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Abstract: Boron hydrides have been an object of intensive theoretical and experimental investigation
for many decades due to their unusual and somewhat unique bonding patterns. Despite boron being
a neighboring element to carbon, boron hydrides almost always form non-classical structures with
multi-center bonds. However, we expect indium to form its interesting molecules with non-classical
patterns, though such molecules still need to be extensively studied theoretically. In this work, we
investigated indium hydrides of In2Hx (x = 0–4,6) and In3Hy (y = 0–5) series via DFT and ab initio
quantum chemistry methods, performing a global minimum search, chemical bonding analysis, and
studies of their thermodynamical stability. We found that the bonding pattern of indium hydrides
differs from the classical structures composed of 1c-2e lone pairs and 2c-2e bonds and the bonding
pattern of earlier investigated boron hydrides of the BnHn+2 series. The studied stoichiometries are
characterized by multi-center bonds, aromaticity, and the tendency for indium to preserve the 1c-2e
lone pair.

Keywords: indium hydrides; bonding; AdNDP analysis; indium compounds

1. Introduction

Classical organic chemistry is based on a carbon atom in a valence state of IV. This
element usually tends to form 2c-2e bonds with carbon and other elements. Despite boron
and carbon being neighboring elements, boron tends to form multi-center bonds [1–3]. In
particular, it was shown [4] that the BnHn+2 classical structures become less stable along
the series because boron avoids expected sp2-hybridization. Despite the rich chemistry of
boron hydrides being well-studied [5–9], our knowledge of indium hydride compounds
is minimal. Only a small number of indium hydrides and their derivatives have been
previously synthesized [10,11] or theoretically investigated [12–14]. To our knowledge,
almost no conformational search procedures have been applied for indium hydrides with
several indium atoms; therefore, the possible non-trivial properties of indium hydrides
have been missed.

Being a relatively heavy element, indium atoms have less preference for any type of
sp hybridization in hydrogen compounds compared to boron and aluminum. One of the
main reasons for this is related to weaker hydrogen–indium orbital overlaps and, therefore,
lower interaction: dissociation energies are 3.42 eV and 2.48 eV for B-H and In-H bonds,
respectively [15]. Another important reason is a more significant energy gap between 5s and
5p orbitals induced by complete electronic 4d-subshell and the subsequent nucleus charge
screening effect. It can be vividly seen from the difference between excitation energies 2Po

→ 4P of boron and indium atoms [16,17].
Thus, are the indium and boron hydride structures similar or different? Are classical

arrangements with only 1c-2e lone pairs and 2c-2e bonds possible for indium hydrides? In
this work, we investigated the nature of In2Hx (x = 0–4,6) and In3Hy (y = 0–5) compounds
using the Coalescence Kick global optimization techniques, chemical bonding AdNDP
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analysis, thermodynamic stability toward H2 dissociation to answer the abovementioned
questions.

2. Results and Discussions
2.1. Global Geometry Optimization and Bonding Analysis

Initially, we performed the CK search for In2Hx and In3Hy (x = 0–4; y = 0–5). The
investigated global minima structures are shown in Figure 1. The obtained geometry of
the global minimum and energy ordering for low-lying isomers of In2H2 stoichiometry is
in entire agreement with the previous investigation [18]. Other low-lying geometries are
given in the SI file (Figures S1–S11).
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Figure 1. Global minimum structures of (a) In2Hx (x = 0–4), (b) In3Hy (y = 0–5).

According to the AdNDP analysis, completely unsaturated structures In2 and In3
have similar bonding patterns. In the case of the In2 molecule in the first triplet state, we
found two 1c-2e lone pairs, one 2c-1e σ-bond with ON = 0.99e, and one 2c-1e π-bond with
ON = 0.99e, where “ON” stands for occupancy number, and “e” reflects that occupancy
number is related to the number of electrons.

For In3, we investigated three 1c-2e lone pairs with ON = 1.80e, 3c-2e π-bond with
ON = 2.00e, and 3c-1e σ-bond with ON = 0.98e for an unpaired electron. We assign a
molecule as being doubly aromatic (i.e., π and σ aromatic; Figure 2). Negative NICSZZ
values at different distances from XY-plane can be considered another argument for the
aromaticity of In3 [19]. For example, in the case of benzene NICSZZ(0) = −15.199 ppm,
NICSZZ(1) = −29.517 ppm, NICSZZ(2) = −17.315 ppm, NICSZZ(3) = −8.014 ppm
showing the presence of π-aromaticity. In the case of In3 NICSZZ(0) = −2.146 ppm,
NICSZZ(1) = −17.565 ppm, NICSZZ(2) = −17.139 ppm, NICSZZ(3) = −9.760 ppm. For
the In3 cluster, the absolute values of NICSZZ(0) and NICSZZ(1) are much smaller than
those for benzene. However, the values of NICSZZ(2) and NICSZZ(3) are similar for both
molecules; an explanation of the difference may be based on the types of involved orbitals.
Benzene is a π aromatic molecule, but In3 is a doubly π and σ aromatic, which indicates the
significant difference of NICSZZ(0) and NICSZZ(1) values near the molecular plane, where
σ orbitals influence more significantly. It is worth mentioning that an unpaired electron
on a σ-like orbital provides a more energetically stable state than a state with an unpaired
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electron on a π-like orbital. The difference between those electronic states is 4.12 kcal/mol
and was obtained using the ∆-CCSD(T)/cc-pVTZ(-PP) level of theory. The same procedure
was performed for the In2 molecule. An alternative electronic state with two occupied
perpendicular single-occupied 2c-1e π-bonds in the Slater determinant was investigated.
This state was less stable by 5.8 kcal/mol at the ∆-CCSD(T)/cc-pVTZ(-PP) level of theory.
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Figure 2. The chemical bonding pattern of In2 and In3 global minimum structures obtained by
AdNDP analysis.

Further “hydrogenation” evolution of the In2Hx series reveals some features of indium
hydride compounds. Besides 1c-2e lone pairs, in In2H1, we observed 3c-2e In-H-In σ-bond
with occupation number ON = 2.00e and 2c-1e In-In σ-bond with ON = 0.98e, but in In2H2
we did not find 2c-2e bonds—only two 1c-2e lone pairs and two 3c-2e In-H-In σ-bonds with
ON = 2.00e (Figure 3). Thus, upon “hydrogenation,” indium saves its lone pair instead,
forming the 2e-2c classical In-In σ-bond.
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Figure 3. The chemical bonding pattern of In2H1 and In2H2 global minimum structures obtained by
AdNDP analysis.

In the case of the In2H3 molecule, the AdNDP algorithm allowed us to describe the
bonding pattern as three 3c-2e In-H-In σ-bonds with ON = 1.98 e, one 1c-1e unpaired
electron with ON = 0.99e on one indium atom, and a 1c-2e lone pair on another indium
atom with ON = 1.99e (Figure 4).

According to [4], structure a in Figure 5 is the global minimum of B2H4. In the present
study, structure b (Figure 5) is the global minimum for In2H4. Among others, one significant
difference between these two molecules is that in the case of B2H4, there is one B-B 2c-2e
σ-bond and no 1c-2e lone pairs, but In2H4 has two 3c-2e In-H-In σ-bonds with ON = 1.98e,
one 1c-2e lone pair on one indium atom, and no In-In 2c-2e σ-bonds (Figure 6). Moreover,
our attempts to find a similar In2H4 structure to the structure in Figure 5a at different
theoretical levels were unsuccessful. Thus, this direct comparison of the global minimum
structures of B2H4 and In2H4 demonstrates the difference in indium and boron hydride
bonding patterns. Both have non-classical structures (i.e., they have delocalized multi-
center 2e bonds). However, all boron valence electrons participate in bonding, whereas
indium tends to save its lone pair.
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An earlier theoretical study of classical and non-classical structures of B2H4 in [4]
showed that the non-classical structure is more stable by 2.9 kcal/mol. In this work,
the CK search allowed us to find a classical structure for In2H4. The AdNDP analysis
reveals that both indium atoms are connected via 2c-2e σ-bonds with ON = 2.00e, and
all other In-H bonds are 2c-2e σ-bonds with ON = 1.99e. The energy difference between
the classical and non-classical structures is 10.8 kcal/mol at the QRO-CCSD(T)/cc-pVTZ(-
PP)//U-TPSSh/def2-TZVPP level of theory. The energy difference is too big to suggest
a competition of the classical structure with the global minimum structure. The bonding
analysis of the two structures is shown in Figure 6.

Additionally, we decided to investigate the In2H6 species as an analog of the famous
diborane molecule. The CK algorithm found only one non-dissociated structure of this
stoichiometry; it totally resembles the structure of B2H6. It indicates the stability of the
motif. The structure and bonding analysis are presented in Figure 7. We found four 2c-2e
In-H σ-bonds with ON = 2.00e and two 3c-2e In-H-In σ-bonds with ON = 1.97e.
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In the In3Hy series, we observed the gradual “modification” of the In3 triangular
cluster upon “hydrogenation”. In3H and In3H2 have similar structures where each hy-
drogen is connected with the In3 cluster via 4c-2e In-In-In-H σ -bond with ON = 1.99e
(Figure 8). In3H retains σ-aromaticity with an occupation number close to ideal 2.00e. Cal-
culated values of NICSZZ for In3H1 are NICSZZ(0) = +3.804 ppm, NICSZZ(1) =−12.155 ppm,
NICSZZ(2) = −14.271 ppm, NICSZZ(3) = −8.235 ppm. A positive value near the center of a
molecule with a rapid decrease of NICSzz value as the distance increases can be evidence
of σ-aromaticity [20]. Due to hydrogen atom incorporation, the absolute values of NICSzz
of In3H1 are smaller than for In3. For In3H2, we found an interesting bonding pattern of
3c-1e In-In-In σ-bond with ON = 1.00e; the AdNDP analysis reveals that it consists of two
px orbitals and one perpendicular py orbital.

The 4c-2e In-In-In-H σ-bond appeared to be stable for the In3Hy series. In the In3H3
cluster, the bonding motif of the In3H2 structure was saved, and the third H atom was
introduced in the cluster as a bridged atom in a 3c-2e In-H-In σ-bond with ON = 1.99e.
This bonding pattern allowed In3H3 to keep three 1c-2e lone pairs on each indium atom
with ON = 1.98–1.85e. Further “hydrogenation” leads to In3H4 losing one 4c-2e In-In-In-H
σ-bond and one 1c-2e lone pair. It has two 1c-2e lone pairs, one 2c-1e In-In σ-bond with
ON = 0.99e, one 2c-1e In-H σ-bond with ON = 0.99e, two 3c-2e In-H-In σ-bonds with
ON = 1.99e, and one 4c-2e In-In-In-H σ-bond with ON = 1.97e (Figure 9).
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As in the case of In2H4 and B2H4, the global minimum structures of In3H5 and B3H5 [4]
are different. Both systems are presented in Figure 10. B3H5 has three 2c-2e B-H terminal
σ-bonds, two bridged B-H-B σ-bonds, and three B atoms that are bonded via 3c-2e B-B-B σ-
bond and a 3c-2e B-B-B π-bond, so there are no 1c-2e lone pairs again. In In3H5, two indium
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atoms save 1c-2e lone pairs; there is one In-H 2c-2e terminal σ- bond with ON = 1.99e, three
bridged 3c-2e In-H-In σ-bonds with ON = 1.98–1.97e, and one 4c-2e In-In-In-H σ-bond with
ON = 1.96e (Figure 11). Thus, for boron clusters, aromaticity is found for both saturated and
non-saturated structures [21], but for indium, we observed aromaticity only for the most
unsaturated hydrides. It is another demonstration of the difference between the patterns of
boron and indium hydrides.
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Figure 11. The chemical bonding pattern of In3H5—non-classical structure (global minimum) and
classical structure.

The low-lying classical In3H5 structure (Figure 11) is about 17.2 kcal/mol higher
than the global minimum structure; this corresponds to the trend previously observed for
BnHn+2 series [4] (i.e., classical structures become progressively less stable along the series).
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The bonding pattern of the classical structure of In3H5 is similar to what was observed
for the classical structure of In2H4; it has two types of bonds—2c-2e In-H σ-bond with
ON = 1.99e and 2c-2e In-In σ bond with ON = 1.99e.

2.2. Thermodynamic Stability Observation

To estimate the thermodynamics stability of the indium hydrides toward H2 disso-
ciation, we calculated the potential energy difference of locally reoptimized structures at
QRO-CCSD(T)/cc-pVTZ(-PP)//U-TPSSh/def2-TZVPP level of theory. The results of these
calculations are shown in Table 1.

Table 1. Analysis of thermodynamic stability toward H2 dissociation at the QRO-CCSD(T)/cc-pVTZ(-
PP)//U-TPSSh/def2-TZVPP level of theory.

Stoichiometry Decomposition Product Stability Eproducts − Ereagents, kcal/mol

In2H2 In2 + H2 stable 25.2

In2H3 In2H + H2 unstable −0.1

In2H4 In2H2 + H2In2 + 2H2
stable
stable

4.8
30.0

In2H6
In2H4 + H2In2H2 +

2H2In2 + 3H2

unstable
stable
stable

−2.1
2.7

27.9

In3H2 In3 + H2 stable 12.1

In3H3 In3H + H2 stable 12.2

In3H4 In3H2 + H2In3 + 2H2
unstable

stable
−0.5
11.6

According to the data, almost all indium hydrides are stable toward H2 dissociation,
except In2H3, In2H6, and In3H4. However, even in the case of these molecules, the ∆E of
the dissociation reaction is very small.

3. Theoretical Methods

The global minimum search was carried out using the Coalescence Kick (CK) algorithm
written by Averkiev [22,23] to find a global minimum and corresponding low-lying isomers
for In2Hx and In3Hy (x = 0–4,6; y = 0–5). The basic workflow of the CK algorithm consists of
(1) the random placing of atoms in a sizeable Cartesian box, (2) the shift of atoms toward the
center of mass until they coalesce up to the pairwise sums of pre-defined covalent radii of
atoms, (3) the standard local geometry optimization using Ab Initio, DFT, or semi-empirical
approach. The CK procedure is repeated several thousand times to obtain an adequate
statistic, and the most stable structure is implied to be a global minimum. The CK original
code is available online at the open repository [24].

All calculations utilizing the CK procedure were carried out using unrestricted Kohn–
Sham formalism with density functional MN-15. It was chosen for its appropriate applica-
bility to various electronic structure problems, including multireference behavior [25]. The
LANL2DZ basis set was chosen for its balance of speed and accuracy [26]; additionally, the
Hay–Wadt pseudopotential was applied to indium atoms to account for scalar relativity
correction [27]. The specific generation size of random structures for the CK method for
each stoichiometry is shown in the SI file (Table S1). Gaussian 16 was used as the main
driver for the local optimization step [28] in the CK algorithm.

After the CK global minimum search, all obtained low-lying isomers in the 15 kcal/mol
energy window from the global minimum were reoptimized with a more accurate def2-
TZVPP basis set [29] and TPSSh density functional [30], which tends to provide better
energy ordering of isomers but cannot be generously applied to any electronic problem.
Obtained local minima were verified by nuclear Hessian calculation with the same method
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and basis set. The re-optimization step and all subsequent single-point calculations utilized
the ORCA 5.03 suite [31,32].

Using obtained local minima geometries, single point energies were recalculated at
the CCSD(T) level of theory with the cc-pVTZ [33] basis set on hydrogen atoms and the
cc-pVTZ-PP basis set on indium atoms complemented with the SK-MCDHF-RSC pseu-
dopotential [34,35]. The CCSD(T) approach is a gold standard for the accurate prediction
of energy ordering and provides meaningful results only in conjunction with large basis
sets. Quasi-restricted orbitals formalism (QRO-CCSD(T)) was employed to eliminate the
influence of spin-contamination in the open-shell coupled clusters calculations. In addition,
all CCSD(T) reference UHF wavefunctions were tested using UHF/UHF stability analysis
based on the CIS method [36].

Thus, the final energy ordering of low-lying isomers was estimated using QRO-
CCSD(T)/cc-pVTZ energies and U-TPSSh/def2-TZVPP geometries and corresponding
zero-point energy corrections (ZPE). This calculation scheme will be denoted as “QRO-
CCSD(T)/cc-pVTZ(-PP)//U-TPSSh/def2-TZVPP”.

It should be outlined that, due to the adiabatic treatment of the potential energy
surface, the CK algorithm can be applied only for one spin state at a time. For stoichiometry
with an even number of electrons, we chose a singlet multiplicity in the algorithm; for an
odd number of electrons, we decided to use a doublet multiplicity. To verify that other spin
states are not global minima, they were locally reoptimized in the corresponding triplet
or quartet multiplicities at the U-TPSSh/def2-TZVPP level of theory. Further single point
energy calculations at the QRO-CCSD(T)/cc-pVTZ(-PP) theoretical level demonstrated that
in the case of all stoichiometries, except In2 and In3H1, the energy difference between a
global minimum structure in the lowest spin multiplicity and a corresponding low-lying
structure in triplet (or quartet) multiplicity was at least 15–30 kcal/mol. That allowed us to
justify the choice of multiplicity in the CK algorithm.

In the case of In2, we found the triplet state to be more stable than the singlet state by
6.8 kcal/mol, which is in accordance with previous findings [37]. For In3H1, the singlet
state is more stable than the locally reoptimized triplet state; however, the energy difference
between them is relatively small (~2.5 kcal/mol). Therefore, we carried out an additional
CK search to find the actual global minimum of the triplet state. In this way, we found
the singlet state still to be more stable than the triplet state by 1.4 kcal/mol at the QRO-
CCSD(T)/cc-pVTZ(-PP) level of theory. The energy differences between spin states are
provided in the SI file (Table S2).

Chemical bonding for all global minimum isomers for each stoichiometry was ana-
lyzed using the adaptive natural density partitioning (AdNDP) algorithm implemented in
AdNDP 2.0 [38,39] as an effective method of deciphering bonding in molecular clusters
with untrivial electron delocalization. This approach is based on the Lewis idea that an
electron pair is the main bonding element. The algorithm leads to the partitioning of the
electron density into elements with the lowest symmetry-appropriate number of atomic
centers per electron pair, which allows for the representation of an electronic structure as
n-center two-electron bonds (nc-2e, n is an interval from one to the total number of atoms
participating in the bond). The same procedure may be applied to open-shell systems and
may recover nc-1e bonding elements. Despite the usage of the “electron pair idea,” AdNDP
and its ideological predecessor NBO analyses based on the density matrix representation of
the wavefunction; therefore, near doubly occupied bonding elements are obtained through
chains of similarity or unitary transformations of canonical KS “wavefunction,” which
is represented by single Slater determinant. Thus, the limit of two-electron occupancy
per bonding element is not arbitrary and is dictated by Pauli’s exclusion principle for
fermions and the primary modern approach to compose many-body wavefunctions. Thus,
the AdNDP algorithm recovers classical Lewis bonding elements (i.e., 1c-2e lone-pairs and
2c-2e bonds) and the delocalized bonding elements similar to occupied canonical molecular
orbitals, which are the most appropriate for this study. In this work, the density matrices
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for the AdNDP were obtained at the U-TPSSh/def2-TZVPP level of theory. Visualization
of molecular structures and AdNDP orbitals was performed with ChemCraft [40].

In addition, the AdNDP algorithm may show molecules’ potential aromatic or anti-
aromatic character. To verify it, the components of nucleus-independent chemical shift
(NICSzz) corresponding to the principal z-axis perpendicular to a ring plane may be used
as a good characteristic of aromaticity [40]. We calculated NICSzz(R) values (R means the
distance from the center of a ring in Å units) at the TPSSh/def2-TZVPP level of theory.

4. Conclusions

In this work, we used the CK algorithm for the global minimum search for In2Hx and
In3Hy (x = 0–4,6; y = 0–5) stoichiometry. Found global minimum geometries were used to
investigate the structural evolution of In2 and In3 clusters under “hydrogenation”. We also
investigated their chemical bonding pattern using the AdNDP algorithm and tested their
thermodynamic stability toward H2 dissociation. Our analysis revealed that both boron
and indium hydrates have non-classical structures with multi-center 2e bonds, and they
are much more stable than classical structures with sp2 hybridization. Indium hydrides are
characterized by non-intuitive global minimum geometries, where indium tends to save
its lone pair even if it leads to the loss of a classical 2c-2e bond. Some unsaturated indium
clusters have aromatic properties. We want to emphasize that the revealed difference
between boron and indium hydrides is closely related to the difference in the fundamental
properties of boron and indium atoms: higher excitation energy of indium atoms and less
energetically favorable indium–hydrogen bond formation.

We hope this work will inspire further theoretical and experimental investigation of
these exotic indium species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010183/s1, Table S1. Population size used for CK
algorithm for In2Hx and In3Hy (x = 0–4,6; y = 0–5) stoichiometries; Table S2. Spin-state energy
difference; Table S3. In2Hx and In3Hy (x = 0–4,6; y = 0–5) global minimum geometries for singlet
and doublet states found the lowest lying isomers for triplet and quartet states (XYZ coordinates);
Table S4. NICSzz values; Figures S1–S11. Global minimum geometries and low-lying geometries
with corresponding relative energies for each In2Hx and In3Hy (x = 0–4,6; y = 0–5) stoichiometry,
chemical bonding patterns for global minimum geometries.
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