameters included pore limiting diameter, largest cavity diameter, accessible
surface area, accessible pore volume, density and porosity. The range of effective structural
parameters was determined using a criterion that this range included more than 90% of
Top 50 MOFs. The importance of each structural parameter was estimated by comparing
PDFs for all studied MOFs and Top 50 MOFs. If PDFs were about the same for both
databases, this structural parameter was considered to have little effect on the adsorption
performance. Meanwhile, if PDFs were very different and PDF for TOP 50 MOFs had
a narrow distribution, it was possible to claim that certain range of optimal parameters
existed. For instance, Figure 3 demonstrates that for the VSA separation process there is
a narrow range 3.75 Å < PLD < 4.8 Å corresponding to more than 90% of Top 50 MOFs,
and PDF for them is different from PDF for all MOFs. So, the following optimal structural
parameters were determined for VSA (Figure S8): 3.75 Å < PLD < 4.8 Å, 4.4 Å < LCD < 6 Å,
100 m2/g < ASA < 700 m2/g, 0.02 cm3/g < AV < 0.09 cm3/g, 1300 kg/m3 < density < 2500 kg/m3,
0.04 < VF < 0.15. For PSA the optimal ranges are wider (Figure S9): 3.75 Å < PLD < 6.3 Å, 4.2 Å <
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LCD < 7.1 Å, 300 m2/g < ASA < 1400 m2/g, 0.03 cm3/g < AV < 0.18 cm3/g, 900 kg/m3 < density
< 2500 kg/m3, 0.05 < VF < 0.2. To determine the chemical composition–adsorption performance
relationships, the probabilities of finding certain metal atoms in the MOF structure were calculated
for all the studied MOFs and the database of Top 50 MOFs for the VSA and PSA separation
processes (Figure 4). Ga, Ru, V, Er, Gd, La, U and Ca were found to be the most suitable metals for
the VSA separation model based on the probabilities of their presence among Top 50 MOFs and
all studied MOFs. Meanwhile, the most widespread metal atoms Zn, Cu, Cd, Co and Mn (present
in 54.7% of all MOFs) were scarcely present among Top 50 MOFs (less than 10%). In the case of
the PSA model, U, Al, Er, Be and Mg were found to be the most suitable metals. Characteristics of
the most promising MOFs (Top 10) for the VSA and PSA separation processes are reported in
Tables S6 and S7. As the pressure increase leads to a much more significant selectivity decrease
than the adsorption capacity increase, the best MOFs for VSA have higher APS than the most
promising MOFs for PSA.
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It is interesting to compare the results of the MOF screening obtained in this study
with earlier literature data. A total of 213 MOFs were studied for VSA gas separation
with very similar operational conditions (equimolar mixture of helium and nitrogen, gas
pressure during the adsorption cycle 1.2 bar, pressure during the adsorbent regeneration
0.1 bar) [44]. UVEXAV was found to be the most promising MOF with API = 680 and
adsorption selectivity Smix

ads,N2/He = 222.7. In our study we discovered 24 MOFs with superior
API metric and 34 MOFs with higher nitrogen selectivity. Additionally, in the same earlier
study [44] it was demonstrated that the electrostatic contribution for most MOFs was
negligible. Despite the fact that a nitrogen molecule has a relatively a low quadrupole
moment, we believe that it is important to consider the electrostatic interactions between
nitrogen molecules and the framework atoms during the screening. To estimate their
contributions, Henry’s constants and nitrogen enthalpies of adsorption were calculated
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with the account of electrostatic interactions and without them (Figure S10). The account of
electrostatic interactions results in the growth of the median value of Henry’s constants
and nitrogen adsorption enthalpies by 10.5% and 3.4%, respectively. Due to the great
variety of the MOFs chemical composition, larger spread in Henry’s constants and nitrogen
adsorption enthalpies was observed for them in comparison with zeolites. In this study, it
was found that the account of electrostatic interactions results in the increase of the Henry’s
constants by at least a factor of 1.5 for 15% of all considered MOFs. Meanwhile, the analysis
of Top 50 MOFs for VSA and PSA revealed a similar increase in Henry’s constants for 80%
and 58% of MOFs, respectively. So, the contribution of electrostatic interactions between
quadrupole moments of nitrogen molecules and the MOF atoms is significant for the most
promising MOFs.

Since the chemical composition of both Top 50 MOFs includes a large number of differ-
ent metal atoms with different atomic weights and partial charges, it can be assumed that
metal atoms affect the adsorption performance primarily through the structure topology
rather than through their contribution to the intermolecular interaction. Therefore, MOF
screening for adsorption-based separation of N2/He should be based primarily on the
search for MOFs with optimal structural parameters. Thus, an ideal adsorbent should have
uniformly narrow pores without pockets or cavities and a significant density in order to
provide high nitrogen adsorption enthalpy and N2/He selectivity. As a result, such an
ideal structure will have low porosity, pore volume and accessible surface area.

2.2. Membrane-Based Gas Separation

To test the force fields used in this study for prediction of diffusion properties of MOFs
and zeolites, calculated He and N2 permeances in the temperature range of 298–301 K were
compared with the corresponding literature data [22,26,29,30,66–71]. Figure S2 demonstrates
that the models used in this study can be applied only for estimation of the membrane
permeance. In addition to the lack of ideality in the used force field models, there are
several additional reasons leading to deviation of the calculated permeance values from the
experimental ones. First, most polycrystalline membranes based on MOFs and zeolites have
low selectivity and high permeance due to the presence of defects both inside their framework
and in the packing of crystals. The majority of membranes demonstrate selectivity close
to that of the Knudsen diffusion model, which indicates that the size of pores between the
crystallites can exceed 2 nm. Second, only permeability can be calculated by simulations. To
connect this value with permeance, it is necessary to know the membrane thickness. Except
for single-crystal membranes [27], the thickness of the MOF or zeolite layer on the support
can be substantially varied resulting in deviation between the calculated and experimental
values. Third, an ideal model imitating the adsorbate behavior at infinite dilution was used to
calculate permeability in this study. Such a model does not take into account the effects of
competitive adsorption and gas mixture composition on the diffusion properties. As helium
is weakly adsorbed, and its concentration determined by GCMC is substantially lower than
the N2 concentration, it is necessary to consider much larger framework fragments than for
simulation of adsorption to obtain correct values of self-diffusion coefficients. In turn, this
leads to a significant increase in the simulation time. Therefore, it is rational to use the ideal
model at the first screening stage with the following correction of the membrane permeability
and selectivity for Top 10 frameworks using Equations (10) and (11).

At the first stage of screening for the most promising materials for membrane-based
separation of He and N2, diffusion coefficients were calculated at infinite dilution conditions.
The analysis of the dependence of self-diffusion coefficients on the structural properties
of the studied MOFs (Figure S12) demonstrates a natural trend towards an increase in
self-diffusion coefficients with increasing pore size (PLD and LCD) and porosity. The
greatest difference between D0

N2
and D0

He was observed in the PLD range under 6 Å and
LCD range under 8 Å. The diffusion selectivity S0

di f He/N2
in such small pores can reach

several orders of magnitude (Figure S13a,b). This result can be explained by the difference
in the kinetic diameters of helium and nitrogen molecules. Similar relationships between
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structural parameters and diffusion selectivity were also observed for zeolites (Figure S13).
Similar to the adsorption-based separation, the screening demonstrated that great variety
of MOFs makes it possible to find MOFs with much higher diffusion selectivity than that of
zeolites (maximum S0

di f He/N2
for MOFs is equal to 1197 compared to 29 for zeolites).

The analysis of the screening results showed that the membrane selectivity S0
mem He/N2

varies from 2.4 × 10−3 to 4.6. Most of MOF membranes (79.9%) are N2 selective. The
upper part of the MOF “cloud” in Figure 5 with the membrane selectivity S0

mem He/N2
> 1 is

characterized by predomination of the diffusion selectivity S0
di f He/N2

over the adsorption

selectivity S0
ads He/N2

. The reverse ratio characterizes the bottom part of the MOF “cloud”
in Figure 5. Helium permeability P0

He is in the range from 2864 to 2.9 × 106 Barrer, whereas
P0

N2
is in the range of 4034–1.4 × 107 Barrer. The highest permeabilities are observed for

wide-pore frameworks. For examples, in Figure 5 one can see a “tail” consisting of 50 MOFs
with P0

He > 5 × 105 Barrer. MOFs in this “tail” have PLD from 6.9 to 70.8 Å and LCD from 7
to 70.9 Å. Diffusion in these MOFs either follows the Knudsen diffusion model or is close
to it. The diffusion selectivity in this diffusion mode is determined as SKnudsen

di f ,i/j =
√

Mj/Mi.
For separation of He and N2, this value is equal to 2.65.
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In addition, the effect of electrostatic interaction on self-diffusion coefficients and
nitrogen permeability as well as membrane selectivity to helium was studied (Figure S10).
The account of electrostatic interaction results in a minor decrease in D0

N2 (charged) relative

to D0
N2 (non−charged) . As electrostatic interaction has a more significant effect on Henry’s

adsorption constants compared to self-diffusion coefficients, on the average the nitrogen
permeability grows after the account of electrostatic interaction. As a result, the membrane
selectivity to helium decreases. So, electrostatic interactions between the quadrupole
moment of nitrogen molecules and the framework atoms should be taken into account
during both adsorption-based and membrane-based screening.

The perspectives of using MOFs and zeolites as membrane materials for separation
of He and N2 can be estimated by comparing calculated selectivity and permeability with
the upper bonds obtained in different years for polymeric membranes. Upper bond is
an empirical relation Pi = kSmem i/j

n where constants k and n are determined from the
selectivity vs. permeability graph for experimental data on He/N2 separation over various
polymeric membranes. Figure 6 presents upper bonds obtained by Robeson in 1991 [72]
and 2008 [12] and by Wu et al. in 2019 [73]. The upper bonds for polymeric membranes
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demonstrate that the best MOFs and zeolites trail polymeric membranes in selectivity
S0

mem He/N2
but have higher permeability P0

He. Based on this fact, several variants of using
MOFs and zeolites for separation of He and N2 are possible: creation of materials from
a combination of polymers and MOFs/zeolites or using MOF/zeolite materials selective
to nitrogen. In the former case, combination of materials can result in the growth in
permeability (in comparison with polymeric membranes) and increase in helium selectivity
(in comparison with MOFs/zeolites). In several publications [49–51] it was shown that such
an approach makes it possible to obtain more efficient materials for separation of different
gas mixtures than using MOFs along as the membrane materials. However, due to the low
membrane selectivity of MOFs and zeolites to helium, apparently, any other mesoporous
materials with the membrane selectivity close to the Knudsen diffusion selectivity can be
used for separation of helium and nitrogen. In the second case, if MOFs or zeolites selective
to nitrogen are used as the membrane, the retentate will be enriched with helium and
the permeate will be enriched with nitrogen. As using MOFs and zeolites as membrane
materials is more promising in the second case, Top 50 frameworks most selective to
nitrogen (S0

mem N2/He > 22.6) were identified. Not a single zeolite was included in this list.
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Structure–membrane separation performance relationships were also studied. Their anal-
ysis was performed using the same technique that was used for adsorption-based separation
and was described above in Section 3.1. The following optimal structural parameters were
determined for membrane-based separation (Figure S14): 3.75 Å < PLD < 4.65 Å, 4 Å < LCD <
5.8 Å, 100 m2/g < ASA < 450 m2/g, 0.01 cm3/g < AV < 0.06 cm3/g, 1100 kg/m3 < density <
2400 kg/m3, 0.02 < VF < 0.1. Note that the PDF functions for Top 50 MOFs and all the studied
MOFs are substantially different, and the range of optimal structural parameters is much
narrower than for adsorption-based separation. Similarly, chemical composition–membrane
separation performance relationships were analyzed. Top 50 MOFs include 22 metals. It
means that the membrane properties are primarily determined by its structural parameters
rather than by chemical composition. Still, based on the ratio of probabilities of the presence
among Top 50 MOFs and in all the studied MOFs, Ga and Al were found to be the most
promising metals for membrane-based separation.
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The characteristics of the most promising MOFs (Top 10) for membrane-based separation
are reported in Table S8. All MOFs from Top 10 demonstrate high adsorption selectivity
predominating over their diffusion selectivity and high N2 permeability exceeding the He
permeability by more than an order of magnitude. At the second stage of screening, these
MOFs were used in simulation by GCMC and MD using an equimolar mixture of He and N2
at 298 K and 3 bar, which corresponds to the conditions of real membrane-based separation of
gases. The simulation results (Table S8) indicate that the switch to the equimolar mixture leads
to simultaneous decrease of the nitrogen adsorption selectivity, He/N2 diffusion selectivity
and permeability. Nevertheless, the values of S0

mem N2/He and Smix
mem N2/He are very similar

indicating that the suggested technique used for the initial screening makes it possible to
predict promising frameworks while using minimum computer power. Earlier [44], based on
the results of in silico screening of 500 MOFs, the highest membrane selectivity S0

mem N2/He
= 44.91 was found for LIFWOO. In this study, we determined 16 MOFs with even higher
membrane selectivity. Thus, highly nitrogen-selective membranes are characterized by the
predominance of the N2/He adsorption selectivity over N2/He diffusion selectivity. Therefore,
as in the case of adsorption-based separation, an ideal membrane should have narrow uniform
pores and a significant density. The membrane properties are primarily determined by its
structural parameters rather than by chemical composition.

3. Computational Methods
3.1. MOF and Zeolite Databases

“Computation Ready, Experimental Metal−Organic Framework Database” (CoRE
MOF 2019) [34] was used as the parent MOF database. At the first step only ordered
frameworks where all solvent molecules were removed were selected from this database.
The resulting database consisted of 10143 MOFs. Then, the Zeo++ algorithm [74] was used
to calculate density, porosity (VF), accessible surface area (ASA), pore limiting diameter
(PLD) and largest cavity diameter (LCD) for each framework. Additionally, Zeo++ was
used to identify MOFs with pockets not accessible both for helium and nitrogen molecules.
In the following computations, such pockets were blocked. The accessible pore volume
(AV) was determined using RASPA-2.0 software package [75] with helium molecule used
as a probe. Further, only MOFs with non-zero ASA and PLD > 3.75 Å were selected from
the database. These conditions would allow both gases to penetrate through the membrane
(the kinetic diameter is equal 3.64 Å for N2 and 2.56 Å for He). So, the number of analyzed
MOFs was shortened to 5156.

IZA database [32] implemented in iRASPA visualization package [76] was used as the
parent database of all-silica zeolites and zeolite-like materials. Structural parameters were
determined for all frameworks from this database using a procedure similar to the one
used earlier for MOFs. After removing frameworks with PLD below 3.75 Å, the number of
analyzed zeolite frameworks was reduced to 110.

3.2. Simulation Details

The adsorption and diffusion properties of the studied frameworks were simulated using
equilibrium molecular dynamics (EMD) and Grand canonical Monte Carlo (GCMC) methods
in the RASPA-2.0 package. The interactions were described by the sum of Lennard-Jones 6–12
(LJ) and Coulomb interaction potentials. The nitrogen molecule was simulated according to the
TraPPE [77] force field as a dumbbell with a rigid bond between the atoms with the length of 1.1
Å. The LJ interaction parameters for each atom were εN/kB = 36.0 K and σN = 3.31 Å. The N2
quadrupole moment was described by three charges: two –q charges where q = 0.482e that were
located at the centers of the nitrogen atoms and +2q charge located at the molecule center of
masses. The helium molecule was simulated by a single-charge model [78] with parameters
σHe = 2.64 Å and εHe/kB = 10.9 K. The constants of the LJ 6–12 potential for atoms in MOFs were
simulated according to the Dreiding [60] force field. If the necessary parameters were missing,
the required data were retrieved from the UFF [79] force field. The force field developed by
Vujić and Lyubartsev [62] was used for simulation of adsorption and diffusion in zeolites. Cross
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constants of the LJ interaction were calculated using the Lorentz-Berthelot mixing rule. The LJ
interaction was cut at the distance Rcutoff = 12.8 Å. Its potential was shifted to zero starting from
the distance 0.9 Rcutoff. Determination of partial atomic charges by REPEAT [80] or DDEC [81]
methods that have high precision requires periodic DFT calculations for each studied structure.
A detailed and systematic analysis of the effect of the choice of framework partial atomic charges
on CO2 adsorption in six different widely studied MOFs predicted by molecular simulations
was performed in the study [82]. It was shown that the partial charges obtained by both DDEC
and REPEAT methods yielded isotherms that were in good agreement with each other. In our
previous studies, it was shown that partial charges obtained by DDEC and REPEAT methods
lead to similar results for modeling hydrogen adsorption in SAPO-11 (zeolite-like material) at
77 K [83] and water adsorption in CAU-10-H (MOF) at 298 K [84]. Thus, it can be expected that
the use of the DDEC or REPEAT methods for calculating atomic partial charges will lead to
similar results in the case of modeling nitrogen adsorption in MOFs and zeolites. A reasonable
alternative is to use pre-trained models obtained by machine learning based on the CoRE
MOF DDEC [43,85] containing 2932 optimized structures with partial atomic charges calculated
by the DDEC method. So, partial atomic charges of the framework atoms were determined
using pre-trained Random Forest model in the PACMOF code [86]. Long-range Coulomb
interactions were calculated using the Ewald summation technique. The size of the MOF and
zeolite structure fragments was selected to ensure the minimum distance in each direction
exceeded 2Rcutoff. In each simulation, we assumed that the MOF or zeolite structure was rigid
and did not contain any defects.

Henry’s constants were calculated using the Widom particle insertion method. Henry’s
constants were calculated at infinite dilution conditions for 105 cycles at 298 K. The adsorption
selectivity at infinite dilution S0

ads,i/j was determined as the ratio of Henry’s constants K0
i [10]:

S0
ads,i/j = K0

i /K0
j (2)

The adsorption selectivity for separation of gas mixtures Smix
ads,i/j was calculated for

0.01, 0.1, 0.3 and 1 MPa pressures at 298 K as follows [10]:

Smix
ads,i/j =

Ni/Nj

xi/xj
(3)

Here, Ni is the adsorption of the i-th component determined from GCMC, xi is the
molar fraction of the i-th component. For a gas mixture, the adsorption values Ni were
simulated using the following GCMC moves: translation, rotation, insertion, deletion,
reinsertion, identity exchange of He and N2 molecules. The fugacity coefficient was
calculated from the Peng–Robinson equation of state.

Adsorbent Performance Score (APS) used to estimate the adsorbent efficiency was
calculated as follows [87]:

APS = ∆NN2Smix
ads,N2/He (4)

The sorbent regenerability was calculated as [10]:

R = ∆NN2/Nads,N2 (5)

Self-diffusion coefficient was determined by equilibrium molecular dynamics from
the root-mean-square particle displacement using the following formula [88]:

Dsel f ,i = lim
t→∞

1
2dt
〈 1

N

N

∑
j=1

(→
rj (t)−

→
rj (0)

)2
〉 (6)

Here, N is the number of molecules,
→
rj (t) is the position of the j-th particle at the

moment t, d is the dimension of the system. Self-diffusion coefficient at infinite dilution
D0

i was simulated by positioning 30 adsorbate molecules in the MOF fragment with all
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interactions between the gas molecules switched off. The simulation was performed in
the NVT ensemble (at constant number of particles, volume and temperature) using the
Nosé–Hoover thermostat. These conditions simulate the properties of the adsorbate at
infinite dilution. After the initial position of the adsorbate in the framework was generated,
for the first 50 ps the system was subjected to equilibration before the data collection. The
MD simulation time was 20 ns. The diffusion selectivity at infinite dilution S0

di f ,i/j was
calculated as follows [42]:

S0
di f ,i/j = D0

i /D0
j (7)

Permeability P0
i was determined using Equation (7) [42]:

P0
i = D0

i K0
i (8)

Membrane selectivity S0
mem,i/j was estimated as follows [42]:

S0
mem,i/j = P0

i /P0
j (9)

For selected Top 10 frameworks, self-diffusion coefficient Dself,i was calculated for each
component of the gas mixture at the adsorbate concentrations determined by GCMC. As
helium is weakly adsorbed, and its concentration determined by GCMC is significantly
lower than that of N2, the framework fragment used in the EMD method was 27 times
larger than during the initial screening at infinite dilution. Five independent EMD runs
were performed to collect statistics. Diffusion selectivity for a mixture of gases Smix

di f ,i/j was
determined as the ratio of self-diffusion coefficients [42]:

Smix
di f ,i/j =

Dsel f ,i

Dsel f ,j
(10)

Permeability of the i-th mixture component Pmix
i was calculated according to Equation (10) [42]:

Pmix
i =

ϕ·Dsel f ,i·ci

fi
(11)

Here, ϕ is the adsorbent porosity, ci is the concentration of the i-th mixture component
at the feed side of the membrane determined by GCMC, fi is the fugacity of the i-th mixture
component before the membrane. This model assumes vacuum permeating pressure. The
membrane selectivity for the mixture of gases Smix

mem,i/j was determined as follows [42]:

Smix
mem,i/j = Pmix

i /Pmix
j (12)

4. Conclusions

In silico screening of 10143 MOFs and 218 all-silica zeolites for adsorption-based and
membrane-based separation of He and N2 was performed. GCMC and EMD methods
were used to calculate Henry’s constants, adsorption at different pressures and self-diffusion
coefficients for He and N2. These values were used to calculate major metrics, such as
adsorption, diffusion and membrane selectivity, regenerability and permeability. Dependence
of adsorption selectivity Smix

ads,N2/He in an equimolar mixture of He and N2 on the pressure in
the system was studied. The effect of electrostatic interaction between the quadrupole moment
of nitrogen molecules and framework atoms on the main adsorption and diffusion metrics was
studied. MOFs were demonstrated to be more efficient than zeolites in both adsorption-based
and membrane-based separation. Top 10 most promising MOFs for membrane-based, VSA
and PSA separation methods were determined. The analysis of structure–adsorption and
membrane performance relationships made it possible to determine the ranges of structural
parameters, such as pore limiting diameter, largest cavity diameter, surface area, porosity,
accessible surface area and pore volume, corresponding to the most promising MOFs for
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each separation model considered in this study. A similar analysis was performed to find
out the optimal MOF chemical composition. The screening performed in this study can be
called topological because the structural flexibility, possible presence of structural defects or
modification of linkers with functional groups were not taken into account. Similarly, in the
case of zeolites possible changes of the Si/Al ratio, variation of the cation composition or
modification of their structure by isomorphous substitutions were not considered. Despite
these limitations, one can expect that the ranges of optimal structural parameters and trends
of adsorption and membranes metrics determined in this study will be correct even if all these
factors are taken into account. The obtained results can be used as a guide for selection of
frameworks for He/N2 separation.
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