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Abstract: Quality control methods of current traditional Chinese medicine (TCM) preparation is 

time-consuming and difficult to assess in terms of overall efficiency of the drug. A non-destructive 

rapid near-infrared spectroscopy detection system for key chemical components and biological ac-

tivity of Lanqin oral solution (LOS), one of the best-selling TCM formulations, was established for 

comprehensive quality evaluation. Near infrared spectral scanning was carried out on 101 batches 

of commercial LOS under the penetrated vial state and traditional state. RAW 264.7 cells were cul-

tured to detect the anti-inflammatory ability of LOS, and the reference concentrations of epigoitrin, 

geniposide, and baicalin were obtained by HPLC. The quantitative models were optimized by three 

kinds of variable selection methods. The correlation coefficients of prediction value of the models 

were greater than 0.94. The system also passed the external validation. The performance of the non-

invasive models was similar to the traditional models. The established non-destructive system can 

be applied to the rapid quality inspection of LOS to avoid unqualified drugs from entering the mar-

ket and ensure drug effectiveness. The biological activity index of LOS was introduced and pre-

dicted by NIRs for the first time, which provides a new idea about the quality control of TCM for-

mulations. 

Keywords: Chinese medicine formulations; non-invasive detection; near infrared spectroscopy; 

Lanqin oral solution; anti-inflammatory; epigoitrin; geniposide; baicalin 

 

1. Introduction 

Enterprises and government departments have always been concerned with the 

quality consistency control of drugs. For finished pharmaceutical formulations, the cur-

rent testing methods need to damage the container, which is destructive to the product 

[1]. As a result, it is impossible for the tested samples to enter the subsequent commercial 

circulation. Therefore, the finished products can only be analyzed by sampling [2]. At the 

same time, the traditional analytical method has the limitations of human and material 

resource consumption and is time-consuming, which reduces the production efficiency of 

enterprises and deviates from the demand for efficient and continuous production [3]. To 

prevent substandard drugs from entering the market and causing delays in the produc-

tion cycle of manufacturers, it is necessary to develop a non-destructive, vial-penetrating, 

and rapid detection method. 

Near-infrared spectroscopy (NIRs) has been widely applied in the food, petroleum, 

and pharmaceutical fields due to its advantages of rapidity, non-destructiveness, and lack 

of a need for sample pretreatment [4–6]. The information of multiple indicators in the 

sample system can be parsed by NIRs, which meets the requirements of multiple efficacy 

indicators of traditional Chinese medicine (TCM) [7,8]. Combined with chemometric 
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methods, the feasibility of NIRs in detecting TCM formulations has been demonstrated. 

Yan et al., created a rapid quality-assessment system for Chinese medicine preparation 

Honghua Oil [9]. Si et al., achieved qualitative and quantitative analysis of Yaobitong cap-

sule without damaging capsule shell [10]. However, NIRs are mostly applied for rapid 

detection of chemical indicators of drugs, and its application potential in the detection of 

drug biological activity remains to be tapped. 

Compared with chemical formulations, components of TCM formulations are com-

plex. TCM formulations are usually prepared by decoction of herbs, and the system con-

tains hundreds of components. At the same time, the mechanism of TCM has yet to be 

explored [11]. It is difficult to reflect the overall efficiency of the drug by analyzing the 

concentration of specific components [12]. Lanqin oral solution (LOS) is famous for its 

heat-clearing and detoxifying properties, and is commonly used in the treatment of phar-

yngitis. Clinical experiments have shown that taking LOS has a significant therapeutic 

effect on children with herpangina, and it can shorten the fade time of fever and herpes 

without increasing the occurrence of adverse reactions [13]. There is research finding that 

LOS can shorten the healing time of acute pharyngitis [14]. For patients with chronic phar-

yngitis, Li et al., conducted a randomized controlled trial on 1642 patients. The results of 

the meta-analysis revealed that LOS can effectively inhibit the increase of various inflam-

matory factors and is beneficial to the relief of patients’ symptoms [15]. However, the ther-

apeutic efficiency mechanism of LOS has not yet been elucidated. LOS is made of Isatidis 

Radix, Gardeniae Fructus, Scutellariae Radix, Phellodendri Chinensis Cortex, and Sterculiae 

Lychnophorae Semen. The quality-control method research of LOS mainly focuses on three 

substances: epigoitrin, geniposide, and baicalin [16]. The efficiency of TCM is considered 

to be the result of the synergistic effect of multiple components [17]. It is incomplete to 

assess the quality by focusing on single or several chemical substances in TCM as single 

substance is inadequate to ensure the efficiency of LOS. The material basis of LOS is com-

plex. Studies have found that there are at least 175 chemical components in the LOS sys-

tem [18]. It is impractical to separate and analyze all substances in LOS. Therefore, it is 

worthwhile to evaluate the quality of LOS directly through pharmacodynamic indicators. 

The aim of this study was to achieve a comprehensive quality assessment of LOS 

without destroying the vial. In this study, an inflammatory model was constructed by 

lipopolysaccharides (LPS)-stimulated cells to investigate the anti-inflammatory ability of 

LOS. At the same time, HPLC analysis was performed on 101 batches of drugs to analyze 

the concentration of epigoitrin, geniposide, and baicalin in the sample. The NIR spectra of 

the LOS collected with the container and under the traditional state were collected to con-

struct the optimal partial least squares regression (PLSR) models. It was expected that this 

research was the first attempt at a non-invasive rapid detection system for drug activity 

of LOS. 

2. Results 

2.1. Raw Spectra Analysis 

The raw NIR spectra of 101 samples in scanning tubes or commercial vials are shown 

in Figure 1A,B. It was apparent that the raw spectra of samples collected from different 

production batches were overall similar in both states. The obvious bands around 7000 

cm−1 were generated by the first overtone of the O-H stretching vibration of water. Addi-

tionally, its combined absorption band with the second overtone can be observed near 

5100 cm−1. The broad band extending from 8800 cm−1 to 8000 cm−1 was consistent with the 

second overtone region of bonded C-H. The NIR spectra of the empty vials are displayed 

in Figure 1C. The main components of the glass bottles were silica and other inorganic 

substances, so their NIR spectra were gentle lines without obvious absorption bands. The 

spectra of 101 vials fluctuated due to certain differences in quality between vials. It corre-

sponded to the realistic scenario of spectral applications. The purple line in Figure 1D is 

the difference spectrum, calculated by subtracting the spectrum of the corresponding 
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empty vial from the sample spectrum penetrated the vial. Compared with the red line in 

the figure, there was no significant difference between the two. It suggested the feasibility 

of non-invasive models. The directly observable bands in Figure 1 were caused by C, H, 

O elements that were widely present in various substances. It was difficult to directly cor-

relate spectral features with the concerns. Therefore, it was necessary to introduce a 

chemometric method to further mine the information in the spectra to realize the non-

destructive detection of LOS. 

 

(a) (b) 

 
(c) (d) 

Figure 1. The raw NIR absorbance spectra: (a) traditional spectra; (b) spectra that penetrates the vial; 

(c) spectra of the vial; (d) average spectra. 

2.2. Reference Data Analysis 

The production years of the collected samples spanned 3 years, from July 2019 to July 

2021. The anti-inflammatory ability and content distribution of key chemical indicators of 

101 batches of LOS are displayed in Figure 2. The color of the sample gradually changed 

from red to blue as the value decreases, which was shown on the right side of the figure. 

Sample No. 100 and the samples on the left side were 35 batches of samples without pre-

dilution, and the samples to the right of No. 100 were sorted to the right by increasing 

dilution. It can be observed that the reference value of the sample decreased roughly with 

the increase of the dilution factor. The distance correlation analysis was performed be-

tween the inhibition rate of nitric oxide production (ANTI-NO) and key chemical indica-

tors of the 101 samples, and the p values of epigoitrin, geniposide, and baicalin were 

0.8610, 0.901, and 0.912, respectively. The three chemical indicators selected based on the 

experience had significant correlations with the biological activity of the sample. It was 

proved that the selection of chemical detection indicators was reasonable. From the dis-

tribution of the reference values of the first 35 batches of samples, it can be found that 

even without human intervention, the quality of the LOS still fluctuated from batch to 

batch. The concentration of epigoitrin, geniposide, and baicalin in these 35 batches ranged 
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from 0.02546–0.0702 mg/mL, 2.388–7.413 mg/mL, and 0.9230–3.131 mg/mL, respectively. 

In contrast, ANTI-NO fluctuated steadily in the range of 75.55% to 88.97%. The concen-

tration of epigoitrin, geniposide, and baicalin fluctuated within a 3-fold range, while the 

corresponding biological activity was stable in the range of 15%, which revealed that the 

current detection method based only on chemical indicators was not enough to achieve 

the comprehensive quality control of TCM formulations. It was necessary to further intro-

duce the detection of pharmacodynamics indicators on the basis of the existing detection 

methods. However, the detection of anti-inflammatory activity relied on cells and will 

take at least 3 days. Traditional detection methods will greatly increase the burden on 

enterprises. Therefore, it was necessary to establish a system that can complete the rapid 

detection of biological activity and key chemical components simultaneously. 

 

Figure 2. Heat map of 4 chosen targets. 

2.3. Model Construction under Traditional State 

2.3.1. Sample Sets Division 

Each dataset was divided into a calibration set with 67 samples and a prediction set 

with 23 samples by the SPXY algorithm. The reference value ranges for each dataset are 

listed in Table 1. It was worth noting that the mean value of the prediction sets was close 

to the calibration set for each dataset, which proved that the properties of the two datasets 

were similar and the data division was reasonable. At the same time, the ranges of target 

indexes in the prediction sets were covered within that of the calibration sets, which was 

beneficial to NIR models. Sample numbers 3, 6, 22, 32, 34, 35, 40, 55, 91, 92, 99 were ran-

domly selected as the external validation set. Among them, 5 were LOS original samples 

and 6 were artificially diluted samples. It can be observed that the fluctuation range of the 

validation set of ANTI-NO, epigoitrin, and geniposide all exceeded the calibration set, 

which was a challenge to the established PLSR model. 

Table 1. Reference values for 4 indexes in the data sets. 

Data Sets. 
Sample  

Number 

Minimum  

Concentration  

(% or mg/mL) 

Maximum  

Concentration  

(% or mg/mL) 

Mean 

(% or mg/mL) 
Std 

ANTI-NO 

Calibration set 67 33.49 87.12 62.87 0.1626 

Prediction set 23 41.13 86.33 61.93 0.1620 

Validation set 11 44.26 88.97 69.77 0.1644 

Epigoitrin 

Calibration set 67 0.0156 0.0633 0.0354 0.0138 

Prediction set 23 0.0186 0.0626 0.0334 0.0142 

Validation set 11 0.0185 0.0702 0.0471 0.0151 

Geniposide 

Calibration set 67 1.537 7.413 3.609 1.539 

Prediction set 23 1.668 5.840 3.424 1.609 

Validation set 11 1.421 7.032 4.602 1.842 

Baicalin 

Calibration set 67 0.4739 3.131 1.493 0.6037 

Prediction set 23 0.4742 2.323 1.354 0.6001 

Validation set 11 0.5729 2.820 1.746 0.7158 
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2.3.2. Spectral Pretreatment and Variables Selection 

The performances of different spectral pretreatments models for each indicator are 

recorded in Table S2. The optimal pretreatment was chosen according to the model pa-

rameters of the calibration set. The normalization pretreated spectra obtained high corre-

lation coefficients of calibration (Rc)values and low relative standard error of calibration 

(RSEC) values for ANTI-NO and baicalin. For epigoitrin and geniposide, meanwhile, the 

optimal pretreatment was SG smoothing and MSC, respectively. After preprocessing, the 

baseline drift between different samples had been compressed. The Rc values of the pre-

diction models of ANTI-NO, epigoitrin, geniposide, and baicalin increased from 0.9305, 

0.8989, 0.9802, 0.9265 to 0.9491, 0.9119, 0.9803, 0.9203, respectively. The relative standard 

error of prediction (RSEP) values representing the model prediction errors decreased from 

10.6%, 15.1%, 8.8%, and 19.9% to 9.8%, 14.9%, 8.6%, and 18.5%, respectively. The improve-

ments of the performances of the models demonstrated that the noise in the system had 

been removed. 

Synergy interval partial least-squares regression (SIPLS), competitive adaptive re-

weighted sampling (CARS) and random frog (RF) were applied and compared to select 

characteristic information correlated with target indexes. For each indicator, the results 

obtained by different variable screening methods were similar. The optimal screening 

method was also determined based on the model performance parameters. Models con-

structed on subsets of variables filtered by different methods are listed in Table S3. The 

wavenumbers selected by the optimal variable screening method for each indicator are 

shown in Figure 3. 

 

Figure 3. Crucial variables selected of 4 indexes of interest under traditional state. 

After variables selection by RF, the spectra of epigoitrin and ANTI-NO retained 250 

and 290 variables, respectively. It can be observed that although the number of variables 

was compressed to less than 20% of the original spectra, the selected key wavenumber 

points of ANTI-NO were distributed in the full spectra. As explained in the introduction 

part, it was widely accepted that the biological activity of TCM was the result of the syn-

ergistic action of multiple components. Therefore, the key variables corresponding to 

ANTI-NO indicators were relatively scattered, which represented most of the information 

of the spectra can be collected to calculate the anti-inflammatory ability. The C=C infor-

mation contained in the epigoitrin structure was concentrated in the low wavenumber 

region. The related information of the unique S element and N element in its structure 

was concentrated in the spectral information in the high wavenumber region of NIR. As 

for geniposide, the spectra were divided into 18 regions of equal length by SIPLS. A total 

of 345 variables in the 7th, 11th, 12th, and 13th sub-intervals were selected and combined 

as a modelling subset. The chosen range around 6100 cm−1 corresponded to the absorption 
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bands of C-H in C=C in the iridoid structure of geniposide. The continuous absorption 

section from 8242 cm−1 to 7351cm−1 can be attributed to the second overtone region of C-

H. The optimal model for baicalin was obtained by using CARS processed spectra, the 

model of baicalin actually adopted only 47 variables. The variable compression ratio was 

the highest among the four indexes, which was because baicalin contained a characteristic 

benzene ring structure. The selected wavenumbers were concentrated in the region from 

5400 cm−1 to 4000 cm−1, which corresponded to the C-H and C-C stretching vibrations in 

the benzene ring structure. At the same time, the single-strong absorption band at 4065 

cm−1 caused by C-H stretching and bending vibration was also included. The remaining 

key variables were scattered around 7000 cm−1, which can be attributed to the characteris-

tic absorption of multiple phenolic hydroxyl groups in baicalin. 

For the four indicators, the variables screened by the chemometric method were con-

sistent with the characteristics of the indicators. Compared to the number of 1557 variables 

in the original spectra, the number of variables that need to be considered for subsequent 

modelling was compressed to less than 25%. Variable screening greatly reduced the 

amount of computation required for modelling. At the same time, as shown in Table S3, 

the prediction accuracy of the local models constructed by the chosen variable subsets 

were higher than that of the global models. It demonstrated that valid information was 

preserved when redundant variables were removed. 

2.3.3.  The Results of PLSR Models 

The PLSR quantitative models were constructed with the selected variable subsets as 

the input and the reference values measured by traditional methods as the output. The 

measured and predicted values of the calibration set and prediction set samples for each 

indicator are displayed in Figure 4. The prediction set samples were scattered and covered 

within the calibration set samples and the sample points were evenly distributed around 

y = x. 

 

 

(a) (b) 

  

(c) (d) 

Figure 4. The scatter plot of reference measurements and NIR predictions using the optimal tradi-

tional PLSR model: (a) ANTI-NO; (b) epigoitrin; (c) geniposide; (d) baicalin. 
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Besides 36 prediction set samples, the external validation set was applied to verify 

the accuracy of the PLSR models. In addition to the model parameters, the Wilcoxon rank-

sum test was further introduced to test whether there were significant differences between 

the predicted values and the measured values. The results are displayed in Table 2. p-

values of four datasets were above 0.05 and the relative standard error of validation 

(RSEV) values below 20%. It demonstrated that the prediction error value of the model 

met the application requirements, and there was no significant difference between the two 

groups of data. For 11 independent samples, the correlation coefficients of validation (Rv) 

values of ANTI-NO, geniposide and baicalin were all greater than 0.9. However, the Rv 

value of the PLSR model of epigoitrin was 0.7766, which still needed further consideration 

before entering the practical application. Predicting target index at low concentration has 

always been a challenge for NIR applications [19]. 

Table 2. The results of external validation of traditional models. 

Sample 

No. 

ANTI-NO Epigoitrin Geniposide Baicalin 

Reference 

Value 

Predicted 

Value 

Reference 

Value 

Predicted 

Value 

Reference 

Value 

Predicted 

Value 

Reference 

Value 

Predicted 

Value 

1 0.4426 0.4917 0.0425 0.02952 2.396 2.632 0.7825 0.8637 

2 0.8427 0.8541 0.0702 0.07235 5.63 5.692 2.421 2.171 

3 0.6185 0.5988 0.0381 0.02531 4.221 2.897 1.303 1.421 

4 0.5161 0.5743 0.0305 0.02882 2.631 2.094 1.295 1.172 

5 0.6956 0.6698 0.0452 0.03126 4.054 3.738 1.706 1.451 

6 0.4594 0.4362 0.0185 0.01739 1.421 1.239 0.5729 0.6174 

7 0.7785 0.8132 0.0468 0.05402 5.027 5.152 1.608 1.712 

8 0.8735 0.8326 0.0616 0.06644 6.525 6.937 2.82 2.366 

9 0.7952 0.9022 0.0466 0.04715 6.437 6.279 2.413 2.449 

10 0.8897 0.7868 0.0648 0.04770 5.248 4.650 2.014 2.020 

11 0.7633 0.7989 0.053 0.05547 7.032 6.399 2.269 2.652 

Rv 0.9356 0.7766 0.9516 0.9468 

RMSEV 1 0.055 0.009 0.540 0.220 

RSEV 7.7% 18.5% 11.0% 11.7% 

p 0.8955 0.7928 0.7427 1 
1 RMSEV: the root mean square error of validation 

2.4. Model Construction under Non-Destructive Conditions 

2.4.1. Sample Sets Division 

Same as the modeling steps for spectra acquired in the traditional state, the non-in-

vasive model construction started with data sets division by SPXY. The results of the di-

vision of the dataset are shown in Table 3. It can be observed that the division of the four 

datasets all met the requirements of model as the distance between the spectra and the 

reference values were calculated to ensure the rationality of the data division. The external 

validation set consisted of the original 11 samples. Therefore, the concentration ranges of 

the validation sets for the three indexes were still outside the calibration sets. It was in line 

with the situation that may be encountered in the application of the NIR model in Chinese 

medicine formulations. With the change of production batches, there was a possibility that 

the concentration range of the new samples will exceed the original dataset. 
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Table 3. Reference values for 4 indexes in the data sets. 

Data Sets 
Sample  

Number 

Minimum  

Concentration  

(% or mg/mL) 

Maximum  

Concentration  

(% or mg/mL) 

Mean 

(% or mg/mL) 
Std 

ANTI-NO 

Calibration set 67 33.49 87.12 64.38 0.1642 

Prediction set 23 41.76 84.10 57.51 0.1453 

Validation set 11 44.26 88.97 69.77 0.1644 

Epigoitrin 

Calibration set 67 0.0156 0.0633 0.0368 0.0140 

Prediction set 23 0.0167 0.0605 0.0293 0.0119 

Validation set 11 0.0185 0.0702 0.0471 0.0151 

Geniposide 

Calibration set 67 1.537 7.413 3.799 1.537 

Prediction set 23 1.558 5.600 2.871 1.401 

Validation set 11 1.421 7.032 4.602 1.842 

Baicalin 

Calibration set 67 0.4739 3.131 1.462 0.6193 

Prediction set 23 0.7137 2.286 1.443 0.5637 

Validation set 11 0.5729 2.820 1.746 0.7158 

2.4.2. Spectral Pretreatment and Variables Selection 

The model prediction accuracy of PLSR would be affected by the pre-processed 

methods. Model performances of PLSR after different preprocessing are shown in Table 

S4. According to the evaluation parameters of the model, when the preprocessing method 

was MSC, the optimal PLSR models were obtained for ANTI-NO and baicalin. The nor-

malized spectra were optimal for epigoitrin, while the raw spectra without any processing 

achieved the best model performance for geniposide. 

Preprocessed spectra of the calibration set were applied as input for variable screen-

ing to select key spectral data. The results of variable screening of the four indexes are 

shown in Figure 5. The optimal variable selection method for ANTI-NO, epigoitrin, and 

geniposide were all SIPLS with non-invasive spectra as input. As a wavelength interval 

selection, SIPLS retained the continuity of the spectra by regarding the interval as a unit, 

and the continuous arrangement and combination of intervals also made it suitable for 

rapid detection of complex TCM systems. Compared with the traditional model, the ef-

fective variables of ANTI-NO retained 55 more variables. However, different from the 

previous state of being scattered in the whole spectra, the wavenumbers selected by SIPLS 

were more concentrated. The band region spanning 8000 cm−1 corresponds to the second 

overtone region of C-H. C-H was the structural basis of organic compounds, and infor-

mation on various indicators of interest can be obtained by analyzing this segment. The 

selected spectral region below 7000 cm−1 was the first overtone region of hydroxyl. This 

band provided key information for the prediction of anti-inflammatory ability, implying 

that the biological activity of LOS may be based on hydroxyl-rich substances. The key 

variables of epigoitrin were concentrated above 7500 cm−1. It proved that SIPLS further 

screened the information scattered in the full spectrum and finally locked the high wave-

number region related to S and N elements to quantify epigoitrin. For geniposide, the key 

variables dropped from 345 in the traditional model to 208. The added low wavenumber 

region was derived from the C-C vibration. The spectral region originally spanning 8000 

cm−1 was compressed to the right of 8000 cm−1. However, the spectral region of 6000 cm−1 

was retained, which proved that C=C in the iridoid structure had an important indication 

effect the on the construction of the model of geniposide. Without destroying the integrity 

of the vial, the best subset of variables for baicalin was still selected by CARS, and the 

number of variables was compressed to 36. It can be clearly observed from the figure that 

the important wave points of baicalin were consistent with the results in the traditional 

state. Variables associated with benzene rings and hydroxyl groups were retained for the 

modelling step. Comparisons of relevant model parameters are listed in Table S5. 
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Compared with the global models, the complexity of the models constructed by selected 

variables was significantly reduced, and the prediction accuracy was improved. Improve-

ments in model parameters also indicated that the selected key variables were associated 

with the four indicators. 

 

Figure 5. Crucial variables selected of 4 indexes of interest without destroying vial. 

2.4.3.  The Results of PLSR Models 

The PLSR models established by the spectrum penetrating the vial are shown in Fig-

ure 6. From the figure, it can be found that the predicted values of the four models were 

well correlated with the measured values. The sample points were around the line y = x. 

The validation results of the PLSR model for 11 independent samples are listed in Table 

4. The results of the Wilcoxon rank-sum test were satisfactory. It can be observed that the 

Rv values of the four models were all higher than 0.8, while the RSEV values were less 

than 20%. These model parameters demonstrated that the established PLSR model can 

achieve predictions on the validation set samples. The optimal models can be applied to 

predict new samples. 
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(a) (b) 

 

(c) (d) 

Figure 6. Scatter plot of reference measurements and NIR predictions using the optimal non-inva-

sive PLSR model.: (a) ANTI-NO; (b) epigoitrin; (c) geniposide; (d) baicalin. 

Table 4. The results of external validation of traditional models. 

Sample No. 

ANTI-NO Epigoitrin Geniposide Baicalin 

Reference 

Value 

Predicted 

Value 

Reference 

Value 

Predicted 

Value 

Reference 

Value 

Predicted 

Value 

Reference 

Value 

Predicted 

Value 

1 0.4426 0.4728 0.0425 0.02919 2.396 2.056 0.7825 0.979 

2 0.8427 0.9373 0.0702 0.07578 5.63 6.118 2.421 2.518 

3 0.6185 0.6515 0.0381 0.03811 4.221 3.496 1.303 1.700 

4 0.5161 0.5683 0.0305 0.03752 2.631 2.755 1.295 1.557 

5 0.6956 0.6996 0.0452 0.04223 4.054 3.847 1.706 1.796 

6 0.4594 0.4520 0.0185 0.01870 1.421 1.466 0.5729 0.629 

7 0.7785 0.7173 0.0468 0.03451 5.027 5.126 1.608 1.585 

8 0.8735 0.9306 0.0616 0.07149 6.525 6.323 2.82 2.623 

9 0.7952 0.8521 0.0466 0.05203 6.437 5.420 2.413 2.427 

10 0.8897 0.8075 0.0648 0.04884 5.248 4.977 2.014 2.099 

11 0.7633 0.8206 0.053 0.05317 7.032 5.813 2.269 2.286 

Rv 0.9349 0.8069 0.9457 0.9670 

RMSEV 0.056 0.008 0.571 0.174 

RSEV 7.8% 17.3% 11.6% 9.3% 

p 0.6936 0.7928 0.6458 0.6936 
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2.5. Comparison of Two System Models 

The performance of the PLSR model constructed by the spectra collected by the two 

acquisition systems is shown in Table 5. Judging from the performance of the samples in 

the calibration set and prediction set, both models had achieved accurate predictions of 

the samples. The overall performance was satisfactory and met the application require-

ments. It can be found from the table that compared with the traditional model, the Rc 

and Rp values of epigoitrin and baicalin’s non-invasive models were close. The R values 

of ANTI-NO and geniposide increased slightly. The RSEC and RSEP values of the models 

constructed by the spectra penetrating the vial, which represented the errors, were all de-

creased to varying degrees. The residual predictive deviation (RPD) values of the four 

indicators had increased from 3.2, 3.09, 4.95, and 3.92 in the traditional state to 3.49, 3.10, 

5.29, and 4.33, respectively. The improvements of these parameters proved that the pre-

diction error of the model constructed under the non-destructive state was lower than that 

of the model obtained by the standardized special tubes. The state of the target indexes in 

the sample system can be more accurately characterized. The results of external valida-

tion, listed in Tables 2 and 4, demonstrated that the prediction accuracy of the non-inva-

sive model for independent samples was as satisfactory as the tedious standardized 

sweep process that requires breaking the vial and pipetting the sample liquid. Even for 

epigoitrin with low concentration, the Rv value of the optimal model improved from 

0.7766 to 0.8069. 

Table 5. The optimal PLSR model of 4 indicators. 

Analytes M. T. 1 P. M. 2 V. S. M. 3 V. N. 4 LVs 5 Rc RMSEC 6 RSEC Rp 7 RMSEP 8 RSEP RPD 

ANTI-NO 
T 9 Normalization RF 290 9 0.9526 0.049 7.6% 0.9296 0.058 9.1% 3.20 

N 10 MSC SIPLS 345 11 0.9658 0.042 6.4% 0.9524 0.043 7.3% 3.49 

Epigoitrin 
T 9 SG smoothing RF 250 8 0.9434 0.005 12.0% 0.9439 0.005 12.7% 3.09 

N10 Normalization SIPLS 388 11 0.9409 0.005 12.0% 0.9437 0.004 12.2% 3.10 

Geniposide 
T9 MSC SIPLS 345 13 0.9820 0.289 7.4% 0.9791 0.320 8.5% 4.95 

N10 Raw SIPLS 208 8 0.9885 0.231 5.6% 0.9814 0.263 8.3% 5.29 

Baicalin 
T9 Normalization CARS 47 10 0.9680 0.150 9.4% 0.9669 0.150 10.1% 3.92 

N10 MSC CARS 36 7 0.9735 0.141 8.9% 0.9652 0.144  9.3% 4.3 
1 M.T.: model type. 2 P.M.: pretreatment methods. 3 V. S. M.: variables selection methods. 4 V. N.: 

variable numbers. 5 LVs: latent variables. 6 RMSEC: root mean square error of calibration. 7 Rp: 

correlation coefficients of prediction. 8 RMSEP: the root mean square error of prediction. 9 T.: tradi-

tional model. 10 N.: non-invasive model. 

From the model optimization process shown in the supplementary material, it can be 

found that for both systems, the optimization effect of the model parameters introduced 

by the spectral preprocessing was far less obvious than that of the variable screening pro-

cess. Therefore, it was speculated that the advantage of the non-invasive models com-

pared with the models in the standard state mainly came from the wavenumber select 

process. From the comparison between Figures 3 and 5, it can be observed that the key 

variables in the non-invasive state had been further compressed or concentrated. As 

shown in Figure 1C, there were quality fluctuations among different batches of bottles, 

whereby spectral information irrelevant to the target indexes was introduced into the non-

invasive system. Under the perturbation of the disturbance information from the vials, 

more irrelevant variables were effectively identified and eliminated. Therefore, the input 

applied by the PLSR model had stronger correlations with the target indicators, which 

was beneficial to the accuracy of the prediction. 
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3. Materials and Methods 

3.1. Cell and Reagents 

LOS samples of 101 production batches were provided by Yangtze River Pharmaceu-

tical Group (Taizhou, China). The relationship between the production batch number and 

self-numbering of the sample is shown in Table S1. 

Standards of epigoitrin (purity > 99.0%, catalog no: A0529), geniposide (purity > 

99.0%, catalog no: A0178) and baicalin (purity > 98.0%, catalog no: A0016) were purchased 

from Chengdu Must Bio-Technology Co., Ltd. (Chengdu, China). HPLC-grade methanol, 

acetonitrile and phosphoric acid were obtained from Merck (Darmstadt, Germany). De-

ionized water was purified by a Milli-Q purification system (Millipore, Bedford, MA, 

USA). 

The murine macrophage RAW 264.7 cell line and ZQ-120 Dulbecco’s modified Eagle 

medium (DMEM) were purchased from Shanghai Zhong Qiao Xin Zhou Biotechnology 

Co., Ltd. (Shanghai, China). NO assay kits (S0021) were provided by Beyotime (Nanjing, 

China). The phosphate-buffered solution was obtained from Labgic Technology Co., Ltd. 

(Hefei, China). LPS was purchased from Sigma-Aldrich, Inc. (St. Louis, MO, USA). 

3.2. Sample Preparing 

The 35 batches of samples were directly subjected to subsequent spectrum acquisi-

tion and reference value acquisition operations without any preparation. The remaining 

65 batches of samples were diluted with purified water to extend the range of concerns in 

the products. The specific dilution schedule is explained in Table S1. 

3.3. Spectra Acquisition 

NIR spectra of prepared samples were collected in a range of 10,000–4000 cm−1 by an 

ANTARIS II (Thermo Scientific, Waltham, MA, USA) in absorbance mode at room tem-

perature. Each spectrum was the average of 32 scans and the average spectrum of 3 times 

measurements was adopted. All the samples were obtained with air as references and the 

resolution was set as 8 cm−1. 

For non-invasive NIR spectra, brown glass vials containing LOS samples were placed 

directly into the sampling module of the spectrometer. Therefore, the optical path was the 

diameter of a glass vial, about 12 mm. Spectra collection was also performed in the same 

state for the empty bottles without liquid. For standardized spectra, the unsealed drug 

was transferred into a dedicated scanning tube configured with the instrument. The opti-

cal path length of the standardized spectra was 4 mm. 

3.4. Pharmacodynamics Experiment 

3.4.1. Cell Culture 

The RAW 264.7 cells were cultured with ZQ-120 DMEM in Forma 3111 CO2 Incubator 

(Thermo Scientific, Waltham, MA, USA). Cells were maintained at 37 °C under a 5% CO2 

atmosphere and relative humidity was controlled at 90%. 

3.4.2. Anti-Inflammatory Ability Assay 

RAW 264.7 were seeded in 96-well plates (6 × 104 mL−1) and cultured at the CO2 Incu-

bator. Drug group wells were incubated with different batches of LOS (dilute with me-

dium to 1/100 after spectrum acquisition) and 10 μg mL−1 LPS after culturing cells for 24 

h. At the same time, 100 μL DMEM medium and 10 μg mL−1 LPS were added to the control 

group and model group wells, respectively. Set up five repetitions per set. The culture 

medium was collected after 48 h incubation for the NO kits detection. 

NO kits worked according to the Griess method. Add equal amounts of Griess Rea-

gent I and Griess Reagent II to the obtained culture medium in turn. Then, the absorbance 

at 450 nm of the sample obtained by the Spark microplate reader (TECAN) was calculated 
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with a standard calibration curve to confirm the concentration of NO in the sample. The 

ANTI-NO was calculated by the following formula: 

ANTI-NO = (Cm − Cd)/(Cm − Cc) × 100%, (1)

where Cm, Cd, Cc represented the average concentrations of NO in the model group, drug 

group, and control group samples, respectively. 

3.5. HPLC Analysis 

The samples were diluted 25 times by 40% methanol (v/v) and then filtrated through 

0.22 μm filter membrane. Standards were dissolved by 40% methanol (v/v) to the concen-

trations of the standard calibration curves in Figure S1. 

High-performance liquid chromatograph Agilent 1290 (including quaternary pump, 

online degassing device, automatic sampler, column temperature controller, DAD detec-

tor, and Chem Station) was applied to determine the contents of epigoitrin, geniposide 

and baicalin. A Luna®® C18 column (250 mm × 4.6 mm, 5 μm) was employed. The mobile 

phase consisted of acetonitrile (A) and 0.1% phosphoric acid aqueous solution (B) with 

gradient elution: 0~12 min, 5–11% B; 12~24 min, 11% B; 24~38 min, 11–20% B; 38~62 min, 

20% B; 62~70 min, 20–32% B; 70–75 min, 32–80% B; 75–85 min, 80–100% B [20]. The flow 

rate was set as 1 mL/min, the injection volume was set as 10 μL, and the wavelength was 

set at 245 nm. Chromatograms are shown in Figure 7. 

 

Figure 7. HPLC chromatograms of (A) standard solution (1. epigoitrin, 2. geniposide, 3. baicalin) 

and (B) LOS sample. 

3.6. Chemometrics Methods 

3.6.1. Division of Samples 

First, 10% of samples (11 batches) were randomly selected to form an external vali-

dation set, which was applied to certify the reliability of the established models. The val-

idation set did not participate in the modelling step, it was only used to verify the accuracy 

of the quantitative models. In order to ensure maximum representation of sample distri-

bution, the remaining 90 samples were divided into the calibration set and the prediction 

set by the sample set partitioning based on joint x–y distance (SPXY) algorithm in a ratio 

of 3:1. The distance between samples was calculated simultaneously using x and y varia-

bles by the SPXY algorithm to guarantee the representativeness of the calibration set [21]. 
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3.6.2. Spectral Pretreatment 

Due to the unavoidable changes in the external environment and sample state, re-

dundant noise information existed in NIR spectra. Spectral pretreatment can help mitigate 

the effects of non-target factors [22]. In this study, four spectral preprocessing methods, 

namely normalization, standard normal variate (SNV) transformation, Savitzky–Golay 

(SG) smoothing and multiplicative scatter correction (MSC) were employed and com-

pared to optimize the model. 

3.6.3. Variable Selection Methods 

The advantage of information richness of NIR is detrimental to information analysis 

when the indicators of interest have been specified. An effective variable selection method 

can eliminate variables irrelevant to the target index while retaining valid information, 

thereby reducing the difficulty of modeling and improving the accuracy of the model. The 

following 3 variable selection methods were applied to determine the optimal subset of 

variables for each index. 

SIPLS selected the subintervals of spectra corresponding to the minimum root mean 

square error of cross-validation (RMSECV) value of local model by dividing and permut-

ing spectral regions [23]. SIPLS followed the principle that NIR spectra had continuous 

features of bands, while wavenumber point selection efficiently screened key variables 

based on mathematical principles [24]. CARS simulated the principle of survival of the 

fittest in Darwin’s evolution theory. In this process, Monte Carlo sampling was used to 

construct the local model. The wavenumbers with small absolute values of regression co-

efficients in the model were continuously eliminated, and finally, the optimal subset of 

variables was selected according to the RMSECV value [25]. RF calculates the importance 

of each variable by the probability that each variable is selected in the model space [26]. 

3.6.4. PLSR 

PLSR is the most extensive quantitative regression method of NIRs rapid detection 

system [27]. The performance of the model was affected by the setting of the number of 

LVs. In this study, LVs was determined according to RMSECV by leave-one-out cross-

validation. 

3.6.5 . Evaluation Criteria of Models 

Performance of constructed PLSR model was evaluated by 8 indexes, namely: Rc, Rp, 

RSEC, RSEP, RMSEC, RMSEP, RPD and RMSECV. The results of the external test are 

mainly judged by correlation coefficients of Rv, RSEV, and RMSEV. At the same time, the 

Wilcoxon rank-sum test was introduced to further compare the reference value and the 

model prediction value of the validation set samples to prove the prediction accuracy of 

the obtained model. 

In general, the value of correlation coefficients should be close to 1. The relative 

standard error values of the 3 sample sets were expected to be small and close to each 

other. Moreover, the RPD value greater than 3 was the requirement of the optimal model 

[28]. 

3.7. Software 

For NIRs data acquisition, TQ Analyst 8.0 were applied. The data processing and 

graphic drawing were performed by MATLAB software (version 2018b, Mathworks, Na-

tick, USA). 
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4. Conclusions 

In this study, high-performance and non-invasive quantitative models of anti-inflam-

matory bioactivity and three key chemical indicators including epigoitrin, geniposide, 

and baicalin were developed based on NIRs and chemometrics methods. The Rc values 

of the non-destructive system were greater than 0.94 and the RSEC values were lower 

than 15% for four indexes. Compared with the standard system, the constructed model 

through vials achieved higher prediction accuracy. The obtained models can be applied 

to the quality detection of LOS products instead of traditional analytical methods to im-

prove production efficiency. This study was the first to verify the anti-inflammatory abil-

ity of LOS at the cellular level and realized its non-destructive and rapid detection. Due 

to the complexity of the efficacy of TCM, it was difficult to comprehensively characterize 

the quality of drugs by purely chemical indicators. Therefore, the introduction of anti-

inflammatory indicators as testing objects can improve the understanding of the quality 

of TCM formulations. The multi-indicator advantage of the NIRs can realize the compre-

hensive detection of TCM, and its fast and non-destructive characteristics provide feasi-

bility for high-throughput analysis. The NIR non-destructive detection system was con-

ducive to controlling the quality of LOS formulations, ensuring the effectiveness and 

safety of drugs, and can provide a reference for the quality control of other TCM formu-

lations. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/molecules27092955/s1, Table S1: Sample production batches 

and dilution arrangements; Table S2: Performance of different spectral pretreatments models for 4 

indexes under standard conditions; Table S3 Performance of different variable selection models for 

4 indexes under standard conditions; Table S4: Performance of different spectral pretreatments 

models for 4 indexes under non-destructive conditions.; Table S5: Performance of different variable 

selection models for 4 indexes under non-destructive conditions. 
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