
 S1 

Supplementary Materials for: 

Initial Maximum Overlap Method Embedded with Extremely 

Localized Molecular Orbitals for Core-Ionized States of Large 

Systems 

Giovanni Macetti(1)*, Alessandro Genoni(1)* 

 

(1) Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR 

CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
* Correspondence to:  

- Alessandro Genoni, Université de Lorraine & CNRS, Laboratoire de Physique et Chimie 

Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France. E-mail: 

alessandro.genoni@univ-lorraine.fr.  

- Giovanni Macetti, Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques 

(LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France. E-mail: 

giovanni.macetti@gmail.com. 



 S2 

S1. Overview on theory, transferability, and libraries of Extremely Localized Molecular 

Orbitals 

 

S1.1 Theory of Extremely Localized Molecular Orbitals  

ELMOs (Extremely Localized Molecular Orbitals) are molecular orbitals strictly localized on small 

molecular fragments. They can be calculated through the a priori definition of a localization scheme 

that allows the partitioning of an investigated system into different subunits according to the chemical 

intuition (in most of the cases, according to the Lewis structure of the examined molecule).1,2 This 

fragmentation leads to have a local basis set 𝛽! = #$𝜒!" 	'	("#$
%!  for each fragment. These local basis 

sets are constituted only by those basis functions centered on to the atoms belonging to the subunits 

and are used to expand the ELMOs corresponding to the different fragments. For this reason, the 

generic 𝜔-th ELMO for the i-th fragment can be written as follows: 

|	𝜑!&	⟩ = -𝐶!",!&

(!

"#$

	 $𝜒!" 	'							(S1) 

Considering the method proposed by Stoll,1 the system under exam can be described through a single 

Slater determinant assembled with the ELMOs defined by equation (S1), to which we will hereinafter 

refer as ELMO wave function: 
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		C			(S2). 

In equation (S2), 𝐴? is the usual antisymmetrizer, 𝑛! the number of occupied ELMOs for the i-th 

fragment,	𝜑!& a spinorbital with spatial part 𝜑!& and spin part 𝛼, and 𝜑B!& a spinorbital with spatial 

part 𝜑!& and spin part 𝛽, while	𝑑𝑒𝑡[𝐒] is the determinant of the overlap matrix of the occupied 

ELMOs (due to the ELMOs non-orthogonality). 

ELMOs are computed by minimizing the energy corresponding to the ELMO wave function with 

respect to the coefficients #𝐶!",!&( in expansion (S1). This is equivalent to solving a set of modified 

Hartree-Fock equations for each fragment (also known as Stoll equations):1  

𝐹H!|𝜑!&⟩ = 	 𝜀!&	|𝜑!&⟩								(S3) 

with 𝐹H! as the modified Fock operator corresponding to the i-th subunit: 

𝐹H! = K1 − 𝜌N 	+ 𝜌N!
.P	𝐹H(1 − 𝜌N 	+ 𝜌N!)					(S4),		 
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In the previous equation, 𝐹H is the traditional Fock operator, 𝜌N the global density operator (which 

depends on all the occupied ELMOs of the system), and 𝜌N! the density operator for the i-th subunit 

(which depends only on the occupied ELMOs of the fragment). 

As an example, in Figure S1 we depicted the ELMOs that we obtained for the simple water molecule 

when we defined a localization scheme corresponding to the Lewis structure of the system. 

 

Figure S1. Extremely Localized Molecular Orbitals computed for water using a localization scheme 

corresponding to the Lewis structure: (A) ELMO associated with the core electrons of the oxygen atom, (B, 

C) ELMOs corresponding to the two oxygen-lone-pairs, (D, E) ELMOs describing the two O-H bonds of the    

water molecule. All the orbitals were computed using the cc-pVDZ basis-set and were plotted considering the 

0.2 a.u. isosurface. 

 

S1.2 Transferability and rotation of ELMOs. 

Because of their strict localization, ELMOs are molecular orbitals that we can easily export from 

molecule to molecule.3,4 In particular, we can transfer them from a model system (which is usually a 

small molecule on which the molecular orbital is originally computed) to the target system that we 

aim to study. This can be accomplished by exploiting a strategy proposed by Philipp and Friesner.5 
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This technique allows the definition of a matrix 𝐏 that rotates the coefficients of the ELMOs (see 

equation (S1)) in the geometry of the model molecule to the coefficients of the ELMOs in the 

geometry of the target system. To get this rotation matrix, we need the definition of i) a reference 

frame (a, c, d) in the model molecule and of ii) a reference frame (a’, c’, d’) in the target system (see 

Figure S2).  

These two reference frames result from the choice of two atomic triads (one for the model molecule 

and one for the target system). By indicating the triads for the model and target systems as (A1, A2, 

A3) and (A1’, A2’, A3’), respectively, the vectors defining the two reference frames are: a (a’), which 

is the position vector of A2 (A2’) relative to A1 (A1’) (see Figure S2), c (c’) and d (d’), which are 

given by 

T
𝐜 = 𝐚	 × 	𝐛						(𝐜/ = 𝐚/ 	× 	𝐛/)

	
𝐝 = 𝐜	 × 	𝐚						(𝐝/ = 𝐜/ 	× 	𝐚/)

							(S5), 

with b (b’) as the position vector of A3 (A3’) with respect to A1 (A1’) (see again Figure S2). 

 

 

Figure S2. Schematic representation of the reference frames and of the atomic triads that one needs in order 

to define the rotation matrix 𝐏 for the transformation of the ELMOs from the geometry of the model system 

(left) to the geometry of the target molecule (right). 
 

For ELMOs localized on a single atom (i.e., ELMOs corresponding to core or lone-pair electrons) the 

atomic triads are constituted by the atom on which the ELMO is localized and, usually, by two other 

bonded atoms. For ELMOs localized on two-center bonds, the triads are given by the atoms forming 

the bond with the addition of an atom describing the local dissymmetry of the bond under exam.6 For 

ELMOs localized on three centers (e.g., ELMOs describing situations in which it is important to 

account for the delocalized nature of the electronic structure, such as in peptide bonds or aromatic 

rings), the triads of atoms are automatically defined. For ELMOs localized on more than three atoms, 

it is impossible to define triads (and reference frames) that simultaneously take into account the 
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orientation of all the atoms in the subunit. This is the reason why, in the current libraries, all ELMOs 

are localized at the largest on three atomic centers (see next subsection). 

The above-mentioned rotation matrix 𝐏 is a matrix that also allows the preparation of all the other 

matrices that are necessary for the rotation of all kinds of basis functions and associated ELMO 

coefficients. In fact, neglecting the s-type basis functions (which are invariant to rotations because 

they have spherical symmetry), it is easy to show that p-type atomic orbitals (and the related 

coefficients) can be rotated according to the above-mentioned matrix 𝐏, while basis functions (and 

corresponding coefficients) with angular momentum greater than 1 can be transformed using matrices 

that can be expressed as a function of 𝐏.3 

 

S1.3 Libraries of Extremely Localized Molecular Orbitals  

Exploiting the transferability of ELMOs, libraries of Extremely Localized Molecular Orbitals have 

been recently assembled.7 The ELMO databanks allow the description of all the possible fragments 

of water molecule and of the twenty natural amino acids in all their possible protonation states and 

forms (namely, N-terminal, C-terminal and non-terminal forms). The ELMOs in the databases were 

determined on suitable model molecules by considering the chemical environment of the fragments. 

Moreover, the ELMO libraries were assembled for five standard quantum chemistry basis sets (i.e., 

6-31G, 6-311G, 6-31G(d,p), 6-311G(d,p) and cc-pVDZ) and include molecular orbitals absolutely 

localized on one-atom fragments (corresponding to core or lone pair electrons), two-atom subunits 

(corresponding to bonding electrons), but also molecular orbitals strictly localized on three-atom 

fragments, which enable to describe the delocalization of the electronic structure in some particular 

cases (e.g., in carboxylic groups, peptide bonds or aromatic rings). 

The software ELMOdb7 allows the transfer of ELMOs from the libraries to the target structures. By 

analyzing the PDB files of polypeptides or proteins, it carries out the transfer procedure for each 

subunit of all residues. The ELMOdb software also reads tailor-made ELMOs corresponding to 

fragments of molecules that are not included in the databanks (e.g., ELMOs describing fragments of 

ligands when we have protein-ligand complexes). These ELMOs are calculated on suitable model 

molecules and stored in folders from which the ELMOdb program can read them. 

The ELMO libraries and the associated ELMOdb program are available upon motivated request to 

the one of the corresponding authors of the present paper (A.G.). 
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S2. Theoretical Details on the preliminary orthogonalization procedure of the QM/ELMO 

method 

As described in the main text, the orthogonalization procedure of the QM/ELMO method entails the 

following three steps:8,9 

1. Löwdin orthonormalization of the transferred extremely localized molecular orbitals. 

2. Orthogonalization of the QM basis functions against the Löwdin orthonormalized ELMOs. 

3. Canonical orthogonalization of the QM basis functions resulting from the previous step. 

Since the first step exploits the Löwdin orthogonalization, the original ELMOs only partially 

delocalize. This leads to a new set of equivalent molecular orbitals with small tails in regions that are 

very close to the fragments on which the starting ELMOs were strictly localized. 

The second step projects out the Löwdin orthonormalized ELMOs from the original basis functions 

of the QM region. This is equivalent to the following matrix transformation: 

𝛘\ = 𝛘	𝐓									(S6), 

with 𝛘 = [|𝜒$⟩, |𝜒0⟩, … , |𝜒%⟩] as the 1 ×𝑀 array of the original supermolecular basis set (which 

include all the basis functions of the QM and ELMO regions), 𝛘\ = [|𝜒\$⟩, |𝜒\0⟩, … , |𝜒\%"#⟩] as the 

1 ×𝑀1% array of the basis functions associated with the only QM subsystem after the 

orthogonalization, and 𝐓 as the 𝑀 ×𝑀1% transformation matrix with elements that can be expressed 

as follows  

𝑇2" = @1 − - K𝑆"!P
0

3$%#&

!#$

C

4$/0

	@𝛿2" − - 𝐶2!6 	𝑆"!

3$%#&

!#$

C						(S7). 

In equation (S7), 𝑆"! is the overlap integral between the original basis function $𝜒"' and the i-th 

orthonormalized ELMO, 𝛿2" the Kronecker delta, and 𝐶2!6  the coefficient of the i-th Löwdin 

orthonormalized ELMO for the starting basis function |𝜒2⟩. 

Finally, the third step of the orthogonalization procedure is the canonical orthogonalization of the 

transformed basis functions 𝛘\: 

𝛘/ = 𝛘\	𝐖									(S8), 

with 𝛘/ = [|𝜒$/ ⟩, |𝜒0/ ⟩, … , |𝜒%"#
/ ⟩] as the 1 ×𝑀1% array of the final orthonormal basis functions for 

the QM region, and 𝐖 as an 𝑀1% ×𝑀1% matrix  with elements given by 

𝑊!7 =
𝑉i!7
𝑣\7$ 0⁄ 				(S9), 
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where 𝑉i!7 is the i-th component of the j-th eigenvector, and 𝑣\7 the j-th eigenvalue of 𝐒i (which is the 

matrix of the overlap integrals between the transformed basis functions 𝛘\).  

The second and third steps can be combined into one that brings from the original (non-orthogonal) 

supermolecular basis set 𝛘 for the QM and ELMO regions to the final orthonormal basis functions 𝛘/ 

for the only QM subsystem: 

𝛘/ = 	𝛘	𝐁				(S10)						 

Equation (S10) is exactly equation (4) in the main text, where we pointed out the fundamental role of 

the matrix 𝐁 in the QM/ELMO self-consistent field algorithm. Here, it is also worth noting that the 

global transformation 𝐁 can be also seen as the result of the following matrix product: 

𝐁 = 𝐓	𝐖					(S11), 

where 𝐓 and 𝐖 are defined by equations (S7) and (S9), respectively. 
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S3. Supplementary figures  

 

 

Figure S3. Absolute deviations of the IMOM/ELMO 1s core-ionization energies for the terminal carbon atom 

of decane from the reference fully IMOM values (ΔEion,C(1s)), as a function of the number of carbon atoms 

gradually included in the quantum mechanical region of the QM/ELMO calculations. Only the results of the 

computations performed with the B3LYP functional are reported. 

 

 

 

Figure S4. Absolute deviations of the IMOM/ELMO 1s core-ionization energies for the carbonyl carbon atom 

of 2-decanone from the reference fully IMOM values (ΔEion,C(1s)), as a function of the number of carbon atoms 

gradually included in the quantum mechanical region of the QM/ELMO calculations. Only the results of the 

computations performed with the B3LYP functional are reported. 
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S4. Supplementary tables  

 
Table S1. Absolute deviations (in eV) of the IMOM/ELMO 1s core-ionization energies for the terminal carbon 

atom of decane from the reference fully IMOM values (ΔEion,C(1s)), as a function of the number of carbon 

atoms progressively included in the quantum mechanical subsystem of the performed QM/ELMO 

computations. Last row with the core-ionization energies (in eV) obtained at fully IMOM level. Only the 

results of the calculations with the PBE0 functional are reported.  
 

 

No. of carbon 
atoms 

 ΔEion,C(1s) (eV) 

 6-31G(d) 6-311G(d) 6-31+G(d) 6-311+G(d) 

3  0.226   0.235 0.237  0.251  
4   0.110  0.116  0.116  0.126 
5  0.063   0.069  0.070  0.076 
6   0.030  0.034  0.036  0.040 
7   0.010  0.013  0.014  0.016 
8   -0.003 -0.001  0.000  0.001 

Fully IMOM  291.363 290.037 291.409 290.031 

 

 

 

Table S2. Absolute deviations (in eV) of the IMOM/ELMO 1s core-ionization energies for the terminal carbon 

atom of decane from the reference fully IMOM values (ΔEion,C(1s)), as a function of the number of carbon 

atoms progressively included in the quantum mechanical subsystem of the performed QM/ELMO 

computations. Last row with the core-ionization energies (in eV) obtained at fully IMOM level. Only the 

results of the calculations with the B3LYP functional are reported.  
 

 

No. of carbon 
atoms 

 ΔEion,C(1s) (eV) 

 6-31G(d) 6-311G(d) 6-31+G(d) 6-311+G(d) 

3  0.213 0.223 0.224 0.238 
4  0.101 0.106 0.108 0.117 
5  0.056 0.061 0.063 0.068 
6  0.024 0.027 0.030 0.033 
7  0.005 0.007 0.010 0.011 
8  -0.007 -0.006 -0.004 -0.004 

Fully IMOM  292.057 290.628 292.118 290.622 
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Table S3. Relative discrepancies (in %) of the IMOM/ELMO 1s core-ionization energies for the terminal 

carbon atom of decane with respect to the reference fully IMOM values, as a function of the number of carbon 

atoms progressively included in the quantum mechanical subsystem of the performed QM/ELMO 

computations. Only the results of the calculations with the B3LYP functional are reported.  
 

 

No. of carbon 
atoms 

 IMOM/ELMO relative discrepancies for core-ionization energies (%) 

 6-31G(d) 6-311G(d) 6-31+G(d) 6-311+G(d) 

3  0.073  0.077  0.077  0.082  
4   0.034  0.037  0.037  0.040 
5   0.019  0.021  0.022  0.024 
6   0.008  0.009  0.010  0.011 
7   0.002  0.002  0.003  0.004 
8   -0.003  -0.002  -0.001  -0.001 

 

 

 

 

Table S4. Absolute deviations (in eV) of the IMOM/ELMO 1s core-ionization energies for the carbonyl carbon 

atom of 2-decanone from the reference fully IMOM values (ΔEion,C(1s)), as a function of the number of carbon 

atoms progressively included in the quantum mechanical subsystem of the performed QM/ELMO 

computations. Last row with the core-ionization energies (in eV) obtained at fully IMOM level. Only the 

results of the calculations with the PBE0 functional are reported.  
 

 

No. of carbon 
atoms 

 ΔEion,C(1s) (eV) 

 6-31G(d) 6-311G(d) 6-31+G(d) 6-311+G(d) 

3   0.473 0.458  0.512  0.510  
4   0.251  0.251  0.267  0.269 
5   0.147  0.150  0.155  0.160 
6   0.083  0.086  0.088  0.093 
7   0.048  0.051  0.051  0.055 
8   0.027  0.029  0.029  0.032 

Fully IMOM  294.304 292.914 294.415 292.964 
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Table S5. Absolute deviations (in eV) of the IMOM/ELMO 1s core-ionization energies for the carbonyl carbon 

atom of 2-decanone from the reference fully IMOM values (ΔEion,C(1s)), as a function of the number of carbon 

atoms progressively included in the quantum mechanical subsystem of the performed QM/ELMO 

computations. Last row with the core-ionization energies (in eV) obtained at fully IMOM level. Only the 

results of the calculations with the B3LYP functional are reported.  
 

 

No. of carbon 
atoms 

 ΔEion,C(1s) (eV) 

 6-31G(d) 6-311G(d) 6-31+G(d) 6-311+G(d) 

3   0.466 0.449  0.503  0.501  
4   0.240  0.240  0.254  0.258 
5   0.139  0.143  0.146  0.153 
6   0.076  0.080  0.081  0.087 
7   0.043  0.046  0.045  0.051 
8   0.023  0.025  0.024  0.028 

Fully IMOM  294.919 293.462 295.063 293.522 

 

 

 

 

Table S6. Relative discrepancies (in %) of the IMOM/ELMO 1s core-ionization energies for the carbonyl 

carbon atom of 2-decanone with respect to the reference fully IMOM values, as a function of the number of 

carbon atoms progressively included in the quantum mechanical subsystem of the performed QM/ELMO 

computations. Only the results of the calculations with the B3LYP functional are reported.  
 

 

No. of carbon 
atoms 

 IMOM/ELMO relative discrepancies for core-ionization energies (%) 

 6-31G(d) 6-311G(d) 6-31+G(d) 6-311+G(d) 

3   0.158 0.153  0.170  0.171  
4   0.081  0.082  0.086  0.088 
5   0.047  0.049  0.050  0.052 
6   0.026  0.027  0.027  0.030 
7   0.015  0.016  0.015  0.017 
8   0.008  0.009  0.008  0.010 
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