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Abstract: Molecular electrocatalysts for electrochemical carbon dioxide (CO2) reduction has received
more attention both by scientists and engineers, owing to their well-defined structure and tunable
electronic property. Metal complexes via coordination with many π-conjugated ligands exhibit the
unique electrocatalytic CO2 reduction performance. The symmetric electronic structure of this metal
complex may play an important role in the CO2 reduction. In this work, two novel dimethoxy
substituted asymmetric and cross-symmetric Co(II) porphyrin (PorCo) have been prepared as the
model electrocatalyst for CO2 reduction. Owing to the electron donor effect of methoxy group, the
intramolecular charge transfer of these push–pull type molecules facilitates the electron mobility. As
electrocatalysts at −0.7 V vs. reversible hydrogen electrode (RHE), asymmetric methoxy-substituted
Co(II) porphyrin shows the higher CO2-to-CO Faradaic efficiency (FECO) of ~95 % and turnover
frequency (TOF) of 2880 h−1 than those of control materials, due to its push–pull type electronic
structure. The density functional theory (DFT) calculation further confirms that methoxy group could
ready to decrease to energy level for formation *COOH, leading to high CO2 reduction performance.
This work opens a novel path to the design of molecular catalysts for boosting electrocatalytic
CO2 reduction.

Keywords: Co(II) porphyrin; carbon dioxide reduction; push–pull effect; electrocatalysis; faradaic
efficiency

1. Introduction

Recently, metal complexes consisting of transition metal ions with heteroatom-embedded
organic molecules as ligands are emerging as good catalyst materials in wide electrochemi-
cal application, due to the existence of occupied dz orbitals for the favorable catalytic CO2
reduction activity [1–4]. As the candidates of a molecular electrocatalyst, the metal complex
with well-defined molecular structure could be ready to control by changing of various
metal ions and organic ligands (e.g., dipyridine, terpyridine, dipyrromethane, porphyrin)
with different π-conjugated systems, achieving tunable electrocatalytic performance [5–7].
Moreover, these metal complexes could be used as key building blocks for the prepara-
tion of organic porous polymers and single-atom carbon materials [8,9]. Different from
other metal complexes, porphyrin possesses planar macrocyclic aromatics with extended
π-electron conjugation, endowing them with some optical/electronic characteristics, like a
broad photoabsorption wavelength, a narrow bandgap, and fast electron acceptors, among
other properties [8,10–14]. Therefore, metal porphyrins have been proven as good candi-
dates to be the electrocatalysts for CO2 reduction. So far, the research of porphyrin-based
molecular electrocatalysts mostly focuses on the development of new porphyrin-based
ligands for the improvement of CO2 reduction reactions (CO2RR).
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To date, diverse analogues of porphyrins (including N-confused porphyrins [15],
tetraaza [14], annulenes [16], and conjugated N4-macrocyclic ligand [17]) have been re-
ported to coordinate with a large number of metal ions, exhibiting unique optoelectronic
properties. In another way, modification of porphyrins with functional groups has been
confirmed as a good strategy for improving their CO2RR performance [18–20]. For example,
we have reported that the tertiary amine group could enhance CO production due to the
enrichment of CO2 around molecules by amine groups [18]. Recently, some π-conjugated
groups (like azulene, pyrene, etc.) were grafted onto the metal tetraphenylporphyrins to
extend their conjugated system with lower bandgaps, resulting in the high electrocatalytic
CO2 conversion [19,20]. Unfortunately, synthesis of these molecules often suffers from
tedious synthetic steps with low reaction yields. Alternatively, side-chain engineering has
been a versatile way to achieve functionalization of organic semiconductors [21–25]. For
example, the push–pull structure prepared by side-chain engineering could enhance the
electron delocalization for charge transfer, leading to the better electyrocatalysis [26,27].
Recently, Yaghi et al. reports that methoxy substituted Co(II) porphyrin-based covalent
organic frameworks exhibit better electrocatalytic CO2 reduction, but are still far from
satisfactory due to the low π-conjugation of imine bonds [22]. We also have found that
methoxy substituent could efficiently tailor physical properties of conjugated polymers [28].
Owing to the commercial gain of methoxy-substituent aromatics, methoxy-functionalized
metal porphyrins are easy to prepare and apply for electrochemical CO2RR. In addition, the
topological structure of methoxy-functionalized metal porphyrins also is seldom exploited.

Herein, a novel kind of methoxy-functionalized Co(II) porphyrins were prepared via
the conventional organic synthesis method. The chemical structures, optical/electronic
properties of as-PorCo-OMe and cs-PorCo-OMe were well investigated. As electrocatalysts,
these PorCo show the distinct electrocatalytic CO2 reduction. At −0.7 V versus. RHE,
as-PorCo-OMe achieves a superior CO2RR performance, including FECO of 94.7% and TOF
of 2880 h−1 at −0.7 V vs. RHE to the cs-PorCo-OMe. Furthermore, DFT also demonstrates
that the methoxy substituent favors the push–pull effect on the porphyrin backbone, leading
to the enhanced electrocatalytic CO2RR activity.

2. Results
2.1. Synthesis Description

The synthetic route to two methoxy-functionalized CoPor (asymmetric and cross-
symmetric CoPor named as as-PorCo-OMe and cs-PorCo-OMe, respectively) are given in
Figure 1a. The key intermediate of imine-containing dipyrromethane derivate (DMP-imine)
was prepared from 2,6-dimethylbenzaldehyde using a three-step reaction in total yield of
57%, according to the reported work [29]. The 2,2′-((2,5-dimethoxyphenyl)methylene)bis(1H-
pyrrole) (DmpMP) was synthesized by condensation reaction of 2,5-dimethoxybenzaldehyde
with pyrrole in good yield of 82%. Then, as-PorCo-OMe was prepared by a one-pot
reflux reaction of DmpMP, DMP-imine and cobalt acetate [Co(OAc)2] in ethanol for
18 hrs. The pure as-PorCo-OMe was purified by alumina column chromatography with
PE and DCM (v/v = 8:2) as a crimson solid in the yield of 17%. For cs-PorCo-OMe, the
5,10,15,20-tetrakis(2,5-dimethoxyphenyl) porphyrin was firstly synthesized from
2,5-dimethoxybenzaldehyde and pyrrole in propionic acid for 24 h, and the crude purple
solid was filtered and used without purification. After reaction with Co(OAc)2 in DMF, the
cs-PorCo-OMe was obtained and purified by alumina column chromatography with PE and
DCM (v/v = 6:4) as a crimson solid in yield of 15%. The detailed synthesis information and
NMR spectra on these compounds is provided in Section 4 and Supplementary Materials
(Figures S1–S4). The target molecular weight of as-PorCo-OMe and cs-PorCo-OMe are
confirmed by mass spectrometry (MS). Figure 1b shows that the MS results are consistent
with the predicted values of targeted compounds, suggesting the successful preparation of
as-PorCo-OMe and cs-PorCo-OMe.
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2.2. Structural Characterization

The structures of the as-prepared complexes were characterized by Fourier transform
infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). As shown in Figure 2a, the
absorption bands between 1596 and 1445 cm−1 are attributed to the C = C vibration peaks
of aromatic (like phenyl and pyrrole) groups, and absorption band at 1352 cm−1 is the C=N
bond in the backbone of porphyrin [30], while the peak at 997 cm−1 is associated with the
vibration of the Co-N bond [31]. These results demonstrate the successful preparation of
Co(II) porphyrin derivates. The stretching vibration peaks of C-H is at 2965 and 2922 cm−1

for methyl and aromatic groups, respectively [18]. Moreover, the intensity of peak at
2965 cm−1 in cs-PorCo-OMe is stronger than that of as-PorCo-OMe, due to existence of
eight methoxy group in cs-PorCo-OMe. The C-O bands in as-PorCo-OMe and cs-PorCo-
OMe are found at 1211 and 1258 cm−1, respectively, suggesting the stronger conjugation
effect of the methoxy bond in cs-PorCo-OMe [32,33]. The chemical states of elementals
of these complexes have also been investigated. Figures S5 and S6 show that elements of
cobalt (Co), carbon (C), oxygen (O) and nitrogen (N) are displayed and both two complex
show the similar high-resolution XPS results. In Figure 2b, the Co 2p high-resolution XPS
spectra of as-PorCo-OMe exhibits two main peak at 779.1 and 794.8 eV, resulting from
Co(II) atom with Co 2p3/2 and Co 2p1/2 binding energies, respectively [18]. For N 1s XPS
spectra, these complexes exhibit two peaks at 397.8 and 401.1 eV, attributing to the pyrrolic
N and Co-N structures, respectively (Figure 2c) [34]. In addition, the C 1s XPS spectra
can be separated into three peaks at 284.1, 286.1 and 287.4 eV, indicating the bend energy
of C-C/C=C, C-O and C=N, respectively (Figure 2d) [35]. These results demonstrate the
accurate structure of Co(II) porphyrins with various methoxy substituents.

2.3. Electronic Structures

The photophysical properties of as-synthesized materials was investigated by ultravi-
olet and visible adsorption (UV–Vis) spectroscopy in dichloromethane (DCM) (Figure 3a).
The Soret band of as-PorCo-OMe shows a strong absorbance at 398 nm, indicating the π-π*
transition of porphyrin backbones, while its Q band is located between 498 and 564 nm
indicating the n-π* transition from donor-acceptor structure [36]. Compared with that of
as-PorCo-OMe, cs-PorCo-OMe has the enhanced push–pull effect, due to the increasing
number of 2,5-dimethoxyphenyl groups, leading to the obvious red-shift phenomenon
in the UV-Vis spectrum [37]. Furthermore, the board single peak of Q band suggests the
symmetric structure of cs-PorCo-OMe [29]. On the basis of their UV-Vis results, the optical
bandgap (Eg) of as-PorCo-OMe and cs-PorCo-OMe can be calculated to be 2.17 and 2.18 eV,
respectively, by using Tauc measurement (Figure 3b). The decrease of bandgap in these
complexes manifests the donor effect of the methoxy group, but, the slight change is caused
by steric effect of α-functionalized methoxy substituent.
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The cyclic voltammetry (CV) measurement was exploited to characterize to the elec-
tronic structures of methoxy-substituted Co(II) porphrins. The CV curves, performed in ar-
gon (Ar)-saturated 0.1 M TBAPF6 DCM solution, are given in Figure 3c. The as-PorCo-OMe
exhibits an irreversible one-electron reduction, while cs-PorCo-OMe has two successive
reduction processes, indicating that the electron could be delocalized effectively over the
molecular backbone, due to the symmetric structure of cs-PorCo-OMe [38]. The peak
around −0.7~−0.9 V is the reduction reaction of Co(II)-to-Co(I) [39]. Based on the onset of
first reduction potential, the LUMO energy level of as-PorCo-OMe and cs-PorCo-OMe is
−3.39 and −3.63 eV, respectively. Following the equation:

HOMO = LUMO − Eg, (1)

the HOMO energy levels of as-PorCo-OMe and cs-PorCo-OMe are calculated as −5.57
and−5.80 eV, respectively (Figure 3d) [40].

2.4. DFT Calculation

To gain deep insight into the electronic and geometric structures, frontier orbitals
of these complexes were performed by DFT calculations (Figure 4a). The LUMOs of
as-PorCo-OMe and cs-PorCo-OMe mainly reside on the backbone of porphyrin, indicative
of their similar LUMO energy level at −2.05, and −2.08 eV, respectively. For HOMO, the
porphyrin core and partial 2,5-dimethoxybenzene are covered, demonstrating the donor
effect of methoxy group in the substituents [40]. With the increasing number of substituents,
the push–pull effect becomes stronger. The calculated energy levels of methoxy-substituted
porphyrins are well agreement with the tested results from CVs, and the detailed informa-
tion is provided in Table 1.
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Table 1. Electrochemical data of as-PorCo-OMe and cs-PorCo-OMe.

Entry 1 Ecv.red (V) [a] Ecv,LUMO
(eV) [b]

Ecv.HOMO
(eV) [c]

Eopt.gap

(eV) [d]
EDFT,LOMO

(eV) [e]
EDFT,HOMO

(eV) [e]
EDFT,gap

(eV) [e]

as-PorCo-OMe −0.95 −3.39 −5.57 2.18 −2.05 −5.13 3.08

cs-PorCo-OMe −0.71 −3.63 −5.80 2.17 −2.08 −5.12 3.04

[a] Ecv.red is the onset value of reduction potential. [b] For all molecules, Eferrocene(FOC) = 0.46 V vs.
Ag/AgCl; calculated LUMO levels based on the following equation: LUMO = −[Ecv.red − EFOC] − 4.8 eV.
[c] HOMO = LUMO-Eopt.gap. [d] Bandgaps determined from the UV/Vis absorption spectra using the Tauc
method. [e] Calculated HOMO and LUMO levels and bandgap based on DFT simulation.

Based on pervious works, the Co(II) porphyrin has been approved as a good candidate
to be the electrocatalyst for the CO2-to-CO reduction via a four-step reaction [41,42]. Thus,
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the DFT was carried out to investigate the reaction kinetics of the electrochemical CO2 re-
duction process with as-synthesized molecular catalysts (Figure S7). As shown in Figure 4b,
the formation of *COOH is the rate-limiting step in CO2RR in this reaction energetics evo-
lution. The free energy path of the conversion of CO2 to *COOH (∆*GCOOH) requires 0.65
and 0.64 eV, respectively, for as-PorCo-OMe, and cs-PorCo-OMe, which is similar to that of
5,15-bis(2,6-dimethylphenyl) Co(II) porphyrin (DMP-CoPor). The methoxy substitution
could provide the electron donor effect on a bit of enhancement of electrocatalytic activity.

2.5. Electrocatalytic CO2RR

The electrocatalytic CO2RR performance of methoxy-substituted Co(II) porphyrins
were evaluated in a the 0.5 M KHCO3 electrolyte using an H-type three-electrode cell with
Nafion-117 as separator. All potentials are applied to the reversible hydrogen electrode
(RHE) [43]. The electrocatalytic activity of methoxy-substituted Co(II) porphyrins in the Ar-
and CO2-saturated electrolyte was studied by the linear sweep voltammetry measurement.
Figure S9 illustrates that the current densities of these molecules is higher in CO2 atmo-
sphere than that in the Ar-saturated condition, suggesting the presence of electrocatalytic
activity of the Co(II) porphyrin core [44]. As shown in Figure 5a, both of as-PorCo-OMe
and cs-PorCo-OMe generate the increasing current densities with the increase of potential
from −0.4 to −1.0 V versus RHE. Compared with cs-PorCo-OMe, the as-PorCo-OMe shows
higher electrocatalytic activity. This result may result from the lower steric hindance effect
of as-PorCo-OMe than that of cs-PorCo-OMe, leading to the fast electron transfer from
carbon nanotubes to catalysts for enhanced electrochemical CO2RR [29].
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electrolyte (scan rate: 5 mV s−1); (b) FECO and FEH2 of of as-PorCo-OMe and cs-PorCo-OMe at various
specific potentials; (c) CO partial current densities at various specific potentials; (d) Comparison of
TOF of as-prepared complex with various porphyrin-based electrocatalysts of [i] PorFe-MOF [47],
[ii] COF-367-PorCo (1%) [10], [iii] PorCo/cationic POP [48], [iv] as-PorCo [29], [v] CoTMPP [49],
[vi] PorCo-MOF [45], [vii] Co protoporphyrin [46], [viii] DMP-CoPor [18], [ix] PorNi-CTF [50].
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The CO2RR products were tested by the online gas chromatography (GC) and off-
line NMR techniques (Figure S10), which confirms that only CO and H2 were found
during the reduction reaction, suggesting the high selectivity of methoxy-substituted
Co(II) porphyrins. The CO Faraday efficiencies (FECO) of two complexes are given in
Figure 5b. As expected, the FECO of as-PorCo-OMe reaches as high as 94.7%, which is
much larger than those of DMP-CoPor (85.5%) [18], suggesting that the electron donor
of methoxy substitution has the positive influence for electrocatalytic CO2 reduction by
push–pull effect. Moreover, FECO of as-PorCo-OMe also is better than that of cs-PorCo-OMe
(84.5%), as well as reported PorCo-TPP (91%) [39], PorCo-MOF (76%) [45] and Co proto-
porphyrin (40%) [46]. Correspondingly, the partial current densities of methoxy-substituted
CoPors for CO production increase with the increase of potentials. As the example of at
−0.7 V, the specific current density of as-PorCo-OMe is over two times higher than that
of cs-PorCo-OMe. The catalytic activities of these methoxy-substituted Co(II) porphyrins
was comprehensively evaluated by the index of turnover frequency (TOF). In Figure 5d,
the TOF values of two molecules gradually increased from the potential from −0.4 and
−1.0 V vs. RHE, owing to the increase of current density at high potential. Compared with
cs-PorCo-OMe, as-PorCo-OMe exhibits better TOF performance in the whole potentials,
indicative its good electrochemical activity for CO2RR application. Furthermore, the TOF
of as-PorCo-OMe (2880 h−1 at −0.7 V vs. RHE) also is superior to many reported state-of-
the-art porphyrin-based electrocatalysts [10,18,29,45–50]. These results demonstrate the
efficient electron and proton transfer kinetics for the push–pull type as-PorCo-OMe with
weak steric hindrance.

The Tafel slope represents a reaction kinetic of rate determining steps involved in
electrocatalysis, which can be calculated from the polarization curves [51]. In Figure 6a,
the as-PorCo-OMe shows the Tafel value of 145 mV dec−1, which is smaller than that of
cs-PorCo-OMe (200 mV dec−1), indicating that as-PorCo-OMe has the higher catalytic activ-
ity of *COOH formation in CO2 reduction reaction via electron/proton transfer [52,53]. To
evaluate the electrochemical behavior of as-prepared complexes in electrocatalytic CO2RR,
electrochemical impedance spectroscopy (EIS) was carried out [54]. The charge transfer
resistance (Rct) derived from the Nyquist plot exhibits that the resistance of 33.25 Ω for
as-PorCo-OMe is lower than that of cs-PorCo-OMe (38.69 Ω) (Figure 6b), demonstrating the
superior electron transfer ability of as-PorCo-OMe. Furthermore, the electrochemical capac-
itances from CV between −0.26 and −0.16 eV vs. RHE show that as-PorCo-OMe provides
the higher electrochemical active surface area (Figure 6c and Figure S11), benefiting from its
asymmetric push–pull structure and low steric hindrance effect. Thus, as-PorCo-OMe has
been approved as the good catalyst for electrocatalytic CO2RR application. The durability
performance of as-PorCo-OMe was investigated at −0.7 V vs. RHE (potential for best
FECO) (Figure 4d). After testing for 12 hr, the FECO of as-PorCo-OMe remains over 93%
and its current density has a low loss, and Figure S12 shows that Co 2p and N1s XPS
spectra have a neglect binding energy change after the cycle experiment, demonstrating
that such asymmetric Co(II) porphyrin exhibits a good electrochemical stability during
long-term working.
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current as a as a function of scan rate for as-PorCo-OMe and cs-PorCo-OMe; (d) long-term stability of
as-PorCo-OMe at −0.7 V vs. RHE for 12 h.

3. Conclusions

In summary, a novel kind of push–pull type Co(II) porphyrins with methoxy substi-
tutions have been prepared efficiently by using 2,5-dimethoxybenzaldehyde as starting
material. The structures of these methoxy-substituted molecules have been confirmed by
various measurement like MALDI-TOF MS, FTIR and XPS spectroscopy. Compared with
that of as-PorCo-OMe, cs-PorCo-OMe shows the slight red-shift absorption properties and
low bandgap, due to the limited donor effect of methoxy substitution in these structures.
Such as-prepared Co(II) porphyrins bearing electrocatalytic active site of cobalt ion would
be applied as electrocatalysts for CO2RR. In a CO2-saturated KHCO3 aqueous solution,
as-PorCo-OMe exhibits the better electrochemical CO2-to-CO performance including FECO
of 94.7% and TOF of 2880 h−1 at −0.7 V vs. RHE than those of cs-PorCo-OMe and reported
DMP-CoPor, which is almost in agreement with that of DFT calculation. Therefore, this
work provides a new molecular engineering strategy for boosting electrocatalytic CO2RR
via methoxy functionalization.

4. Materials and Methods
4.1. Materials

Pyrrole, 2,5-dimethoxybenzaldehyde, BF3•Et2O, propionic acid, and cobalt acetate
were purchased from Adamas. The DMP-imine has been prepared according to previ-
ous work. Organic solvents including chloroform (CHCl3), dichloromethane (CH2Cl2),
petroleum ether (PE), dimethyl Formamide (DMF), ethyl acetate (EA), ethanol (EtOH) and
all other materials were used without further purification.

4.2. Synthesis Procedures

Synthesis of 2,2′-((2,5-dimethoxyphenyl)methylene)bis(1H-pyrrole) (DpmPM). In
a 250 mL flask, 2,5-dimethoxybenzaldehyde (4.98 g, 30.0 mmol) and pyrrole (145 mL,
2.10 mol) was stirred under an N2 atmosphere for 30 min. BF3·OEt2 (3.56 g, 25.0 mmol) was
added into the solution, and kept stirring at room temperature for 2 h. Then, NaOH (9.00 g,
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225 mmol) was added for another 1 h. The crude product was received from the filtrate
under reduced pressure after filtering the mixture of reaction. The product was purified
by column chromatography with EtOAc and PE (v:v = 10:90) to afford a pale yellow solid
product (6.8 g, 80%). 1H NMR (CDCl3, 500 MHz): δ (ppm) = 3.71 (d, 6H, J = 4.25 Hz, OCH3),
5.75 (s, 1H, CHC3), 5.92 (s, 2H, Py-H), 6.13 (q, 2H, J = 8.08 Hz, Py H), 6.66 (q, 2H, J = 7.60 Hz,
Py H), 6.71 (d, 1H, J = 2.77 Hz, Ar-H), 6.76 (m, 1H, Ar-H), 6.84 (d, 1H, J = 7.08 Hz, Ar-H),
8.15 (s, 8H, H-pyrrole).

Synthesis of as-PorCo-OMe. In a 250 mL flask, DMP-imine (2.00 g, 5.15 mmol),
DpmPM (1.48 g, 5.27 mmol) and Co(OAc)2 (9.44 g, 51.5 mmol) were mixed in ethanol
(250 mL) under an N2 atmosphere for 30 min. Then, the solution was stirred at 80 ◦C for
24 h. After the reaction, a dark-purple solid was collected by vacuum, and was purified by
alumina column chromatography (PE/DCM = 8:2) to obtain as-PorCo-OMe (445 mg, 14%).

Synthesis of cs-Por-OMe. Pyrrole (400 mg, 5.96 mmol) and 2,5-dimethoxybenzaldehyde
(1002 mg, 6.04 mmol) were dissolved in propionic acid (200 mL). The solution was heated
to 110 ◦C under an N2 atmosphere. After stirring for 24 h, the crude product was obtained
via precipitation in the methanol. The pure purple solid was obtianed by washing with
methanol until it was a transparent color (612 mg, 12%). 1H NMR (CDCl3, 500 MHz):
δ (ppm) = −2.66 (s, 2H, NH), 3.51 (m, 12H, OCH3), 3.91 (m, 12H, OCH3), 7.23–7.31 (m, 8H,
Ar-H), 7.55–7.66 (m, 4H, Ar-H), 8.78 (s, 8H, H-pyrrole).

Synthesis of cs-PorCo-OMe. The obtained cs-Por-OMe (300 mg, 0.35 mmol) and
Co(OAc)2 (800 mg, 4.52 mmol) was dissolved in DMF (30 mL). The solution was heated to
100 ◦C for 8 h under an N2 atmosephere. After reaction, the solvent was removed and the
solid was precipitated in the methanol and purified by a silica gel column chromatography
(PE/DCM = 6:4) to collect cs-PorCo-OMe (304 mg, 95%).

4.3. Characterizations

NMR spectra were obtained from a Bruker Avance III 500 MHz spectrometer using
CDCl3 as solvents. MALDI–TOF mass spectrometry was recorded on autoflex speedTM TOF
Mass Spectrometer. FTIR spectra were performed on Perkin Elmer Spectrum 100 spectrometer
with KBr. XPS spectra were measured with a PHI 5000C ESCA System using C 1s (284.8 eV)
as reference. UV–Vis spectra were recorded on a Lambda 950 spectrophotometer. CV tests
were performed using 0.1 M TBAPF6 DCM solution as an electrolyte with the CH CHI
660E instrument.

4.4. Electrode Preparation

Firstly, catalysts (1 mg) were dispersed well in the commercial CNTs (9 mg) (Figure S8),
then Nafion solution (2 mL, 0.5 wt. %) was added and stirred for 12 h. A quantity of 100 µL
of mixed ink was dropped on carbon paper (surface: 1 cm2) until dry to achieve the working
electrode with catalyst loading of 0.05 mg cm−2.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28010150/s1, Electrochemical measurements; Figures S1 and S2:
1H NMR spectrum of DpmPM and cs-Por-OMe; Figure S3: TGA cruves; Figure S4: FTIR spectra of
cs-PorCo-OMe and cs-Por-OMe; Figure S5: XPS spectra of as-PorCo-OMe; Figure S6: XPS spectra
of cs-PorCo-OMe; Figure S7: Schematic of the reaction steps of CO2 reduction; Figure S8: SEM
images; Figure S9: LSV curves in CO2-saturated and Ar-saturated electrolyte for as-PorCo-OMe and
cs-PorCo-OMe; Figure S10: 1H NMR spectra of products from electrocatalyst; Figure S11: Cyclic
voltammetry measurements; Figure S12: XPS spectra in as-PorCo-OMe before and after cycling test;
Table S1: Comparison of CO2RR performance with reported electrocatalysts.
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