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Abstract: Chitin deacetylase can be used in the green and efficient preparation of chitosan from
chitin. Herein, a novel chitin deacetylase SbCDA from Streptomyces bacillaris was heterologously
expressed and comprehensively characterized. SbDNA exhibits its highest deacetylation activity at
35 ◦C and pH 8.0. The enzyme activity is enhanced by Mn2+ and prominently inhibited by Zn2+,
SDS, and EDTA. SbCDA showed better deacetylation activity on colloidal chitin, (GlcNAc)5, and
(GlcNAc)6 than other forms of the substrate. Molecular modification of SbCDA was conducted based
on sequence alignment and homology modeling. A mutant SbCDA63G with higher activity and better
temperature stability was obtained. The deacetylation activity of SbCDA63G was increased by 133%
compared with the original enzyme, and the optimal reaction temperature increased from 35 to 40 ◦C.
The half-life of SbCDA63G at 40 ◦C is 15 h, which was 5 h longer than that of the original enzyme.
The improved characteristics of the chitin deacetylase SbCDA63G make it a potential candidate to
industrially produce chitosan from chitin.

Keywords: chitin deacetylase; molecular modification; chitin

1. Introduction

Chitin (chemically named β-(1,4)-2-acetylamino-2-deoxy-D-glucose) is the second
most abundant natural polymer after cellulose and the most abundant renewable nitroge-
nous material on Earth [1,2]. It is widely found in crustaceans, insect exoskeletons, mollusks,
and fungal cell walls [3]. The amount of chitin biosynthesized each year is approximately
100 billion tons, which can be regarded as an inexhaustible biological resource [4].

Chitosan (β-(1,4)-2-amino-2-deoxy-D-glucose) is the deacetylation product of chitin [5].
Due to the presence of amino groups, chitosan has better solubility than chitin [6]. Further-
more, it has good degradability and biocompatibility, and it also has a good hemostatic
property, antibacterial property, moisturizing property, formability, and so on [7–10]. All
of the properties mentioned above make chitosan widely used in food processing and
preservation, wastewater treatment, medical material, agricultural planting, and many
other fields [11–14].

In industry, chitosan is traditionally prepared by treating chitin with a concentrated
alkali [15]. The quality of chitosan is mainly affected by the concentration of the alkali
solution, pyrolysis time, and temperature during the reaction [16,17]. The alkali treatment
method creates a large amount of environmental pollution, and it is furthermore difficult
to control the molecular weight of the product. Consequently, the homogeneity of the pro-
duced chitosan is poor, and meeting requirements for the high-quality chitosan in biological
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and medical fields is difficult [18]. On the contrary, the enzymatic preparation of chitosan
from chitin has attracted attention because of its green and controllable reaction process.

Chitin deacetylases (CDA) from the carbohydrate esterase 4 (CE4) family have at-
tracted wide attention because of their ability to remove the acetyl group and produce
chitosan or chitooligosaccharide using chitin or chitinosaccharides [19–22]. However, the
studies and research progress regarding CDA are less advanced than those of chitosanase
and chitinase. At present, a CDA that has high efficiency and good stability and is suitable
for industrial application has not been discovered or developed [23–33]. There is an urgent
need to excavate more CDAs and investigate their functional properties with the purpose
of furthering the understanding of CDAs and developing CDAs for industrial applications.

In this study, a gene encoding chitin deacetylase was extracted from the genome
of Streptomyces bacillaris and heterologously expressed in Bacillus subtilis WB800. The
properties of chitin deacetylase were comprehensively studied, and the structure of chitin
deacetylase was modified using single-point mutation and saturation mutagenesis. A
modified enzyme with improved catalytic properties was obtained. These results provide a
good reference for the exploration and molecular modification of new chitin deacetylases.

2. Results
2.1. Bioinformatics Analysis of SbCDA

The open reading frame (ORF) of SbCDA (the amino acid sequences have been
provided in Appendix B) consists of 867 nucleotides, encoding a protein of 289 amino
acid residues. The molecular mass and isoelectric point of SbCDA were predicted to be
31.37 kDa and 8.60, respectively. To analyze the key catalytic sites, we compared the
protein sequence of SbCDA with those of other chitin deacetylases (PesCDA (Genbank:
A0A1L3THR9) [34], PdaA (Genbank: AFQ56715) [25], ClCDA (Genbank: Q6DWK3) [35],
AnCDA (Genbank: XP_659456) [30], PgtCDA (Genbank: XP_003323413) [36], and AnCDA2
(Genbank: ACF22101.1)). There were 21 completely conserved amino acid sites among
these CDAs (as shown by the red squares in Figure 1).

2.2. Expression and Purification of SbCDA

Bacillus subtilis is often used as the traditional fermentation host in industrial pro-
duction owing to its safety, efficient protein secretion system, and short fermentation
period [37]. B. subtilis WB800 is a commonly used expression host which is knocked out of
eight extracellular protease genes for the purpose of avoiding the hydrolysis of the target
protein [38]. The gene encoding the original SbCDA was cloned and successfully expressed
in B. subtilis WB800 with a C-terminal His tag, and the recombinant SbCDA was purified us-
ing a Ni-NTA Superflow column. The protein concentrations of crude enzyme and purified
SbCDA were 2.2 mg/mL and 0.1 mg/mL, respectively. In addition, the specific enzyme
activities of crude enzyme and purified SbCDA under standard condition were 17.1 U/mg
and 49.6 U/mg, respectively. The purification factor was 2.0. The product was identified
using an Agilent 6460 LC/MS, and the results (Figure A1) confirmed the production of
glucosamine (GlcN). SDS–PAGE analysis (Figure A2) showed that the obtained bands were
consistent with the predicted results, with a molecular weight of approximately 32 kDa.

2.3. Characterization of SbCDA
2.3.1. Effects of Temperature and pH on the Activity and Stability of SbCDA

The effects of temperature on SbCDA were determined, and the results are shown in
Figure 2A. The optimal temperature of SbCDA was 35 ◦C under the reaction conditions of a
pH 7.0 Tris-HCl buffer. The residual enzyme activity (Figure 2A) of SbCDA was tested after
incubation at different temperatures for 6 h. The results showed that the activity of SbCDA
could be maintained at about 85% at 35 ◦C and above 95% at 30 ◦C and 45 ◦C. Overall,
the stability of SbCDA was better below 50 ◦C, with the remaining enzyme activity being
above 80% after 6 h. Residue activity of SbCDA was measured every 4 h at 30, 35, and
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40 ◦C; 24 h was the last time point to be analyzed. The results showed that the half-lives of
SbCDA (Figure 2B) at 30, 35, and 40 ◦C were 24 h, 14 h, and 10 h, respectively.
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Figure 1. Protein sequence alignment of SbCDA with PesCDA (Genbank: A0A1L3THR9) [34], PdaA
(Genbank: AFQ56715) [25], ClCDA (Genbank: Q6DWK3) [35], AnCDA (Genbank: XP_659456) [30],
PgtCDA (Genbank: XP_003323413) [36], and AnCDA2 (Genbank: ACF22101.1). Residues D and H
playing catalytic roles are marked with purple triangles; the remaining 19 conserved sites are marked
with blue dots.

The effects of pH on the enzyme activity of SbCDA were determined (Figure 2C). The
optimum pH of SbCDA was 8.0 in the Tris-HCl buffer solution. Due to the incubation
temperature of 40 ◦C, under which the enzyme activity was maintained well, the incubation
time was extended when measuring the stability of SbCDA at different pH conditions.
After incubation for 12 h, SbCDA maintained more than 70% of its activity at pH values
ranging from 7.0 to 9.0 (Figure 2D).

2.3.2. Effects of Chemical Reagents on SbCDA Enzyme Activity

To investigate the effects of different metal ions on SbCDA and the tolerance of SbCDA
to protein-deformable agents and to confirm that chitin deacetylase is a metal ion-dependent
enzyme, different metal ions (Fe3+, Ca2+, Cu2+, Mg2+, Zn2+, Mn2+, Ni2+, Ba2+, Co2+, K+,
and Na+), SDS, and Na2EDTA were added into the reaction system, respectively. The
results (Figure 3) showed that the activity of SbCDA was strongly inhibited by Zn2+ and
was mildly inhibited by Ca2+, Cu2+, Mg2+, Ba2+, and Na2+. The inhibition became stronger
at high concentrations. Fe3+, Ni2+, and Co2+ slightly improved the activity of SbCDA, while
Mn2+ strongly improved the activity of SbCDA. K+ inhibited SbCDA activity at 1 mM but
enhanced the activity at 10 mM. SDS and Na2EDTA also strongly inhibited the activity
of SbCDA.
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Figure 2. Biochemical characteristics of SbCDA. (A) Effects of temperature on the activity of SbCDA.
Conditions for stability measurement: Tris-HCl buffer (10 mM, pH 7.0), 6 h. (B) Effects of temper-
ature on the thermostability of SbCDA. (C) Effects of pH on the activity of SbCDA, citrate buffer
(10 mM, pH 3.0–6.0), phosphate buffer (10 mM, pH 6.0–7.0), Tris-HCl buffer (10 mM, pH 7.0–9.0),
and glycine-NaOH buffer (10 mM, pH 9.0–10.0). Reaction temperature: 40 ◦C. (D) Effects of pH on
the stability in citrate buffer (10 mM, pH 3.0–6.0), phosphate buffer (10 mM, pH 6.0–7.0), Tris-HCl
buffer (10 mM, pH 7.0–9.0), and glycine-NaOH buffer (10 mM, pH 9.0–10.0). Incubation conditions:
40 ◦C, 12 h. Using GlcNAc of 10 g/L as substrate throughout all measurements. All measurements
were determined in triplicate, and the error bars indicate the standard deviations (n = 3).
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Figure 3. Effects of various chemical agents on enzyme activity of SbCDA. CK represents the control
group with nothing added. The incubation time of the enzyme with metal ions was 1 h at 37 ◦C. The
reaction time for the enzyme with GlcNAc was 6 h in Tris-HCl buffer (10 mM, pH = 7.0) at 40 ◦C.
All measurements were determined in triplicate, and the error bars indicate the standard deviations
(n = 3).
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2.4. Substrate Preference of SbCDA

By selecting chitin oligosaccharides with different degrees of polymerization and
chitins with different solubilities as reaction substrates, the enzyme activity of SbCDA with
different substrates was determined. As shown in Figure 4, SbCDA showed activity against
colloidal chitin and soluble chitin oligosaccharides and had no effect on insoluble powder
chitin. Compared with carboxymethyl chitin, GlcNAc, and (GlcNAc)2–4, SbCDA clearly
prefers colloidal chitin, (GlcNAc)5, and (GlcNAc)6.
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2.5. Comparison of Enzyme Activity of Mutants and Analysis of Homologous CDAs

By sequence alignment, we selected 19 amino acids (the blue dots in Figure 1) in the
conserved region and mutated them into alanine. The enzyme activity of these 19 mutants
was studied (Figure 5). The mutants SbCDA62, SbCDA63, SbCDA77, SbCDA79, SbCDA87,
SbCDA88, SbCDA156, and SbCDA208 showed relatively obvious changes in enzyme
activity. Then, to explore the role of the aforementioned amino acids in the structure, we
established a homology model of SbCDA using eight crystal structures as templates (PDB
ID: 5LFZ [39], 6H8L [40], 2C1G [41], 5NC6 [42], 7AX7 (https://www1.rcsb.org/structure/
7AX7, accessed on 16 November 2022), 1NY1 (https://www1.rcsb.org/structure/1NY1,
accessed on 16 November 2022), 5O6Y (https://www1.rcsb.org/structure/5O6Y, accessed
on 16 November 2022), and 4L1G [43]). The homology model (Figure 6) indicated that
the His116 residues and His120 residues can form coordination bonds with Zn2+ and that
Asp65 and His210 are the general base residue and the general acid residue for catalysis,
respectively [21]. The three-dimensional protein structure diagram (Figure 7) shows that
Leu62, Thr63, Leu79, Thr87, Phe88, and Leu208 of SbCDA are around the catalytic site of the
metal triplet. Therefore, we selected SbCDA62, SbCDA63, SbCDA79, SbCDA87, SbCDA88,
and SbCDA208 for saturation mutation to search for mutants with higher enzyme activity.

https://www1.rcsb.org/structure/7AX7
https://www1.rcsb.org/structure/7AX7
https://www1.rcsb.org/structure/1NY1
https://www1.rcsb.org/structure/5O6Y
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Figure 5. Relative enzyme activity after single-point mutation. Colors indicate the degree of change
in enzyme activity (increase or decrease). The activity of SbCDA was defined as 100%. The activity of
mutants was obtained by comparison with SbCDA. The redder the color, the more the enzyme activity
was changed, and blue represents the opposite. Measurements were conducted under standard
conditions using 10 mg/mL of GlcNAc. All measurements were determined in triplicate, and the
error bars indicate the standard deviations (n = 3).
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2.6. SbCDA Saturation Mutations at Six Amino Acid Sites

Based on the results of single-point mutation and structural analysis, saturation muta-
tions were prepared on six amino acids at positions 62, 63, 79, 87, 88, and 208. The mutants
were cultured, and the mutant proteins were collected under the same conditions. In order
to comprehensively evaluate the enzyme activity and expression level, the activity of each
mutant was determined by adding the same amount of supernatant (400 µL). As shown in
Figure 8, mutant SbCDA63G with Thr63 mutated to Gly, mutant SbCDA79H with Leu79
mutated to His, and mutant SbCDA87R with Thr87 mutated to Arg had relatively good
enzyme activity. These three mutant strains were cultured, and the crude enzymes were col-
lected. However, only mutant SbCDA63G could be purified by Ni column chromatography.
The protein concentrations of crude SbCDA63G and purified SbCDA63G were 1.9 mg/mL
and 0.2 mg/mL, respectively. In addition, the specific enzyme activities of crude enzyme
and purified SbCDA were 35.9 U/mg and 115.9 U/mg, respectively. The purification
factor was 3.2. SDS–PAGE analysis (Figure A3) showed that the obtained protein band
was consistent with the predicted result. The mutant SbCDA63G protein had a molecular
weight of approximately 32 kDa.
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Figure 8. Relative enzyme activity of the mutants after saturation mutation, with the original enzyme
activity as 100%. The colors represent the level of enzyme activity. Red means the enzyme activity
is higher than the original protein. The redder the color, the higher the enzyme activity, and blue
represents the opposite.

2.7. Characterization of Mutant SbCDA63G

When it comes to the optimum temperature, SbCDA63G displayed its highest activity
at 40 ◦C. When it comes to the stability of the enzyme at different temperature, SbCDA63G
showed more than 75% residual activity from 25 ◦C to 65 ◦C after being incubated for
6 h (Figure 9A). The half-lives of SbCDA63G at 35, 40, and 45 ◦C were 12, 15, and 24 h,
respectively (Figure 9B). The optimal pH of SbCDA63G was 8.0. More than 75% of the
activity of SbCDA63G was retained after incubation for 12 h in a pH range from 7.0 to 9.0
(Figure 9D). SbCDA63G has the greatest stability in a Tris-HCl buffer solution at pH 7.0.
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Figure 9. Biochemical characteristics of SbCDA63G. (A) Effects of temperature on the activity of
SbCDA63G. Conditions for stability measurement: Tris-HCl buffer (10 mM, pH 7.0), incubation
for 6 h. (B) Effects of temperature on the thermostability of SbCDA63G. (C) Effects of pH on the
activity of SbCDA63G: citrate buffer (10 mM, pH 3.0–6.0), phosphate buffer (10 mM, pH 6.0–7.0),
Tris-HCl buffer (10 mM, pH 7.0–9.0), and glycine-NaOH buffer (10 mM, pH 9.0–10.0). Reaction
temperature: 40 ◦C. (D) Effects of pH on the stability in citrate buffer (10 mM, pH 3.0–6.0), phosphate
buffer (10 mM, pH 6.0–7.0), Tris-HCl buffer (10 mM, pH 7.0–9.0), and glycine-NaOH buffer (10 mM,
pH 9.0–10.0). Incubation conditions: 40 ◦C, incubation for 12 h. Using GlcNAc of 10 g/L as substrate
throughout all measurements. All measurements were determined in triplicate, and the error bars
indicate the standard deviations (n = 3).

3. Discussion

In this study, SbCDA from S. bacillaris was obtained and investigated. The opti-
mal temperature of SbCDA was 35 ◦C under the reaction conditions of pH 7.0 Tris-HCl
buffer (Figure 2A). In general, the optimum temperatures of CDAs from fungi (gener-
ally 50–60 ◦C) are higher than those of CDAs from bacteria [28,30,44–49]. Theoretically,
the higher the temperature, the lower the stability of the enzyme, but in this study, the
stability became higher at 45 ◦C (Figure 2A), probably because of the activation effect
of temperature on the enzyme, but this phenomenon has not been found in other chitin
deacetylases [30,33–36,39–42,50,51]. In addition, SbCDA exhibited below 50% residual ac-
tivity after incubation at 30, 35, and 40 ◦C for 24 h, indicating that the stability of SbCDA
is not very good. Therefore, one of the purposes of mutation is to improve the stability
of SbCDA. The optimum pH of 8.0 for SbCDA is similar to those of CDAs derived from
Bacillus licheniformis, Nitratireductor aquimarinus MCDA3-3, and Vibrio cholerae [45,52,53].
The high activity and good stability of SbCDA in Tris-HCl buffer from pH 7.0–9.0 further
support the idea that SbCDA is an alkaline chitin deacetylase [54]. Activation by Mn2+

and inhibition by Na2EDTA indicate that SbCDA is metal ion-dependent. In fact, the
relationships between metal ions and the activity of almost all CDAs have been stud-
ied. For instance, Cd2+, Co2+, and EDTA ions inhibited the activity of MeCDA from
M. esteraromaticum while K+, Li+, and Sr2+ ions strongly enhanced the enzyme’s activ-
ity [54]. ClCDA from Colletotrichum lindemuthianum was inhibited by Zn2+, Mn2+, and
Cu2+, whereas it was not inhibited by Na+, K+, Li+, Mg2+, or Ca2+. Co2+ could improve
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the activity of ClCDA [55]. We cannot say for certain which metal ions have an inhibitory
effect on the activity of CDAs and which metal ions could promote their activity, but it is
worth making sure that most CDAs are metal ion-dependent and that EDTA can inhibit
the activity of CDAs. In terms of substrate preference, SbCDA and most reported CDA
enzymes are mainly active on soluble chitins, such as colloidal chitin, and soluble chitosac-
charides, but they have no activity against natural chitin [56]. However, MCDA02 from
Microbacterium esteraromaticum and MCDA3-3 from Nitratireductor aquimarinus showed
deacetylase activity toward α-chitin [54,56]. Most CDAs have no activity toward GlcNAc,
while SbCDA in our study has activity toward GlcNAc. If SbCDA were used in combination
with other enzymes that have different substrate preferences, different substrates could
be utilized more efficiently, and a wide variety of chitosan oligosaccharides which have
various physiological activities could be produced.

The enzymatic activity and stability of SbCDA did not meet our expectations, and
we modified CDA by single-point mutation and saturation mutation based on multiple
sequence alignment to obtain a more efficient and stable CDA. The result of sequence
alignment showed that there were 21 completely conserved amino acid sites among CDAs
participating in the comparison (as shown by the red squares in Figure 1). According to
previous research, CDAs operate by metal-assisted acid/base catalysis [57]. Asp65 and
His210 (as shown by purple triangles in Figure 1) are the general base residue and the
general acid residue for catalysis, respectively [21]. The other 19 completely conserved
sites of CDAs are marked by blue dots. Previous studies have suggested conserved motifs
that affect enzyme activity; however, this consensus can be improved [21]. Therefore, we
speculated that our 19 highly conserved sites might influence the activity of SbCDA, and
we mutated these 19 amino acids (the blue dots in Figure 1) in the conserved region into
alanine, which is a chiral amino acid with the shortest side chain [58]. Then, we studied the
enzyme activity of these 19 mutants.

Among the 19 mutants, SbCDA62, SbCDA63, SbCDA77, SbCDA79, SbCDA87, SbCDA88,
SbCDA156, and SbCDA208 showed the greatest alterations in enzyme activity, indicating
that the change of amino acids at these positions is promising to improve the enzymatic
activity of the enzyme. Meanwhile, the results of homology modeling illustrated that
Leu62, Thr63, Leu79, Thr87, Phe88, and Leu208 were near the catalytic site of the metallic
triad. Combining these two aspects, six amino acid sites (positions 62, 63, 79, 87, 88, and
208) underwent saturation mutagenesis. Among all mutants, SbCDA63G, SbCDA79H,
and SbCDA87R had relatively good enzyme activity. However, only SbCDA63G could
be purified. Therefore, the next inquiry of enzymatic properties was conducted using the
mutant SbCDA63G.

SbCDA63G has higher activity and better stability compared with SbCDA (Figure 9).
The specific enzyme activity of SbCDA63G was 115.9 U/mg, while that of SbCDA was
49.6 U/mg, indicating that the activity of SbCDA63G increased by approximately 133%.
The increase in activity may be due to the increased flexibility of the main chain and less en-
tropy loss during folding after mutation to Gly [59]. SbCDA63G had better thermostability
than SbCDA, suggesting that the mutant is more suitable for industrial applications than
SbCDA [60]. A possible explanation for the increase in thermal stability is that the interac-
tion between Gly and the nearby charged amino acids (D, E, K, and R) is more beneficial to
the stability of the protein [61]. The mutation did not affect the optimal pH of the enzyme,
which was 8.0 for both SbCDA63G and SbCDA (Figures 9C and 2C). SbCDA63G has its
greatest stability in Tris-HCl buffer solution at pH 7.0, compared to pH 8.0 for SbCDA.

Our study indicates that Thr63 has a great effect on enzyme activity. The mutation of
Thr to Gly could improve the activity and stability of SbCDA, making it more suitable for
industrial production.
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4. Materiale and Methods
4.1. Materials

A One Step Cloning Kit and Taq polymerase were purchased from Vazyme (Nanjing,
China). High-fidelity DNA polymerase was obtained from Toyobo (Osaka, Japan). K-
ACET was purchased from Megazyme (Bray, Ireland). A Bacteria DNA Kit and a Plasmid
Extraction Kit were purchased from Tiangen (Beijing, China). A Gel Extraction Kit was
purchased from Omega (Guangzhou, China). Chitin was purchased from Sinopharm
Group (Shanghai, China). Ni-NTA Superflow was obtained from Qiagen (Duesseldorf, Ger-
many). N-acetyl glucosamine (GlcNAc), diacetylchitobiose ((GlcNAc)2), triacetylchitotriose
((GlcNAc)3), tetraacetylchitotetraose ((GlcNAc)4), acetylchitopentaose ((GlcNAc)5), and
acetylchitohexaose ((GlcNAc)6) were purchased from Qingdao Bozhihuili Biotechnology
(Qingdao, China). Other chemical reagents used in this study were of analytical grade
unless specifically indicated. Colloidal chitin and carboxymethyl chitin were prepared
according to previously reported methods [50,51].

4.2. Strains and Culture Conditions

Streptomyces bacillaris was activated in tryptic soy broth (TSB) medium containing 1.5%
(w/v) tryptone, 0.5% (w/v) soya peptone, and 1% (w/v) NaCl. DH5α chemically competent
cells were cultivated at 37 ◦C in Luria–Bertani (LB) medium composed of 0.5% (w/v) yeast
extract, 1% (w/v) tryptone, and 1% (w/v) NaCl with 0.05 g/L kanamycin when needed.
Bacillus subtilis WB800 was grown in LB medium at 37 ◦C. Thallus growth medium (GM)
used for culturing B. subtilis WB800 contained 0.5% (w/v) yeast extract, 1% (w/v) tryptone,
1% (w/v) NaCl, and 9.1% (w/v) sorbitol. Electrotransfer medium (ETM) for the preparation
of competent B. subtilis cells contained 9.1% (w/v) sorbitol, 9.1% (w/v) mannitol, and 10%
(v/v) glycerol. Thallus recovery medium (RM) for the resuscitation of transformed cells
contained 0.5% (w/v) yeast extract, 1% (w/v) tryptone, 1% (w/v) NaCl, 9.1% (w/v) sorbitol,
and 6.9% (w/v) mannitol.

4.3. Bioinformatics Analysis, Homology Modeling, and Molecular Docking of CDAs

ExPASy ProtParam (https://web.expasy.org/protparam/, accessed on 16 November 2022)
was used to calculate the isoelectric point and molecular weight. Both ESPript and ClustalX 2.1
were used to compare the amino acid sequences of chitin deacetylases (PesCDA (Genbank:
A0A1L3THR9) [34], PdaA (Genbank: AFQ56715) [25], ClCDA (Genbank: Q6DWK3) [35],
AnCDA (Genbank: XP_659456) [30], PgtCDA (Genbank: XP_003323413) [39], and AnCDA2
(Genbank: ACF22101.1)) with SbCDA. The MODELLER software (version 9.23) was used
to establish the homology model of the chitin deacetylase SbCDA using eight crystal
structures (PDB ID: 5LFZ [39], 6H8L [40], 2C1G [41], 5NC6 [42], 7AX7 (https://www1
.rcsb.org/structure/7AX7, accessed on 16 November 2022), 1NY1 (https://www1.rcsb.org/
structure/1NY1, accessed on 16 November 2022), 5O6Y (https://www1.rcsb.org/structure/
5O6Y, accessed on 16 November 2022), and 4L1G [43]) as templates. The geometric
conformation of the protein model was observed using PyMOL (Version 2.4.1). SAVES (http:
//services.mbi.ucla.edu/SAVES/, accessed on 16 November 2022), PROCHECK ERRAT,
and VERIFY3D were used for further evaluation of the geometric conformation of the
protein model. The molecular structure of GlcNAc was obtained from the ZINC database
(http://zinc.docking.org/, accessed on 16 November 2022). The AutoDock (version 4.2.6)
software (http://mgltools.scripps.edu/, accessed on 16 November 2022) was used for
molecular docking. Finally, the docking site conforming to the catalytic conditions was
selected as the initial conformation for analysis.

https://web.expasy.org/protparam/
https://www1.rcsb.org/structure/7AX7
https://www1.rcsb.org/structure/7AX7
https://www1.rcsb.org/structure/1NY1
https://www1.rcsb.org/structure/1NY1
https://www1.rcsb.org/structure/5O6Y
https://www1.rcsb.org/structure/5O6Y
http://services.mbi.ucla.edu/SAVES/
http://services.mbi.ucla.edu/SAVES/
http://zinc.docking.org/
http://mgltools.scripps.edu/


Molecules 2023, 28, 113 11 of 16

4.4. Construction of the SbCDA Expression Plasmid and Site-Directed Mutation

Genomic DNA was extracted from S. bacillaris using the Bacteria DNA Kit. Primer
synthesis for the amplification of the SbCDA gene, construction of mutant plasmids, and
linearization of the p43NMK vector were conducted at Sangon Biotech Co., Ltd. (Shanghai,
China). PCR products were purified and then ligated into the pP43NMK vector, which con-
tains a 6×His tag, according to the instructions of the One Step Cloning Kit manufacturer.
The recombinant and mutant plasmids were transformed into DH5α chemically competent
cells for propagation of the plasmids. The Plasmid Extraction Kit was used to recover
the plasmids. Then, the recombinant and mutant plasmids were electrotransformed into
B. subtilis WB800 chemically competent cells to obtain transformants and mutant strains,
respectively.

4.5. Expression and Purification of SbCDA and the Mutant Enzymes

To express the target enzymes, the transformants and mutant strains were grown in
LB medium with shaking (220 rpm) for 20 h at 37 ◦C. After culture, the supernatant was
obtained by centrifugation at 8000 rpm for 15 min at 4 ◦C to collect the crude enzyme
solution. The activity of the crude enzyme solution was measured, and the mutant with an
obvious enzyme activity change was selected for saturation mutation. Then, the mutant
with the highest enzyme activity was selected to evaluate its properties. The enzyme was
purified by a Ni-NTA Superflow column eluted with a gradient of imidazole (10, 50, 80,
100, 200, and 500 mM) in 50 mM Tris-HCl buffer (pH 8.0) and 500 mM NaCl. Finally, the
purified protein was analyzed by SDS–PAGE. The content of protein was measured by
Bradford assay [62]. The purified enzyme was used for further enzyme activity assays and
biochemical characterization.

4.6. Chitin Deacetylase Activity Assay

Within all activity and stability tests, the enzyme activity assay was performed as
previously described using the coupled enzymatic method with some modifications [36].
For the assay, 400 µL GlcNAc (10 g/L) was added to 400 µL Tris-HCl buffer solution
(0.01 mol/L, pH 7.0), followed by 100 µL of enzyme solution, and the reaction system
was incubated at 40 ◦C for 6 h. The activity of chitin deacetylase was characterized by
measuring the content of acetic acid produced using the K-ACET acetic acid determination
kit (Megazyme, Bray, Ireland).

One unit of enzymatic activity (U) was defined as the amount of enzyme (mg) required
to produce 1 µmol of acetic acid per minute under the above conditions.

In order to verify the deacetylation products of chitin deacetylases, the hydrolysates
were analyzed by mass spectrometry using an Agilent 6460 LC/MS.

4.7. Biochemical Characterization of SbCDA and the Mutant Enzymes

The impact of temperature on SbCDA activity under standard conditions was studied
from 25 to 65 ◦C, with a temperature interval of 5 ◦C. The same amount of enzyme solution
was kept at the above temperature for 6 h to determine the stability. For the thermal stability
assay, aliquots of enzyme were placed at 30, 35, and 40 ◦C for 0, 4, 8, 12, 16, 20, and 24 h.
The residual enzyme activity was measured under standard conditions to determine the
thermal stability. The enzyme half-life is calculated as the time it takes for the enzyme
activity to drop to half of the initial enzyme activity.

Under standard conditions, the effect of pH buffers was examined in citric acid buffer
(pH 3.0–6.0), phosphoric acid buffer (pH 6.0–7.0), Tris-HCl buffer (pH 7.0–9.0), and glycine
sodium hydroxide buffer (pH 9.0–10.0). The concentration of all buffers was 10 mM. To
investigate the effects of pH on the stability of SbCDA, the enzyme was incubated in citric
acid buffer (pH 3.0–6.0), phosphoric acid buffer (pH 6.0–7.0), Tris-HCl buffer (pH 7.0–9.0),
and glycine sodium hydroxide buffer (pH 9.0–10.0) for 12 h, respectively. The residual
activity was measured according to the standard method.
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4.8. Effects of Metal Ions and Chemical Reagents on SbCDA Activity

To examine the effects of metal ions (Fe3+, Ca2+, Cu2+, Mg2+, Zn2+, Mn2+, Ni2+, Ba2+,
Co2+, K+, and Na+) and a series of chemicals (disodium ethylenediaminetetraacetate
(Na2EDTA) and sodium dodecyl sulfate (SDS)) on the activity of SbCDA, they were added
to the reaction mixture at final concentrations of 1 and 10 mM. The metal ions were each
added to an enzyme solution, which was incubated for 1 h at 37 ◦C. Then, to measure the
relative activity of SbCDA, the reaction system was incubated at 40 ◦C for 6 h in Tris-HCl
buffer (10 mM, pH = 7.0). The control group did not have metal ions or chemical reagents
added under the same reaction system and reaction conditions as the experimental group.

4.9. Substrate Preference of SbCDA

Under standard conditions, chitin deacetylase was reacted with chitin, colloidal
chitin, carboxymethyl chitin, GlcNAc, and (GlcNAc)2 to (GlcNAc)6 at a concentration
of 10 mg/mL. The activity of chitin deacetylase on different substrates was determined.

5. Conclusions

In summary, a novel chitin deacetylase SbCDA from S. bacillaris was expressed, puri-
fied, characterized, and molecularly modified. The phenomenon that Mn2+ can strongly
improve the activity of SbCDA needs to be further investigated to elucidate the activation
mechanism of Mn2+. Different substrate preferences of SbCDA from previously studied
enzymes provide biological tools with potential for the production of multiple chitosan
types. The activity of the mutant enzyme SbCDA63G was 133% higher than that of SbCDA.
We speculate that the reason for this phenomenon is that Gly has low spatial bit resistance.
When Thr was mutated to Gly at position 63, the entropy loss during folding decreased,
and the flexibility of the main chain increased, which made it easier for the active center of
the enzyme to deform and bind with the substrate. Moreover, the interaction between Gly
and the nearby charged amino acids (D, E, K, and R) is more beneficial to the stability of
the protein, and thus the optimal temperature and thermal stability of SbCDA63G were
also improved, making it more suitable for industrial production. Improved enzyme ac-
tivity and stability would allow the mutant SbCDA63G to achieve the same deacetylation
as the original enzyme with less dosage. Our study demonstrates that mutation to Gly
improves protein stability, providing a useful method for improving the properties of a
chitin deacetylase and a potential tool for preparing chitosan or chitosan oligosaccharides
from chitin.
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Figure A1. MS analysis of products of GlcNAc.

The mass–charge ratio peaks of 162.1 and 180.1 in the mass spectrogram result are frag-
ment ions of [GlcN+H]+ and [GlcN-H2O+H]+, respectively, which confirms the production
of glucosamine (GlcN).
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Appendix B 

The sequence of SbCDA is as follows: 

>SbCDAMPKKMSVLGGGLAAALVATLTLALTGCSMETTAPASARRDAAPDAKGSFG

RADCRKAKCIALTFDAGPGKDTAELLDILKEKKVSATFFLLGRNHVLKHPDTVRRIQD

EGHEVANHTWTHKILTDEKPEEIRAELEKTQEAIEKITGKRPRLMRPPQGRTDDQVSG

ISKELGLSQVLWSATAKDYSTNDSALITQRILDQASRDGIILLHDIYKGTVPAVPGIIDA

LQKDGYTFVTVPELMAPAVPEPGTIYRP 
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Appendix B

The sequence of SbCDA is as follows:
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