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Abstract: Herein, we present a mild strategy for deprotecting cyclic sulfamidates via the Kukhtin–
Ramirez reaction to access amino sugars. The method features the removal of the sulfonic group of
cyclic sulfamidates, which occurs through an N-H insertion reaction that implicates the Kukhtin–
Ramirez adducts, followed by a base-promoted reductive N-S bond cleavage. The mild reaction
conditions of the protocol enable the formation of amino alcohols including analogs that bear multiple
functional groups.
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1. Introduction

Amino alcohols are important skeletons which are widely distributed in pharmaceuti-
cals and biologically active natural products (Figure 1a) [1–3]. Amino alcohols also play im-
portant roles in organic synthesis as synthons, ligands, auxiliaries, and chiral catalysts [4–8].
This significance has inspired tremendous efforts to devise elegant synthetic methods for the
construction of amino alcohols [9–15]. Among them, the utility of sulfamate esters [16–21]
as precursors of amino groups to form cyclic sulfamidate [22–25] via substitution [26,27],
condensation [28–30], C-H amination [31–34], C-H aziridination [35], etc. [36–38], has been
well established. This has emerged as one of the most prominent methods to produce amino
alcohols, due to the ready availability of the materials, the high efficiency of transformations,
as well as the well-controlled regioselectivity and stereoselectivity (Figure 1b).

3-Amino deoxy sugars represent a special type of amino alcohols found in many
carbohydrate-based antibiotics [39,40]. This strategy has also been incorporated into
our study to prepare various 3-amino deoxy sugars (Figure 1c) [41–43]. However, the
subsequent removal of the SO2 group of the cyclic sulfamidate to deliver free amino
alcohols presented a notable challenge. Conventional deprotection methods employ strong
reducing reagents such as LiAlH4, AlH3, and so on [30,44]. Apparently, the functional group
tolerance is largely hampered by these conditions, wherein esters, ketones, aldehydes, and
so on must be avoided altogether. Another common deprotection method is hydrolysis
under acidic or alkaline conditions, but epimerization is always encountered for secondary
alcohols [26,45]. To address these limitations and, more importantly, to gain expedite access
to diversified 3-amino sugars, we have developed a new deprotection method for the SO2
group of sulfamidates under mild conditions.
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Figure 1. Representative drugs containing amino alcohol motifs and established approaches to
synthesizing amino alcohols.

2. Results and Discussion

Our reaction design was inspired by a three-decade-old reaction known as the Kukhtin–
Ramirez reaction, which was independently discovered by Kukhtin [46] and Ramirez [47,48].
In this reaction, the redox condensation of a 1,2-dicarbonyl compound with a trivalent
phosphorus derivative produces a pentacoordinate dioxaphospholene Ia, which exists in
equilibrium with a tetracoordinate oxyphosphonium enolate Ib (Scheme 1a). Due to their
unique properties, these species that are known as the Kukhtin–Ramirez adducts have
been well explored in X-H insertion [49–52], reductive addition [53], cycloaddition [54–56],
etc. [57–60]. Very recently, Fier et al. described an ingenious solution to degrade sec-
ondary sulfonamides into the corresponding sulfinates by virtue of the Kukhtin–Ramirez
adducts [61]. This chemistry involves the addition of sulfonamides onto the Kukhtin–
Ramirez adducts to form an N-H insertion intermediate II, which undergoes further
degradation through a base-promoted reductive cleavage of the N-S bond (Scheme 1b).
This unprecedented example of the cleavage of a strong sulfonamide S-N bond led us to
envision a similar protocol that might be amenable to cleave the sulfamidate S-N bond
to deliver an intermediate (V) containing both sulfinate and imine functionalities. The
corresponding amino alcohol would be revealed upon hydrolysis (Scheme 1c).

With this idea in mind, our investigation commenced with the deprotection of dis-
accharide 1a as the model reaction. The requisite cyclic sulfamidate 1a used in this study
was prepared with the application of the corresponding glycals as starting materials [43].
Initially, disaccharide 1a was subjected to the Kukhtin–Ramirez intermediate formed from
ethyl benzoylformate and tris(dimethylamino)phosphorus (Table 1, entry 1). To our delight,
the N-H insertion reaction proceeded smoothly to generate N-sulfonyl phenylglycine ester
3a in 95% yield, which set the stage for the deprotection reaction. Subsequently, BTMG
was added into the system as a base to facilitate the S-N bond cleavage (Table 1, entry 2).
As expected, the S-N bond was efficiently cleaved with the removal of the SO2 group, but
imino ester 4a was obtained in 79% yield instead of the target free amino alcohols 2a. This
indicated the occurrence of intramolecular esterification prior to the hydrolysis. To avoid
this competing reaction, the second step was carried out in an aqueous solution of THF
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(THF:H2O, 1:1). Following this modification, the desired free amino sugar 2a was obtained
in 88% yield. Other than BTMG, DBU and KOH could also yield the target product in
86% and 80% yields, respectively. However, weak bases such as K2CO3 and Et3N lead
to dramatic decreases in yield. Interestingly, the basic anion exchange resin Ambersep®

900 (OH) could cleave the S-N bond effectively. This could simplify the product isolation,
although the yield of 2a would be slightly compromised. Considering the product isolation
convenience and the price of the reagent (especially in large-scale preparations), DBU was
selected as the base. In principle, the 1,2-dicarbonyl entity could be fully recovered, but
the ethyl benzoylformate used in this reaction was hydrolyzed under the strong basic
conditions. Several other 1,2-dicarbonyl reagents [62–64] were subsequently examined to
circumvent this process. Unfortunately, none of the examined reagents could promote the
preceding N-H insertion reaction (see the SI for the screening of 1,2-dicarbonyl compounds).
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Table 1. Cont.

Entry Variation from Standard Conditions Yield a

1 Step 1 only 3a, 95%
2 Without H2O 4a, 79%
3 Standard conditions 2a, 88%
4 DBU instead of BTMG 2a, 86%
5 KOH instead of BTMG 2a, 80%
6 K2CO3 instead of BTMG 2a, 16%
7 Et3N instead of BTMG 2a, trace

8 Ambersep® 900 (OH) instead of
BTMG

2a, 80%

a Yield of isolated product.

With the optimized conditions in place, we then surveyed the scope and limitations of
the method, especially in attaining our ultimate goal to prepare 3-aminosugars (Scheme 2).
After examining a series of 3-aminosugars, it could be concluded that: (1) The glycosidic
bonds (including both O- and C-analogs) were left intact and the optical purities of the
α- and β-glycosidic bonds were not eroded at all. (2) All D- and L-sugars of the 3,5-cis or
3,5-trans configuration could undertake the transformation smoothly to produce the cis
amino sugars in good yields. (3) Acid-labile groups such as benzylidine acetals (2b, 2i), iso-
propylidene ketals (2c, 2d), and other ketals (2f) as well as alkenes (2e) were well tolerated.
(4) Functional groups that are generally sensitive to reductive conditions such as esters
(2e), ketones (2m), and iodine (2i) endured the established conditions. However, it is worth
mentioning that the ester group was hydrolyzed under the strong basic conditions, with
the exception of an α,β-unsaturated ester that could furnish 2e in good yield. (5) The latent
glycosyl donors SPTB ((S-2-(2-propylthio)benzyl, 2b) and OPTB (O-2-(2-propylthio)benzyl,
2c) featured in the interrupted Pummer reaction mediated (IPRm) glycosylations were well
compatible [65–69], and could be transformed into the corresponding active SPSB/OPSB
glycosyl donors via oxidation, indicating the potential for the further elongation of the
sugar chain.
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To verify the general synthetic utility of this protocol, we sought to merge the well-
defined alcohol-induced amination reactions [31–34] with this deprotection protocol to mod-
ify naturally occurring or biologically important alcohols by introducing amino groups at
nearby positions (Scheme 3). As an example, cholesterol was subjected to in-situ-generated
sulfamoyl chloride [16,18], followed by Rh-catalyzed C-H amination conditions [32]. This
sequence produced the five-membered cyclic sulfamidate 6a in 38% yield. Subsequently,
the application of the optimized deprotection conditions gave rise to the β-amino alcohol
analog of cholesterol 7a in 70% yield. The implementation of a similar protocol for the
synthetic modification of indole-3-propanol also successfully introduced the amino group
at the γ-position. To further showcase the applicability, a 1 mmol scale reaction of 6b was
performed under the optimized conditions. The desired amino alcohol 7b was obtained in
a comparable yield (82%).
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3. Experimental Section
3.1. General

All the commercially available chemicals were purchased from Alfa, Innochem, and
Adamas and used without further purification. The solvents for the reactions were dried
on an Innovative Technologies Pure Solv400 solvent purifier. All the reactions were moni-
tored using thin-layer chromatography over silica-gel-coated TLC plates (Yantai Chemical
Industry Research Institute). The spots on the TLC were visualized by warming 10%
H2SO4-(10% H2SO4 in ethanol) or 10% phosphomolybdic-acid (10% phosphomolybdic acid
in ethanol) -sprayed plates on a hot plate. Column chromatography was performed using
silica gel (Qingdao Marine Chemical Inc., Qingdao, China). NMR spectra were recorded
with a Bruker AM-400 spectrometer (400 MHz) or Bruker Ascend TM-600 spectrometer
(600 MHz). The 1H and 13C NMR chemical shifts were referenced against the solvent or
solvent impurity peaks for CDCl3 at δH 7.24 and δC 77.23, for CD2Cl2 at δH 5.32 and δC
53.80, and for DMSO-d6 at δH 2.50 and δC 39.52 ppm, respectively. Optical rotations were
measured at 25 ◦C with a Rudolph Autopol IV automatic polarimeter using a quartz cell
with a 2 mL capacity and a 1 dm path length. Concentrations (c) are given in g/100 mL.
High-resolution mass spectra were recorded with a Bruker micrOTOF II spectrometer using
electrospray ionization (ESI). The copies of 1H and 13C NMR spectra of the new compounds
are provided in the Supplementary Material.

3.2. Procedures for Compound 3a and 4a
3.2.1. Procedures for Compound 3a

Ethyl 2-((3aS,4S,6R,7aS)-4-methyl-2,2-dioxido-6-(((2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-
6-methoxytetrahydro-2H-pyran-2-yl)methoxy)tetrahydropyrano [4,3-d][1,2,3]oxathiazol-1(4H)-
yl)-2-phenylacsetate (3a).



Molecules 2023, 28, 182 6 of 14

To a solution of 1a (20.0 mg, 0.031 mmol) in THF (0.31 mL, C = 0.1 M), Ph(CO)CO2Et
(5.3 µL, 0.034 mmol) and P(NMe2)3 (6.7 µL, 0.037 mmol) were added sequentially. After
stirring for 45 min at room temperature, the mixture was concentrated and purified using
silica gel chromatography to obtain 3a (23.8 mg, 95%) as a colorless syrup. The major
isomer: Rf = 0.71 (petroleum ether-EtOAc 2:1). [α]25

D −19.6 (c, 1.34 in CHCl3). The readings
for 1H NMR spectra (400 MHz, CDCl3) were δ 7.37–7.25 (m, 18H, Ar-H), 7.14 (dd, J = 7.6,
2.8 Hz, 2H, Ar-H), 5.28 (s, 1H, CH), 4.98–4.95 (m, 2H, PhCH2, H-4′), 4.78 (d, J = 11.2 Hz,
3H, PhCH2), 4.66 (d, J = 12.0 Hz, 1H, PhCH2), 4.53 (d, J = 3.6 Hz, 2H, H-1, H-1′), 4.36–4.21
(m, 4H, CH2, PhCH2, H-3′), 4.02 (dq, J = 6.4, 1.6 Hz, 1H, H-5′), 3.93 (t, J = 9.2 Hz, 1H, H-3),
3.66 (d, J = 11.6 Hz, 1H, H-6a), 3.61 (dd, J = 10.4, 5.2 Hz, 1H, H-5), 3.46 (dd, J = 9.6, 3.6 Hz,
1H, H-2), 3.30 (dd, J = 10.8, 5.6 Hz, 1H, H-6b), 3.26–3.21 (m, 4H, H-4, OMe), 1.77–1.69
(m, 1H, H-2′a), 1.29–1.25 (m, 6H, H-6′, Me), and 1.05 (dd, J = 13.2, 6.4 Hz, 1H, H-2′b).
The readings for the 13C NMR spectra (100 MHz, CDCl3) were δ 170.8, 138.9, 138.3, 133.6,
129.4, 129.3, 128.7, 128.6, 128.3, 128.2, 128.2, 128.0, 127.9, 127.9, 98.0, 96.8, 82.3, 81.5, 80.3,
78.1, 76.0, 75.2, 73.6, 70.1, 66.8, 62.7, 62.2, 61.2, 55.1, 53.0, 32.4, 16.8, and 14.2. The HRMS
calculation for C44H51NO12S was [M + Na]+: 840.3024, found: 840.3041. The minor isomer:
Rf = 0.58 (petroleum ether-EtOAc 2:1). [α]25

D −43.8 (c, 1.17 in CHCl3). The readings for the
1H NMR spectra (400 MHz, CDCl3) were δ 7.44–7.42 (m, 2H, Ar-H), 7.36–7.26 (m, 16H,
Ar-H), 7.21–7.18 (m, 2H, Ar-H), 5.15 (s, 1H, CH), 4.97 (d, J = 10.8 Hz, 1H, PhCH2), 4.82 (d,
J = 10.8 Hz, 1H, PhCH2), 4.80–4.75 (m, 3H, PhCH2, H-1′), 4.65 (d, J = 12.4 Hz, 1H, PhCH2),
4.51 (d, J = 3.6 Hz, 1H, H-1), 4.41 (d, J = 11.2 Hz, PhCH2), 4.26 (dd, J = 4.0, 1.2 Hz, 1H, H-4′),
4.23–4.12 (m, 2H, CH2), 3.92 (t, J = 9.2 Hz, 1H, H-3), 3.86 (qd, J = 6.4, 1.6 Hz, 1H, H-5′), 3.76
(ddd, J = 11.2, 6.4, 4.4 Hz, 1H, H-3′), 3.68 (dd, J = 10.4, 0.8 Hz, 1H, H-6a), 3.61 (dd, J = 10.4,
5.6 Hz, 1H, H-5), 3.41 (dd, J = 9.6, 3.2 Hz, 1H, H-2), 3.38 (dd, J = 10.8, 6.0 Hz, 1H, H-6b),
3.26 (t, J = 9.2 Hz, 1H, H-4), 3.23 (s, 3H, OMe), 2.23–2.16 (m, 1H, H-2′a), 1.98 (dd, J = 14.0,
6.4 Hz, 1H, H-2′b), and 1.22–1.18 (m, 6H, H-6′, Me). The readings for the 13C NMR spectra
(100 MHz, CDCl3) were δ 168.9, 138.9, 138.3, 138.2, 133.3, 129.9, 129.3, 129.1, 128.7, 128.7,
128.6, 128.3, 128.2, 128.1, 128.0, 127.9, 98.0, 96.8, 82.3, 80.3, 80.2, 78.0, 76.0, 75.3, 73.5, 70.1,
66.6, 64.0, 62.6, 62.3, 55.2, 54.3, 30.8, 16.8, and 14.1. The HRMS calculation for C44H51NO12S
was [M + Na]+: 840.3024, found: 840.3051.

3.2.2. Procedures for Compound 4a

(4aS,5S,7R,8aS)-5-methyl-2-phenyl-7-(((2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-
methoxytetrahydro-2H-pyran-2-yl)methoxy)-4a,7,8,8a-tetrahydropyrano [3,4-b][1,4]oxazin-
3(5H)-one (4a).

To a solution of 1a (20.0 mg, 0.031 mmol) in THF (0.31 mL, C = 0.1 M), Ph(CO)CO2Et
(5.3 µL, 0.034 mmol) and P(NMe2)3 (6.7 µL, 0.037 mmol) were added sequentially. After
stirring for 45 min at room temperature, BTMG was added, and the mixture was stirred for
4 h at 65 ◦C. The mixture was concentrated and purified using silica gel chromatography
to obtain 4a (17.0 mg, 79%) as a white solid. Rf = 0.61 (petroleum ether-EtOAc 2:1), m.p.
159–160 ◦C. [α]25

D −128.3 (c, 1.36 in CHCl3). The readings for the 1H NMR spectra (400 MHz,
CDCl3) were δ 7.95–7.82 (m, 2H, Ar-H), 7.47–7.26 (m, 18H, Ar-H), 5.00 (d, J = 11.2 Hz, 1H,
PhCH2), 4.90 (d, J = 11.2 Hz, 1H, PhCH2), 4.84–4.77 (m, 3H, PhCH2, H-1), 4.66 (d, J = 12.0 Hz,
1H, PhCH2), 4.58 (d, J = 3.6 Hz, 1H, H-1′), 4.56 (d, J = 11.2 Hz, PhCH2), 4.52 (ddd, J = 10.8,
4.8, 3.2 Hz, 1H, H-3′), 4.29 (d, J = 1.6 Hz, 1H, H-4′), 4.07 (q, J = 6.4 Hz, 1H, H-5′), 4.01 (t,
J = 9.2 Hz, 1H, H-3), 3.85 (dd, J = 10.8, 1.6 Hz, 1H, H-6a), 3.76 (ddd, J = 10.0, 4.8, 1.2 Hz,
1H, H-5), 3.55 (dd, J = 10.8, 5.2 Hz, 1H, H-6b), 3.52–3.46 (m, 2H, H-2, H-4), 3.38 (s, 3H,
OMe), 2.15 (dd, J = 13.2, 4.8 Hz, 1H, H-2′a), 1.42 (td, J = 12.8, 3.2 Hz, 1H, H-2′b), and 1.33
(d, J = 6.4 Hz, 3H, H-6′). The readings for the 13C NMR spectra (100 MHz, CDCl3) were
δ 158.8, 155.9, 138.9, 138.4, 138.4, 134.3, 131.4, 129.0, 128.7, 128.6, 128.5, 128.3, 128.2, 128.1,
127.8, 98.2, 96.7, 82.4, 80.3, 78.0, 75.9, 75.3, 75.0, 73.6, 70.2, 66.6, 63.6, 55.3, 51.5, 30.7, and 15.9.
The HRMS calculation for C42H45NO9 [M + Na]+: 730.2987, found: 730.2989.
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3.3. General Procedure for Deprotection and Characterization of the Products

To a solution of the substrate (1.0 equiv) in THF (C = 0.1 M), Ph(CO)CO2Et(1.1 equiv)
and P(NMe2)3 (1.2 equiv) were added sequentially. After stirring for 45 min at room
temperature, DBU (3.0 equiv relative to the starting substrate) and H2O (the amount
of water was equal to that of the THF) were added sequentially, and the mixture was
stirred for 4 h at 65 ◦C. The mixture was extracted with CH2Cl2 after removing the THF
by concentration. The organic layer was washed with saturated NaHCO3 and brine,
dried over Na2SO4, and concentrated in vacuo. The residue was purified with column
chromatography on silica gel (dichloromethane-methanol gradient elution, with 0.5% or
1% NH3·H2O) to obtain the desired product.

(2S,3S,4S,6R)-4-amino-2-methyl-6-(((2R,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-
methoxytetrahydro-2H-pyran-2-yl)methoxy)tetrahydro-2H-pyran-3-ol (2a).

According to the General Procedure, 1a (20.0 mg, 0.031 mmol) was used to obtain
2a as a white solid in 86% yield. Rf = 0.43 (CH2Cl2-MeOH 10:1), m.p. 181–182 ◦C. [α]25

D
−29.6 (c, 0.45 in CHCl3).The readings for the 1H NMR spectra (400 MHz, CDCl3) were δ
7.27–7.24 (m, 4H, Ar-H), 7.23–7.14 (m, 11H, Ar-H), 4.89 (d, J = 10.8 Hz, 1H, PhCH2), 4.78 (d,
J = 11.2 Hz, 1H, PhCH2), 4.71 (d, J = 10.8 Hz, 1H, PhCH2), 4.69 (d, J = 12.0 Hz, 1H, PhCH2),
4.64 (br s, 1H, H-1′), 4.56 (d, J = 12.0 Hz, PhCH2), 4.48 (d, J = 3.6 Hz, 1H, H-1), 4.44 (d,
J = 11.2 Hz, 1H, PhCH2), 3.89 (t, J = 9.2 Hz, 1H, H-3), 3.77 (q, J = 6.4 Hz, 1H, H-5′), 3.72 (dd,
J = 10.8, 1.6 Hz, 1H, H-6a), 3.65 (ddd, J = 10.0, 4.8, 1.2 Hz, 1H, H-5), 3.42–3.37 (m, 3H, H-2,
H-4, H-6b), 3.28–3.25 (m, 4H, H-4′, OMe), 3.15–3.08 (m, 1H, H-3′), 1.52 (dd, J = 9.2, 2.4 Hz,
2H, H-2′a, H-2′b), and 1.11 (d, J = 6.8 Hz, 3H, H-6′). The readings for the 13C NMR spectra
(100 MHz, CDCl3) were δ 138.9, 138.4, 138.4, 128.7, 128.6, 128.3, 128.2, 128.1, 128.0, 127.9,
98.1, 97.6, 82.3, 80.2, 78.1, 76.0, 75.2, 73.5, 71.1, 70.2, 66.3, 66.0, 55.3, 46.4, 32.8, and 17.1. The
HRMS calculation for C36H45NO9 was [M + Na]+: 658.2987, found: 658.3006.

(2S,3S,4S,6S)-4-amino-6-(((2R,4aR,6S,7R,8S,8aR)-8-(benzyloxy)-6-((2-(isopropylthio)
benzyl)thio)-2-phenylhexahydropyrano [3,2-d][1,3]dioxin-7-yl)oxy)-2-methyltetrahydro-
2H-pyran-3-ol (2b).

According to the General Procedure, 1b (20.0 mg, 0.027 mmol) was used to obtain 2b
as a white solid in 87% yield. Rf = 0.13 (CH2Cl2-MeOH 15:1), m.p. 57–58 ◦C. [α]25

D −121.5 (c,
0.61 in CHCl3). The readings for the 1H NMR spectra (400 MHz, CDCl3) were δ 7.46–7.41
(m, 3H, Ar-H), 7.36–7.34 (m, 3H, Ar-H), 7.30–7.25 (m, 6H, Ar-H), 7.21–7.14 (m, 2H, Ar-H),
5.54 (s, 1H, PhCHO2), 5.35 (d, J = 3.2 Hz, 1H, H-1′), 4.93 (d, J = 11.2 Hz, 1H, PhCH2), 4.60 (d,
J = 11.2 Hz, 1H, PhCH2), 4.36–4.31 (m, 3H, H-1), 4.14 (d, J = 13.2 Hz, 1H, PhCH2S), 4.01 (d,
J = 13.2 Hz, PhCH2S), 3.78–3.66 (m, 4H), 3.40–3.33 (m, 3H), 3.03 (d, J = 10.8 Hz, 1H), 1.61
(dd, J = 13.2, 4.0 Hz, 1H, H-2′a), 1.46–1.40 (m, 1H, H-2′b), 1.28–1.23 (m, 6H, (CH3)2CH), and
1.18 (d, J = 6.8 Hz, 3H, H-6′). The readings for the 13C NMR spectra (100 MHz, CDCl3) were
δ 139.7, 138.1, 137.3, 135.5, 132.8, 130.0, 129.0, 128.5, 128.3, 128.0, 127.8, 127.7, 126.8, 126.0,
101.2, 98.4, 84.1, 84.0, 81.8, 75.1, 71.2, 70.0, 68.8, 66.9, 46.3, 38.8, 33.1, 29.8, 23.3, 23.1, and 16.8.
The HRMS calculation for C36H45NO7S2 was [M + H]+: 668.2710, found: 668.2688.

(2S,3S,4S,6S)-4-amino-6-(((3aR,4R,6S,7S,7aR)-4-((2-(isopropylthio)benzyl)oxy)-2,2,6-
trimethyltetrahydro-4H-[1,3]dioxolo [4,5-c]pyran-7-yl)oxy)-2-methyltetrahydro-2H-pyran-
3-ol (2c).

According to the General Procedure, 1c (20.0 mg, 0.036 mmol) was used to obtain 2c
as a colorless syrup in 86% yield. Rf = 0.30 (CH2Cl2-MeOH 10:1). [α]25

D −93.9 (c, 1.20 in
CHCl3).The readings for the 1H NMR spectra (400 MHz, CDCl3) were δ 7.43 (dd, J = 8.0,
1.6 Hz, 1H, Ar-H), 7.39 (dd, J = 7.2, 1.6 Hz, 1H, Ar-H), 7.27–7.24 (m, 1H, Ar-H), 7.23–7.19
(m, 1H, Ar-H), 5.45 (d, J = 2.4 Hz, 1H, H-1′), 5.07 (s, 1H, H-1), 4.85 (d, J = 12.0 Hz, 1H,
PhCH2), 4.62 (d, J = 11.6 Hz, 1H, PhCH2), 4.19–4.15 (m, 1H), 4.12 (d, J = 5.2 Hz, 1H), 3.88
(q, J = 6.8 Hz, H-5′), 3.78–3.71 (m, 1H), 3.52 (dd, J = 10.0, 7.2 Hz, 1H, H-4), 3.40 (br s, 1H),
3.38–3.31 (m, 1H), 3.16 (br s, 1H), 1.73–1.61 (m, 4H, H-2′a, H-2′b, NH2), 1.52 (s, 3H, Me),
1.31 (s, 3H, Me), and 1.28–1.19 (m, 12H, H-6, H-6′, (CH3)2CH),. The readings for the 13C
NMR spectra (100 MHz, CDCl3) were δ 138.8, 135.4, 132.8, 129.5, 128.5, 127.1, 109.5, 96.8,
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95.6, 79.2, 76.5, 76.4, 71.4, 67.8, 66.5, 64.7, 46.5, 38.9, 33.1, 28.1, 26.7, 23.4, 23.3, 18.7, 18.2, and
17.2. The HRMS calculation for C25H39NO7S was [M + H]+: 498.2520, found: 498.2541.

(2S,3S,4S,6R)-4-amino-2-methyl-6-(((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-
5H-bis([1,3]dioxolo)[4,5-b:4′,5’-d]pyran-5-yl)methoxy)tetrahydro-2H-pyran-3-ol (2d).

According to the General Procedure, 1d (15.5 mg, 0.034 mmol) was used to obtain 2d
as a colorless syrup in 92% yield. Rf = 0.33 (CH2Cl2-MeOH 10:1). [α]25

D −99.5 (c, 1.17 in
CHCl3). The readings for the 1H NMR spectra (400 MHz, CDCl3) were δ 5.51 (d, J = 5.2 Hz,
1H, H-1), 4.88 (d, J = 2.8 Hz, 1H, H-1′), 4.58 (dd, J = 7.6, 2.4 Hz, 1H), 4.29 (dd, J = 5.2, 2.4 Hz,
1H), 4.21 (dd, J = 8.0, 1.6 Hz, 1H), 3.97–3.90 (m, 2H), 3.79 (dd, J = 10.0, 6.0 Hz, 1H), 3.54 (dd,
J = 10.0, 6.8 Hz, 1H), 3.38 (d, J = 2.4 Hz, 1H), 3.21 (d, J = 8.8 Hz, 1H), 1.72–1.59 (m, 4H, H-2′a,
H-2′b, NH2), 1.51 (s, 3H, Me), 1.42 (s, 3H, Me), 1.31 (s, 3H, Me), 1.30 (s, 3H, Me), and 1.23
(d, J = 6.4 Hz, 3H, H-6′). The readings for the 13C NMR spectra (100 MHz, CDCl3) were δ
109.5, 108.7, 97.3, 96.5, 71.5, 71.4, 70.9, 70.8, 67.0, 66.1, 65.6, 46.6, 33.0, 26.3, 26.2, 25.2, 24.8,
and 17.2. The HRMS calculation for C18H31NO8 was [M + H]+: 390.2122, found: 390.2138.

Ethyl (E)-3-(3-(((2S,4S,5S,6S)-4-amino-5-hydroxy-6-methyltetrahydro-2H-pyran-2-yl)
oxy)phenyl)acrylate (2e).

According to the General Procedure, 1e (12.0 mg, 0.031 mmol) was used to obtain 2e
as a colorless syrup in 74% yield. Rf= 0.23 (CH2Cl2-MeOH 10:1). [α]25

D −110.9 (c, 0.60 in
CHCl3).The readings for the 1H NMR spectra (400 MHz, CDCl3) were δ 7.62 (d, J = 16.0 Hz,
1H, CH = CH), 7.27 (t, J = 7.6 Hz, 1H, Ar-H), 7.20 (br s, 1H, Ar-H), 7.14 (d, J = 7.6 Hz, 1H,
Ar-H), 7.07 (dd, J = 8.4, 1.6 Hz, 1H, Ar-H), 6.39 (d, J = 16.0 Hz, 1H, CH = CH), 5.60 (br s, 1H,
H-1), 4.24 (q, J = 7.2 Hz, 2H, CH2), 3.96 (q, J = 6.4 Hz, 1H, H-5), 3.48–3.44 (m, 2H, H-3, H-4),
1.86 (dd, J = 8.8, 2.4 Hz, 2H, H-2a, H-2b), 1.32 (t, J = 7.2 Hz, 3H, Me), and 1.22 (d, J = 6.8 Hz,
3H, H-6). The readings for the 13C NMR spectra (100 MHz, CDCl3) were δ 167.2, 157.5,
144.6, 136.1, 130.1, 121.9, 118.9, 118.4, 115.8, 96.1, 71.0, 67.2, 60.7, 46.4, 32.8, 17.2, and 14.5.
The HRMS calculation for C17H23NO5 was [M + H]+: 322.1649, found: 322.1676.

(2S,3S,4S,6R)-4-amino-2-methyl-6-(((4S,5’R,6aR,6bS,8aS,8bR,9S,10R,11aS,12aS,12bS) -
5’,6a,8a,9-tetramethyl-1,3,3’,4,4’,5,5’,6,6a,6b,6’,7,8,8a,8b,9,11a,12,12a,12b-icosahydrospiro
[naphtho[2’,1’:4,5]indeno [2,1-b]furan-10,2’-pyran]-4-yl)oxy)tetrahydro-2H-pyran-3-ol (2f).

According to the General Procedure, 1f (20.0 mg, 0.033 mmol) was used to obtain 2f as
a white solid in 76% yield. Rf= 0.32 (CH2Cl2-MeOH 10:1), m.p. 243–244 ◦C. [α]25

D −154.8
(c, 1.09 in CHCl3). The readings for the 1H NMR spectra (400 MHz, CDCl3) were δ 5.31
(d, J = 5.2 Hz, 1H, C = CH), 5.00 (d, J = 3.2 Hz, 1H, H-1), 4.38 (q, J = 7.2 Hz, 1H), 3.94 (q,
J = 6.4 Hz, 1H, H-5), 3.47–3.32 (m, 4H), 3.24 (d, J = 10.4 Hz, 1H), 2.32 (ddd, J = 13.2, 4.4, 1.6
Hz, 1H), 2.15 (td, J = 12.4, 2.4 Hz, 1H), 2.02–1.92 (m, 2H), 1.85–1.48 (m, 18H), 1.46–1.38 (m,
2H), 1.30–1.25 (m, 1H), 1.22 (d, J = 6.8 Hz, 3H, H-6), 1.17 (dd, J = 12.4, 4.4 Hz, 1H), 1.13–1.05
(m, 2H), 1.00 (s, 3H, Me), 0.96–0.89 (m, 4H), and 0.78–0.75 (m, 6H, Me). The readings for the
13C NMR spectra (100 MHz, CDCl3) were δ 140.9, 121.7, 109.5, 95.4, 81.0, 76.3, 71.5, 67.1,
66.1, 62.4, 56.7, 50.3, 46.6, 41.8, 40.5, 40.0, 38.9, 37.6, 37.1, 33.6, 32.3, 32.1, 31.7, 31.6, 30.5,
29.7, 29.0, 21.1, 19.6, 17.3, 17.2, 16.5, and 14.7. The HRMS calculation for C33H53NO5 was
[M + H]+: 544.3997, found: 544.4011.

(2S ,3S ,4S ,6S)-4-amino-2-methyl-6-(((2R ,3R,5R,6S)-3,4,5-tris(benzyloxy)-6-
methoxytetrahydro-2H-pyran-2-yl)methoxy)tetrahydro-2H-pyran-3-ol (2g).

According to the General Procedure, 1g (20.0 mg, 0.031 mmol) was used to obtain
2g as a white solid in 72% yield. Rf = 0.13 (CH2Cl2-MeOH 15:1). The readings for the
1H NMR spectra (600 MHz, CDCl3) were δ 7.31–7.18 (m, 15H, Ar-H), 4.91 (d, J = 11.4 Hz,
1H, PhCH2), 4.79 (d, J =10.8 Hz, 1H, PhCH2), 4.78 (d, J = 10.8 Hz, 1H, PhCH2), 4.73 (d,
J = 12.0 Hz, 1H, PhCH2), 4.66 (d, J = 10.8 Hz, 1H, PhCH2), 4.60 (d, J = 12.6 Hz, 1H, PhCH2),
4.56 (d, J = 3.6 Hz, 1H, H-1), 4.40 (dd, J = 9.6, 1.8 Hz, 1H, H-1’), 4.10 (dd, J = 11.4, 3.6 Hz,
1H, H-6a), 3.92 (t, J = 9.6 Hz, 1H, H-3), 3.68–3.61 (m, 2H, H-5, H-6b), 3.54 (t, J = 9.6 Hz, 1H,
H-4), 3.47 (dd, J = 9.6, 3.6 Hz, 1H, H-2), 3.42 (q, J = 6.6 Hz, 1H, H-5’), 3.33 (d, J = 1.8 Hz, 1H,
H-4’), 3.30 (s, 3H, OMe), 2.97 (brs, 3H, NH2, OH), 2.92–2.87 (m, 1H, H-3’), 1.85–1.78 (m, 1H,
H-2’a), 1.51–1.43 (m, 1H, H-2’b), and 1.19 (d, J = 6.6 Hz, 3H, H-6’). The readings for the 13C
NMR spectra (150 MHz, CDCl3) were δ 139.0, 138.6, 138.4, 128.6, 128.6, 128.5, 128.3, 128.2,
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128.1, 128.0, 127.9, 127.7, 100.4, 98.3, 82.2, 80.1, 77.8, 75.9, 75.2, 73.6, 71.9, 70.1, 70.1, 66.9, 55.3,
50.6, 34.4, and 17.1.

(2S,3R,4R,6S)-4-amino-6-(((2R,3R,4S,5R,6S)-4,5-bis(benzyloxy)-2-((benzyloxy)methyl)-
6-methoxytetrahydro-2H-pran-3-yl)oxy)-2-methyltetrahydro-2H-pyran-3-ol (2h).

According to the General Procedure, 1h (21.0 mg, 0.032 mmol) was used to obtain
2h as a colorless syrup in 62% yield. Rf = 0.58 (CH2Cl2-MeOH 10:1). [α]25

D −15.0 (c, 0.56
in CHCl3). The readings for the 1H NMR spectra (400 MHz, CDCl3) were δ 7.35–7.25 (m,
15H, Ar-H), 5.25 (d, J = 3.2 Hz, 1H, H-1’), 4.77 (d, J = 11.6 Hz, 2H, PhCH2), 4.69 (m, 2H,
PhCH2, H-1), 4.65 (d, J = 11.6 Hz, 1H, PhCH2), 4.56 (d, J = 11.6 Hz, 1H, PhCH2), 4.65 (d,
J = 11.6 Hz, 1H, PhCH2), 4.06 (d, J = 1.2 Hz, 1H, H-4), 3.92 (t, J = 10.0 Hz, 1H), 3.84 (qd,
J = 10.0, 2.8 Hz, 2H), 3.61–3.56 (m, 3H), 3.38 (s, 3H, OMe), 3.06 (dd, J = 9.2, 4.4 Hz, 1H),
3.00 (m, 1H), 2.06–2.03 (m, 1H, H-2’a), 1.79 (dt, J = 14.4, 4.4 Hz, 1H, H-2’b), and 1.18 (d,
J = 6.0 Hz, 3H, H-6’). The readings for the 13C NMR spectra (100 MHz, CDCl3) were δ 138.6,
138.5, 138.1, 128.7, 128.6, 128.6, 128.4, 128.0, 128.0, 127.8, 127.7, 99.0, 98.7, 78.9, 75.8, 74.8,
73.8, 73.5, 73.4, 71.0, 70.1, 69.6, 65.2, 55.6, 47.5, 36.4, and 18.2. The HRMS calculation for
C34H43NO8 was [M + H]+: 594.3061, found: 594.3078.

(2R,3R,4R,6R)-4-amino-6-(((2S,6S,7R,8R,8aS)-7-iodo-6-methoxy-2-phenylhexahydropyrano
[3,2-d][1,3]dioxin-8-yl)oxy)-2-methyltetrahydro-2-pyran-3-ol (2i).

According to the General Procedure, 1i (19.0 mg, 0.033 mmol) was used to obtain 2i as
a white solid in 79% yield. Rf = 0.36 (CH2Cl2-MeOH 10:1), m.p. 89–90 ◦C. [α]25

D +22.8 (c,
1.48 in CHCl3). The readings for the 1H NMR spectra (400 MHz, CDCl3) were δ 7.43–7.39
(m, 2H, Ar-H), 7.37–7.30 (m, 3H, Ar-H), 5.57 (s, 1H, PhCHO2), 5.18 (d, J = 3.2 Hz, 1H, H-1’),
5.05 (s, 1H, H-1), 4.36 (d, J = 4.4 Hz, 1H, H-2), 4.25 (dd, J = 9.6, 4.0 Hz, 1H, H-6a), 4.02–3.95
(m, 2H, H-4, H-5′), 3.90 (td, J = 10.0, 4.0 Hz, 1H, H-5), 3.84 (t, J = 10.0 Hz, 1H, H-6b), 3.48
(dd, J = 9.6, 4.4 Hz, 1H, H-3), 3.45 (br s, 1H, H-4’), 3.36 (s, 3H, OMe), 3.30 (ddd, J = 12.0, 4.8,
2.8 Hz, 1H, H-3’), 1.74 (dd, J = 13.2, 4.8 Hz, 1H, H-2’a), 1.65 (td, J = 12.4, 3.6 Hz, 1H, H-2’b),
and 1.25 (d, J = 6.8 Hz, 3H, H-6’). The readings for the 13C NMR spectra (100 MHz, CDCl3)
were δ 137.5, 129.2, 128.4, 126.2, 104.0, 101.8, 99.3, 80.8, 71.6, 70.9, 68.9, 67.4, 64.8, 55.3,
46.5, 35.2, 32.6, and 17.2. The HRMS calculation for C20H28INO7 was [M + H]+: 522.0983,
found: 522.0996.

(2R,3R,4R,6S)-4-amino-6-(((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-
methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]
phenanthren-3-yl)oxy)-2-methyltetrahydro-2H-pyran-3-ol (2j).

According to the General Procedure, 1j (24.0 mg, 0.042 mmol) was used to obtain 2j as
a white solid in 81% yield. Rf = 0.26 (CH2Cl2-MeOH 10:1), m.p. 185–186 ◦C. [α]25

D +54.0
(c, 1.62 in CHCl3). The readings for the 1H NMR spectra (400 MHz, CDCl3) were δ 5.32 (d,
J = 4.8 Hz, 1H, C = CH), 4.99 (d, J = 3.2 Hz, 1H, H-1), 3.96 (q, J = 6.4 Hz, 1H, H-5), 3.44 (m,
1H,), 3.39 (d, J = 2.4 Hz, 1H, H-4), 3.25 (ddd, J = 11.6, 4.4, 2.8 Hz, 1H, H-3), 2.32–2.21 (m, 2H),
2.00–1.92 (m, 2H), 1.84–1.77 (m, 4H), 1.71–1.63 (m, 2H), 1.61–1.37 (m, 4H), 1.51–1.36 (m, 5H),
1.36–1.28 (m, 3H), 1.23 (d, J = 6.4 Hz, 4H, H-6), 1.20–0.99 (m, 8H), 0.98–0.92 (m, 5H), 0.89
(d, J = 6.4 Hz, 3H, Me), 0.85 (d, J = 1.6 Hz, 3H, Me), 0.83 (d, J =1.6 Hz, 3H, Me), and 0.65 (s,
3H, Me). The readings for the 13C NMR spectra (100 MHz, CDCl3) were δ 141.2, 121.9, 95.2,
76.3, 71.4, 66.1, 57.0, 56.4, 50.4, 46.6, 42.6, 40.4, 40.0, 39.7, 37.3, 37.0, 36.4, 36.0, 33.6, 32.2, 32.1,
28.4, 28.2, 28.1, 24.5, 24.1, 23.0, 22.8, 21.3, 19.6, 18.9, 17.2, and 12.1. The HRMS calculation
for C33H57NO3 was [M + H]+: 516.4411, found: 516.4422.

(2S,3S,4S,6S)-4-amino-6-(4-methoxynaphthalen-1-yl)-2-methyltetrahydro-2H-pyran-3-
ol (2k).

According to the General Procedure, 1k (20.0 mg, 0.057 mmol) was used to obtain
2k as a white solid in 78% yield. Rf = 0.29 (CH2Cl2-MeOH 10:1), m.p. 112–113 ◦C. [α]25

D
−86.6 (c, 0.56 in CHCl3). The readings for the 1H NMR spectra (400 MHz, CDCl3) were
δ 8.28 (d, J = 8.0 Hz, 1H, Ar-H), 7.98 (d, J = 8.4 Hz, 1H, Ar-H), 7.53–7.43 (m, 3H, Ar-H),
6.76 (d, J = 8.0 Hz, 1H, Ar-H), 5.00 (d, J = 10.4 Hz, 1H, H-1), 3.97 (s, 3H, OMe), 3.82 (q,
J = 6.4 Hz, 1H, H-5), 3.52 (br s, 1H, H-4), 3.18 (d, J = 10.4 Hz, 1H, H-3), 1.96–1.84 (m, 2H,
H-2a, H-2b), and 1.39 (d, J = 6.4 Hz, 3H, H-6). The readings for the 13C NMR spectra
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(100 MHz, CDCl3) were δ 155.5, 131.8, 129.3, 126.8, 126.0, 125.1, 123.6, 123.3, 122.8, 103.3,
75.7, 75.6, 71.5, 55.7, 52.2, 35.7, and 17.9. The HRMS calculation for C17H21NO3 was [M +
H]+: 288.1594, found: 288.1597.

(2S,3S,4S,6S)-4-amino-6-(6-hydroxy-2,3,4-trimethoxyphenyl)-2-methyltetrahydro-2H-
pyran-3-ol (2l).

According to the General Procedure, 1l (20.0 mg, 0.053 mmol) was used to obtain 2l as
a white solid in 77% yield. Rf = 0.24 (CH2Cl2-MeOH 10:1), m.p. 178–179 ◦C. [α]25

D −71.0
(c, 0.67 in CHCl3). The readings for the 1H NMR spectra (400 MHz, CDCl3) were δ 6.23 (s,
1H, Ar-H), 4.90 (dd, J = 11.6, 2.8 Hz, 1H, H-1), 3.86 (s, 3H, OMe), 3.78 (s, 3H, OMe), 3.74 (s,
3H, OMe), 3.65 (q, J = 6.4 Hz, 1H, H-5), 3.45 (d, J = 2.4 Hz, 1H, H-4), 3.16 (d, J = 10.4 Hz,
1H, H-3), 1.89 (q, J = 12.0 Hz, 1H, H-2a), 1.61 (dq, J = 13.2, 3.2 Hz, 1H, H-2b), and 1.36 (d,
J = 6.4 Hz, 3H, H-6). The readings for the 13C NMR spectra (100 MHz, CDCl3) were δ 153.7,
152.4, 150.1, 135.1, 111.5, 97.3, 75.3, 73.6, 69.8, 61.5, 61.1, 56.1, 50.7, 33.9, and 17.8. The HRMS
calculation for C15H23NO6 was [M + H]+: 314.1598, found: 314.1625.

5-((2S,4S,5S,6S)-4-amino-5-hydroxy-6-methyltetrahydro-2H-pyran-2-yl)-9-hydroxy-8-
methoxy-3,4-dihydroanthracen-1(2H)-one (2m).

According to the General Procedure, 1m (15.0 mg, 0.035 mmol) was used to obtain
2m as a yellow solid in 91% yield. Rf = 0.27 (CH2Cl2-MeOH 10:1), m.p. 166–167 ◦C. [α]25

D
−154.0 (c, 0.82 in CHCl3). The readings for the 1H NMR spectra (400 MHz, CDCl3) were
δ 7.66 (d, J = 8.4 Hz, 1H, Ar-H), 7.11 (s, 1H, Ar-H), 6.77 (d, J = 8.4 Hz, 1H, Ar-H), 4.87 (d,
J = 10.4 Hz, 1H, H-1), 3.98 (s, 3H, OMe), 3.80 (q, J = 6.4 Hz, 1H, H-5), 3.52 (d, J = 2.0 Hz, 1H,
H-4), 3.18 (dt, J = 11.6, 3.6 Hz, 1H, H-3), 2.99 (t, J = 6.0 Hz, 2H, CH2), 2.74 (t, J = 6.4 Hz, 2H,
CH2), 2.13–2.06 (m, 2H, CH2), 1.91 (dd, J = 13.2, 2.4 Hz, 1H, H-2a), 1.81–1.72 (m, 3H, H-2b,
NH2), and 1.39 (d, J = 6.8 Hz, 3H, H-6). The readings for the 13C NMR spectra (100 MHz,
CDCl3) were δ 204.8, 166.5, 159.9, 139.5, 137.3, 129.1, 128.6, 115.5, 112.0, 111.8, 105.3, 75.7,
75.4, 71.4, 56.4, 52.1, 39.2, 35.6, 31.0, 23.0, and 17.9. The HRMS calculation for C21H25NO5
was [M + H]+: 372.1805, found: 372.1790.

(3S,4R,8S,9S,10R,13R,14S,17R)-4-amino-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-
2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol (7a).

To a solution of 6a (23.0 mg, 0.050 mmol, 1.0 equiv) in THF (0.5 mL), Ph(CO)CO2Et
(0.055 mmol, 1.1 equiv) and P(NMe2)3 (0.060 mmol, 1.2 equiv) were added sequentially.
After stirring for 45 min at room temperature, DBU (0.200 mmol, 4.0 equiv) and H2O
(0.5 mL) were added sequentially, and the mixture was stirred for 4 h at 65 ◦C. The mixture
was extracted with CH2Cl2 after removing the THF by concentration. The organic layer
was washed with saturated NaHCO3 and brine, dried over Na2SO4, and concentrated
in vacuo. The crude residue was purified using column chromatography on silica gel
(dichloromethane-methanol gradient elution, with 1% NH3·H2O) to obtain 7a as a white
solid in 70% yield. Rf = 0.40 (CH2Cl2-MeOH 10:1), m.p. 158–159°C. [α]25

D −41.3 (c, 0.76
in CHCl3). The readings for the 1H NMR spectra (400 MHz, CDCl3) were δ 5.54 (s, 1H,
C = CH), 3.52–3.46 (m, 2H), 2.42 (br s, 3H, OH, NH2), 2.06–1.96 (m, 2H), 1.84–1.72 (m, 3H),
1.65–1.50 (m, 4H), 1.42–1.23 (m, 8H), 1.13–1.03 (m, 12H), 0.89 (d, J = 6.4 Hz, 3H, Me), 0.85 (d,
J = 1.6 Hz, 3H, Me), 0.83 (d, J = 1.6 Hz, 3H, Me), and 0.65 (s, 3H, Me). The readings for the
13C NMR spectra (100 MHz, CDCl3) were δ 127.2, 71.5, 57.3, 56.3, 50.5, 42.5, 39.9, 39.7, 36.8,
36.4, 36.3, 36.0, 32.4, 32.1, 28.4, 28.2, 25.9, 24.5, 24.1, 23.0, 22.8, 21.9, 20.7, 18.9, and 12.1. The
HRMS calculation for C27H47NO was [M + H]+: 402.3730, found: 402.3717.

tert-butyl 3-(1-amino-3-hydroxypropyl)-1H-indole-1-carboxylate (7b).
To a solution of 6b (20.0 mg, 0.079 mmol, 1.0 equiv) in THF (0.79 mL), Ph(CO)CO2Et

(0.158 mmol, 2.0 equiv) and P(NMe2)3 (0.166 mmol, 2.1 equiv) were added sequentially.
After stirring for 45 min at room temperature, DBU (0.474 mmol, 6.0 equiv) and H2O
(0.79 mL) were added sequentially, and the mixture was stirred for 4 h at 65 ◦C. The mixture
was extracted with CH2Cl2 after removing the THF by concentration. The organic layer
was washed with saturated NaHCO3 and brine, dried over Na2SO4, and concentrated
in vacuo. The crude residue was purified using column chromatography on silica gel
(dichloromethane-methanol gradient elution, with 1% NH3·H2O) to obtain 7b as a yellow
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oil in 87% yield. According to the above procedure, 6b (352.4 mg, 1.0 mmol) was used to
obtain 7b as a yellow oil in 82% yield. Rf = 0.25 (CH2Cl2-MeOH 10:1). The readings for the
1H NMR spectra (400 MHz, CDCl3) were δ 8.12 (d, J = 7.2 Hz, 1H, Ar-H), 7.54 (d, J = 8.4 Hz,
2H, Ar-H, C = CH), 7.30 (t, J = 7.2 Hz, 1H, Ar-H), 7.21 (t, J = 7.2 Hz, 1H, Ar-H), 4.47 (dd,
J = 7.6, 4.0 Hz, 1H), 3.84 (t, J = 5.2 Hz, 2H), 3.18 (s, 3H, OH, NH2), 2.10–1.98 (m, 2H), and
1.64 (s, 9H, (CH3)3C). The readings for the 13C NMR spectra (100 MHz, CDCl3) were δ
149.9, 136.0, 128.7, 124.9, 122.8, 122.0, 119.2, 115.8, 84.1, 62.2, 48.9, 37.8, and 28.4. The HRMS
calculation for C16H22N2O3 was [M + H]+: 291.1703, found: 291.1691.

4. Conclusions

In conclusion, the investigation described above has led to the development of a
practical method to smoothly convert cyclic sulfamidates into amino alcohols under mild
conditions. This highly efficient deprotection method is initiated with the Kukhtin–Ramirez
reaction. It exhibited operational simplicity, which provided a solution to the deprotection
problem encountered in our synthesis of rare amino sugar. In addition, this approach
allows the construction of valuable building blocks and structurally complex compounds
containing amino alcohol motifs.
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//www.mdpi.com/article/10.3390/molecules28010182/s1: synthesis of compounds 1a–1m, 6a–6b,
and 1,2-dicarbonyl reagents (S3–S5); Table S1: screening of 1,2-dicarbonyl compounds; 1H NMR
spectra for 6a–6b and S3–S5 [70,71]; 1H and 13C NMR spectra for compounds 2a–2m, 3a, and 4a; 2D
HSQC and COSY NMR spectra for compounds 2a, 3a, and 4a.
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