
Citation: Ning, K.; Sun, Y.; Liu, J.; Fu,

Y.; Ye, K.; Liang, J.; Wu, Y. Research

Update of Emergent Sulfur Quantum

Dots in Synthesis and

Sensing/Bioimaging Applications.

Molecules 2022, 27, 2822.

https://doi.org/10.3390/

molecules27092822

Academic Editor:

Takahiro Kusukawa

Received: 13 March 2022

Accepted: 15 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Research Update of Emergent Sulfur Quantum Dots in
Synthesis and Sensing/Bioimaging Applications
Keke Ning, Yujie Sun, Jiaxin Liu, Yao Fu, Kang Ye, Jiangong Liang * and Yuan Wu *

College of Science, Huazhong Agricultural University, Wuhan 430070, China; queenkerrning@outlook.com (K.N.);
syj01234560123@163.com (Y.S.); ljx1280270429@163.com (J.L.); fy1875241435@163.com (Y.F.);
yekang0322@outlook.com (K.Y.)
* Correspondence: liangjg@mail.hzau.edu.cn (J.L.); yuanwu@mail.hzau.edu.cn (Y.W.)

Abstract: Due to their unique optical property, low toxicity, high hydrophilicity, and low cost, sulfur
quantum dots (SQDs), an emerging luminescent nanomaterial, have shown great potential in various
application fields, such as sensing, bioimaging, light emitting diode, catalysis, and anti-bacteria. This
minireview updates the synthetic methods and sensing/bioimaging applications of SQDs in the
last few years, followed by discussion of the potential challenges and prospects in their synthesis
and sensing/bioimaging applications, with the purpose to provide some useful information for
researchers in this field.
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1. Introduction

In the past few years, semiconductor quantum dots (QDs), fluorescent nanocrystals
with a size smaller than the exciton Bohr radius [1], have attracted wide interest from
researchers of different fields, due to their excellent physical and chemical properties, such
as high quantum yields (QY), high photostability, ultra-bright photoluminescence (PL),
and tunability of emission wavelengths, making them particularly suitable for biological
applications and imaging [2]. However, traditional QDs are usually composed of toxic
heavy metal elements, such as cadmium (Cd) [3], lead (Pb) [4], and mercury (Hg) [5], which
are shown to be seriously harmful to the environment and biological systems even at a low
concentration [6]. Therefore, researchers have made persistent efforts in the past decade
to explore heavy metal-free QDs with satisfactory biocompatibility, low or non-toxicity,
and chemical inertness, such as carbon quantum dots (CDs) [7], graphene quantum dots
(GQDs) [8], silicon quantum dots (SiQDs) [9], silver quantum dots (AgQDs) [10], and
phosphorene quantum dots (PQDs) [11].

Elemental sulfur, one of the most abundant and extensively used substances on
earth [12], used to be mainly extracted from deposits in volcanic rocks by chemical processes,
such as smelting and refining a century ago [13]. In modern times, the global sulfur is mainly
produced from crude oil refining process. The huge demand for sulfur in various fields,
such as sulfuric acid production, medicine, rubber production, lithium–sulfur batteries, and
agriculture [14–17]. Apart from meeting the huge demand for sulfur in various industries,
a large amount of sulfur has not been fully utilized, resulting in a huge waste of sulfur
resources. Considering the flammable and explosive characteristics of sulfur, it is urgent to
increase the exploitation/development and utilization of residual elemental sulfur.

With the rapid development of modern nanotechnology, various types of sulfur nano-
materials have been developed, including sulfur nanoparticles (SNPs) [18], sulfur quantum
dots (SQDs) [19], and other core/shell, porous, hybrid, and assembly nanostructures [20–24].
Since their first report in 2014 [19], SQDs have attracted much interest as emerging and
active metal-free elemental QDs, due to their special properties different from bulk sulfur,
such as facile synthesis, low toxicity, and good optical properties. Despite their research
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in the initial stage, SQDs have been applied in various fields, such as sensing [25], imag-
ing [26], photocatalysis [24], fabricating light emitting device [27], anti-bacteria [28], and
so on [29].

In this minireview, we summarize the synthetic methods of SQDs from the perspective
of precursors, solvent, ligand, temperature, reaction time, QY, emission wavelength, and
reaction yield (Table 1) as well as their applications in sensing and imaging, whereas sensing
including fluorescence sensing, colorimetric sensing, ratiometric sensing, electrochemical
sensing, and electrochemiluminescence (ECL) sensing (Scheme 1). Additionally, we discuss
the challenges and prospects of SQDs in synthesis and sensing/bioimaging applications.
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Table 1. Different synthetic methods of SQDs concerning precursor, solvent, ligand, temperature, reaction time, QY (quantum yield), emission wavelength, and
application.

Method Precursor Solvent Ligand Temperature Reaction Time QY Emission
Wavelength Application Ref.

Acid etching
oxidation

CdS or ZnS QDs,
HNO3aqueous

solution
n-hexane, H2O Not mention RT 36 h 0.549% 428 nm Quenching by Fe3+ [19]

Assembly-
fission

Sublimed sulfur,
NaOH H2O PEG-400 70 ◦C 125 h 3.8% 529−488 nm ECL inannihilation

reaction, CL from oxidation [30]

Surface etching Sulfur powder,
NaOH, H2O2

H2O PEG 70 ◦C 5 h 23% 440–500 nm LEDs [27]

Surface etching Sulfur powder,
NaOH, Cu2+ H2O PEG-400 70 ◦C 72 h 32.8% 425–525 nm No [31]

Surface etching Sulfur powder,
NaOH, H2O2

H2O PSS 70 ◦C 12 h 5.13% 420 nm Anti-bacteria [28]

Oxygen
accelerated

Sublimed sulfur,
NaOH, pure O2

H2O PEG-400 90 ◦C 10 h 21.5% 490 nm Cellular imaging [32]

Oxygen
accelerated

Sublimed sulfur,
NaOH, N2 or air H2O PEG-400 70 ◦C 72 h 8% 425–500 nm No [33]

Oxygen
accelerated

Sublimed sulfur,
NaOH, pure O2

H2O CMC 90 ◦C 24 h 7.1% 434 nm Detection of Cr6+ and AA,
cell imaging

[34]

Oxygen
accelerated

Sublimed sulfur,
NaOH, pure O2

H2O HP-β-CD 85 ◦C 12 h 4.66% 443 nm Detection of TTZ, cell
imaging [35]

Oxygen
accelerated

Sublimed sulfur,
NaOH, pure O2

H2O PVA 75 ◦C 12 h 4.62% 443 nm
Quenching by Fe3+,

Nanothermometer to
monitor cell temperature

[36]

Ultrasonication
and microwave

Sublimated sulfur,
Na2S H2O PEG-400 RT, ultrasonication 12 h 2.1% 515–562 nm Cellular imaging [37]

Ultrasonication
and microwave

Sulfur powder,
NaOH, H2O2

H2O PEG-400 70, 80, 90 and 95 ◦C
via microwave, 70 ◦C

5 min for
microwave, 40 h 49.25% 445–506 nm No [38]

Ultrasonication
and microwave

Sublimed sulfur,
NaOH, H2O2

H2O PEG-400 70 ◦C, ultrasound-
microwave 2 h 58.6% 440 nm Ce4+ and AA detection [39]
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Table 1. Cont.

Method Precursor Solvent Ligand Temperature Reaction Time QY Emission
Wavelength Application Ref.

One-step
hydrothermal

Sulfur (monoclinic
phase), NaOH H2O PEG 170 ◦C 4 h 4.02% 554 nm No [40]

One-step
hydrothermal

Sublimed sulfur,
H2O2

H2O PEG-400 220 ◦C 42 h 10.3% 365 nm Fe3+ detection, cellular
imaging

[41]

Situ reaction
Sodium

thiosulfate, oxalic
acid, NaOH

H2O PEG-400 70 ◦C 6 h 2.5% 462 nm Colorimetric discrimination
of multiple metal ions [42]

Mechanochemical
Sodium

thiosulfate, oxalic
acid, NaOH

H2O PEG-400 RT 1 h 4.8% 461 nm Cellular imaging [26]

Note: PEG: -, no ligand; polyethylene glycol; PSS: poly (sodium-p-styrenesulfonate); CMC: carboxymethyl cellulose, HP-β-CD: 2-Hydroxypropyl-β-cyclodextrin; PVA: polyvinyl alcohol;
ECL: electrochemiluminescence; CL: chemiluminescence; LEDs: light-emitting diodes; AA: ascorbic acid; TTZ: tartrazine.
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2. Synthetic Methods of SQDs

Currently, the synthetic methods of SQDs mainly include two strategies: (i) acid
etching oxidation of metal sulfide QDs, such as CdS and ZnS QDs, and (ii) the top-
down method using elemental sulfur to synthesize SQDs, mainly including the assembly-
fission method, surface-etching method, ultrasonication and microwave method, oxygen-
accelerated method, one-step hydrothermal method, and so on.

2.1. Acid Etching Oxidation Method

In 2014, Li et al. first reported the acid etching oxidation method of using CdS and
ZnS QDs as precursors to prepare luminescent SQDs with an average size of 1.6 nm as
well as 428 nm of emission under 352 nm excitation light [19]. As shown in Figure 1,
this method mainly included the steps of physical contact, oil–water phase interfacial
reaction, in situ precipitation and dissolution, especially the addition of HNO3, enabling
the S2− present in CdS QDs (2.9 nm of size) to be slowly oxidized to element sulfur,
etching and dissolving Cd2+ in the solution to obtain SQDs. The obtained SQDs possess
the advantages of high hydrophilicity, abundant surface functional groups, excitation-
dependent photoluminescence, high photostability, and low toxicity. However, they also
suffer from the drawbacks of low QY (0.549% relative to quinine sulfate), long reaction
time (36 h from synthesis of CdS QDs to obtain SQDs), complex operation, harsh reaction
conditions, and high cost; thus seriously limiting the large-scale preparation of SQDs and
their wide applications. These drawbacks motivated researchers to further develop facile
and low-cost methods for large-scale synthesis of SQDs.
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Figure 1. Schematic illustration of the synthesis of SQDs from CdS QDs. Adapted from ref. [19]
Copyright 2014 Wiley.

2.2. Assembly-Fission Method

In 2018, four years after the first report of SQDs, Shen’s group reported the synthesis
of luminescent SQDs with the assembly-fission method, using sublimated sulfur powders
as precursors and polyethylene glycol-400 (PEG-400) as the stabilizer under an alkaline
condition. The whole process was divided into the three steps of dissolution, assembly, and
fission (Figure 2A) [30]. As shown in Figure 2B, the sulfur powders are firstly dissolved
in alkaline solution (NaOH) by inches to generate sodium sulfide (Na2S), followed by the
reaction between Na2S and sulfur powders to produce sodium polysulfide. During the
first 30 h of reaction, bulk sulfur is split into small particles, and PEG-400 is physically
adsorbed on the surface of the sulfur powder, where the formed small particles can prevent
the subsequent assembly process. With the extension of reaction time, the assembling effect
competes with the fission effect, with the reaction being dominated by the assembling effect
between 54 and 72 h and the fission effect between 72 and 125 h. After 125 h of reaction, the
obtained SQDs are excitation-dependent, emitting green or blue light by adjusting reaction
time, with QY enhanced to 3.8%.
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Figure 2. Schematic illustration of the basic process (A) and the detailed process (B) of SQDs
formation. Adapted from ref. [30] Copyright 2018 American Chemical Society.

2.3. Surface-Etching Method

Although Shen’s work (assembly-fission method) could improve QY, it is far from
sufficient for fluorescent nanomaterials. In 2019, Wang reported an H2O2-assisted top-down
approach to synthesize SQDs with a QY of 23.0% and the emission wavelength tunable from
440 to 500 nm [27]. The bulk sulfur powders are dissolved into small particles under an
alkaline condition in the presence of PEG, followed by introducing H2O2 to etch the surface
polysulfide species and transform the larger sulfur dots into smaller, size-controllable SQDs.
Furthermore, researchers developed a type of negatively charged SQDs with QY of 5.1% by
using poly (sodium 4-styrenesulfonate) (PSS) [28] as a capping agent instead of PEG-400
based on the H2O2-assisted surface-etching method (Figure 3). The surface-etching method
has already become the most widespread and popular method for synthesis of SQDs.
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Surface modification based on ligand exchange reaction has been shown to be effective
in enhancing the QY of various nanocrystalline systems. Inspired by the H2O2-assisted
surface-etching method, Li et al. [31] developed a facile method for the post-synthesis of
SQDs, where Cu2+ was used as a precipitator to modify the prepared SQDs via a simple sur-
face modification process. This post-synthesis Cu2+-assisted precipitation-etching method
could obtain SQDs with a QY of 32.8%, but the biological application of these Cu-SQDs is
restricted due to the potential toxicity of Cu2+.

2.4. Oxygen-Accelerated Method

In 2019, Song et al. [32] reported a simple, fast, and efficient approach for large-scale
synthesis of highly fluorescent SQDs from inexpensive elemental sulfur powder through
oxidation of divalent polysulfide (Sx

2−) ions to zero-valent sulfur under a pure oxygen (O2)
condition. In their study, they found that O2 could accelerate the synthesis of SQDs by using
sublimated sulfur, NaOH, and PEG-400 as experimental reagents under an O2 atmosphere
(Figure 4a). The SQDs synthesized by this approach possess high fluorescence QY (21.5%),
tunable emission, high stability against pH and ionic strength change, low toxicity, superior
dispersibility, and long-term storage. Moreover, the content of S element in the SQDs
reached 5.08%, much higher than that of previously reported methods (generally <1%).
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However, the mechanisms of oxygen accelerated formation and photoluminescence of
SQDs remain concealed to be fully elucidated. In 2021, Liu et al. [33] explored the mech-
anisms by O2 bubbling-assisted synthesis and spectroscopic analysis of SQDs produced
from sulfur ions, which were formed from bulk sulfur with the passivation of PEG-400
under an alkaline condition (Figure 4b). The bubbled O2 is essential to the sulfur core and
etching of its surface species. Experimental results demonstrated that the elemental sulfur
core and the amount of surface divalent sulfur ions of SQDs dominate the emission color.
Moreover, the emission color also depends on the size of SQDs. The luminescent intensity
of SQDs is strongly affected by the surface divalent sulfur ions due to their quenching effect,
which can be optimized by surface O2-oxidation to enhance the luminescent intensity. Liu’s
work explained the function of O2 in the formation and luminescence intensity of SQDs,
providing a guide for synthesis of strong luminescent SQDs.

Carboxymethyl cellulose (CMC) has been widely used to synthesize highly stable
nanoparticles due to its advantages of excellent water solubility, abundant functional
groups (such as -OH and -COOH groups), high biocompatibility, and low cost [43,44], sug-
gesting it is more suitable than PEG for stabilizing SQDs. In 2020, Duan et al. [34] utilized
CMC instead of PEG to synthesize SQDs using the oxygen-accelerated method. Specifically,
fluorescent SQDs were obtained by stirring CMC, sublimed sulfur, and NaOH at 95 ◦C for
24 h under an O2 condition. The obtained fluorescent CMC-SQDs exhibited QY of 7.1%,
high aqueous dispersibility and stability, tunable emission, and strong biocompatibility, con-
ferring them the potential as a fluorescent probe. Similarly, hydroxypropyl-β-cyclodextrin
(HP-β-CD) [35] and polyvinyl alcohol (PVA) [36] were also employed as ligands instead of
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PEG for synthesizing fluorescent SQDs with the oxygen-accelerated method. The obtained
fluorescent SQDs showed high aqueous dispersibility, stable and tunable emission, and
satisfactory biocompatibility.

2.5. Ultrasonication and Microwave Method

Despite the aforementioned progress in improving QY and the applications of SQDs,
their sufficient applications are still limited due to lack of efficient and fast synthetic
methods, requiring a long synthesis time of 125 h as reported by Shen et al. [30]. In 2019,
Zhang et al. [37] proposed an ultrasonication-assisted method to promote the chemical
etching of bulk sulfur into smaller particles through the reaction among sublimed sulfur
powder, PEG-400, and sodium sulfide under sonication as shown in Figure 5. The reaction
time was greatly shortened to less than 5 h, and the prepared fluorescent SQDs achieved
QY of 2.1% with monodispersity, water solubility, and low cytotoxicity, paving the way for
further reducing synthesis time to obtain highly fluorescent SQDs with wider applications.
However, the QY of 2.1% for SQDs is far below the requirement of practical applications.
In 2020, Hu’s group [38] developed the one-pot microwave-assisted strategy to synthesize
luminescent SQDs with QY of 49.25% by using bulk sulfur powder and PEG-400 as reagents
under an alkaline (NaOH) environment. Under microwave irradiation (5 min), rapid and
uniform heat can be produced at a certain temperature; thus increasing the nucleation
rate and adsorbing more sulfite groups, resulting in a relatively high QY after 40 h of
treatment. The above analysis indicated that ultrasonication can efficiently shorten the
synthesis time of SQDs, and their QY can be highly improved by microwave irradiation.
In 2021, Sheng and co-workers [39] combined these two methods and proposed a one-pot
synthesis of size-focusing fluorescent SQDs through ultrasound–microwave radiation,
shortening the synthetic time to 2 h and achieving a record high QY of 58.6% and highly
stable emission wavelength. Mechanistic studies indicate that the ultrasound–microwave
heating procedure can provide an ultrafast heating rate, facilitating the rapid synthesis of
SQDs by accelerating the etching process during the formation of size-focusing SQDs. The
obtained SQDs possess a stable and single emission wavelength, with high QY and strong
emission intensity.
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2.6. One-Step Hydrothermal Method

The hydrothermal method has been widely used to synthesize various functional
nanoparticles [45] due to its advantages of easy operation and low cost. In 2019, Xiao et al. [40]
developed a strategy of hydrothermal reaction to synthesize SQDs, which could shorten
the reaction time to 4 h by mixing bulk sulfur powder, PEG-400, and NaOH solution in
a Teflon-lined autoclave chamber at 170 ◦C. The prepared fluorescent SQDs exhibited a
QY of 4.02% without post-treatment. The fission-aggregation mechanism was proposed
for the reaction dynamics during the formation of SQDs. Despite an obvious reduction in
reaction time, this hydrothermal approach had a low QY. In 2021, Wang and co-workers [44]
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prepared for the first time the uniform and small-sized luminescent SQDs with QY of 10.3%
through a one-pot solvothermal method. During synthesis, sublimated sulfur powder
and PEG-400 were treated together in the presence of H2O2 at an elevated temperature
(220 ◦C), where H2O2 acts as a dual-functional reagent, suspending the sulfur powder and
etching bulk sulfur to construct uniform SQDs, while the elevated temperature (220 ◦C)
promoted the formation of molten sulfur from sulfur powder as solvent, enhancing the
reaction efficiency and production yield of SQDs. The as-prepared SQDs possess strong
photoluminescence properties, excellent dispersibility, and high photostability.

2.7. Other Methods

Except for the synthesis of SQDs using the acid etching oxidation method (CdS QDs
as precursor) in the first report by Li et al. [19], all the other methods were based on the
top-down strategy, using bulk sulfur as the precursor. However, most of these methods
require a long reaction time to synthesize fluorescent SQDs by etching bulk sulfur into
small particles. In order to further the previous efforts, in 2020, Arshad et al. [42] reported
the production of SQDs by using sodium thiosulfate (sulfur in S2+ state) as the precursor to
form elemental sulfur in an in situ reaction with oxalic acid (Figure 6), followed by etching
the as-formed elemental sulfur by NaOH under the passivation of PEG-400 to produce
fluorescent SQDs. The obtained SQDs exhibited QY of 2.5%, excellent dispersibility, and
high photostability.
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The synthetic methods of SQDs are still under study and their further development is
essential for the effective synthesis and sufficient applications of SQDs. Arshad’s group [26]
undertook continuous research efforts on the synthesis of fluorescent SQDs within a shorter
time. In 2021, for the first time, they developed the mechanochemical approach to syn-
thesize SQDs through a short-chain polymerization of sulfur by using sodium thiosulfate
as precursor, and the SQDs exhibited QY of 4.8%, low toxicity, high hydrophilicity, and
superior photophysical properties.

3. Applications
3.1. Sensing

Despite their short research history, SQDs have been widely applied in sensing as
mentioned in a few reviews [46–48]. Herein, we supplement the related achievements in
the sensing application of SQDs in the past two years.

3.1.1. Fluorescence Sensing

Since the first report of fluorescent SQDs in 2014 [19], with the continuous exploration
of their synthetic methods, SQDs have been demonstrated to possess the advantages of
excellent photoluminescence property, high QY, and excitation-dependent tunable emission.
Moreover, similar to conventional semiconductor QDs, SQDs exhibited size-dependent
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photoluminescence emission [42,49]. These advantages resulted in the wide use of SQDs to
develop fluorescent probes since the pioneering SQDs-based detection of Fe3+ [19].

Among the reported SQDs-based fluorescent sensors, some works are based on target
regulation of the photoluminescence properties of SQDs, such as the aggregation-caused
quenching of SQDs to detect Co2+ [50]. After adding norfloxacin, the fluorescence intensity
of SQDs recovered, achieving a new detection strategy of norfloxacin. In 2020, Zhao
et al. reported a turn on-off fluorometric assay for clioquinol (CQ) detection by using the
Zn2+-CQ affinity pair to modulate fluorescence of SQDs [51]. In this work, Zn2+ acted
as a fluorescence regulatory “bridge” to enhance the fluorescence of SQDs under a weak
alkaline condition, and in the presence of CQ, the SQDs-Zn2+ fluorescence intensity was
quenched, which increased the linear analytical range by two orders of magnitude and
improved the selectivity of this method.

In recent years, a large number of fluorescent sensors have been designed based on
the inner filter effect (IFE) mechanism [52]. In 2020, Li et al. [53] achieved ultrasensitive
detection of butyrylcholinesterase (BChE) activity via the MnO2 nanosheet on SQDs based
on IFE, where MnO2 nanosheet can effectively quench the fluorescence of SQDs, and
BChE can catalyze its substrate to produce thiocholine; thus effectively converting MnO2
nanosheet into Mn2+, eliminating the IFE of MnO2 nanosheet on SQDs and restoring
their fluorescence. The detection limit of this sensor is 0.035 U/L, with a two-stage linear
relationship from 0.05 to 10 and from 10 to 500 U/L. In 2021, Tan et al. [54] reported
that the fluorescence of SQDs could be quenched by Cr (VI) based on IFE due to the
partial overlap of the excitation spectrum of SQDs and the absorption spectrum of Cr
(VI). After introducing ascorbic acid (AA) into the SQDs-Cr (VI) system, the fluorescence
intensity of SQDs could be recovered because of the reduction of Cr (VI) to Cr (III) by AA,
achieving highly sensitive detection of Cr (VI) and AA, with detection limits of 0.36 and
1.21 µM, respectively. In the same year, Xia et al. [55] expanded the SQDs-based “on-off-on”
fluorescent platform for detection of Cr (VI) and AA in real environmental and human
samples, as well as Hela cells and zebrafish embryos/larvae (Figure 7). P-nitrophenol
(p-NP) residues in soil and water environment are highly stable and toxic, resulting in
serious damage to the ecosystem. In 2021, Peng et al. [56] realized the detection of p-
NP in water samples based on the IFE between p-NP and SQDs, leading to the effective
fluorescence quenching of SQDs. Additionally, Lu et al. [57] developed a novel fluorescent
probe for sensitive and selective detection of tetracycline (TC) in milk based on SQDs, where
fluorescence could be effectively quenched in the presence of TC due to the IFE mechanism.
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The electron transfer (ET) effect is another mechanism commonly used to design
fluorescence sensors. In 2021, Huang et al. [58] developed a selective fluorescence “on-
off-on” sensor for detection of Fe3+ and phytic acid (PA) based on the introduction and
elimination of the ET effect. The fluorescence of SQDs could be quenched in the presence
of Fe3+ due to the non-radiative electron transfer between Fe3+ and SQDs, while the
fluorescence of the SQDs/Fe3+ complex could be recovered after adding PA due to stronger
binding affinity between PA and Fe3+. The detection limits for Fe3+ and PA are 102 and
73.5 nM, respectively. Meanwhile, Lei et al. [36] utilized SQDs as the fluorescence sensor
for detection of intracellular Fe3+ based on the ET effect. In this work, PVA with abundant
hydroxyl groups was carefully chosen as the ligand to prepare fluorescent SQDs for highly
sensitive sensing of Fe3+ in water and in cells due to the strong complex interaction between
Fe3+ and the hydroxyl groups with a detection limit of 92 × 10−9 M. Meanwhile, these
PVA-capped SQDs showed highly reversible temperature-dependent fluorescence between
20 and 60 ◦C, and this behavior made them a nanothermometer to monitor cell temperature.
However, the authors did not explain the mechanism for reversible temperature-dependent
fluorescence of PVA-capped SQDs.

3.1.2. Colorimetric and Fluorescence Dual-Channel Sensing

The fluorometric methods have been widely used for sensing various analytes due
to their advantages of rapid response, excellent sensitivity, high selectivity, and simple
operation [59]. However, fluorometric determination is based on single-signal systems,
which are susceptible to external factors, such as background interference and environmen-
tal fluctuations [60]. Therefore, dual-signal determination systems are highly important
in monitoring targets in real samples, such as the fluorometric/colorimetric dual-signal
sensor system, which has been shown to self-calibrate the results for high accuracy. More-
over, the colorimetric method can be applied for in situ detection of analytes without any
additional equipment.

In 2020, Qiao et al. [61] assessed the analytical performance of Hg2+ using a fluoro-
metric and calorimetric dual-signal sensor based on SQDs. The fluorescence intensity of
SQDs decreased with the addition of Hg2+ solution, and a linear relationship was achieved
between F0/F and the concentration of Hg2+, with a fluorometric detection limit of 65 nM
for Hg2+. Additionally, the authors found that the color of Hg2+ solution changed from
transparent to a deep color, which could be obviously observed by the naked eye, and
this observation was further confirmed by UV-Vis spectroscopic titration experiments,
with a colorimetric detection limit of 1.86 µM for Hg2+. In 2020, Li et al. [62] developed a
SQDs-based chemosensor for the fluorometric and colorimetric dual-signal detection of
cobalt (Co2+) with good sensitivity and selectivity. Visual colors of this chemosensor in
the presence of Co2+ varied obviously from blue to colorless under UV light irradiation
and from colorless to yellow under sunlight. In this work, the fluorescence detection
of Co2+ was based on the photo-induced electron transfer (PET) effect, with a detection
limit of 0.16 µM for Co2+ (Figure 8). In 2022, Lu et al. [63] established a fluorometric and
colorimetric dual-signal sensor for detection of iron (II) (Fe2+) and H2O2 based on SQDs.
The fluorescence of SQDs could be quenched by Fe2+ due to the complexation between Fe2+

and SQDs, and the color of the mixture varied from light yellow to deep green. However,
the quenched fluorescence could be recovered by H2O2 due to Fenton reaction between
Fe2+ and H2O2, and the color of the mixture varied from green to colorless. The detection
limit was 0.54 and 0.03 µM for Fe2+ and H2O2, respectively.
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3.1.3. Ratiometric Fluorescent Sensing

For improving the accuracy and anti-interference of biosensors, ratiometric sensing
is another effective strategy by introducing another fluorescent material as a reference to
record the fluorescence intensity ratio at two wavelengths [64,65]. Butyrylcholinesterase
(BchE) is an important clinical diagnosis parameter, but its common detection protocol
named Ellman’s colorimetry suffers from the problem of low sensitivity and interferences,
pushing researchers to explore alternative strategies [66,67]. In 2021, Ma et al. [21] devel-
oped a ratiometric fluorescence sensor for detection of BchE activity based on the MnO2
nanosheet-modulated fluorescence of SQDs and o-phenylenediamine (OPD) (Figure 9).
Specifically, the blue fluorescence of SQDs could be quenched and the yellow fluorescence
of OPD could be promoted by MnO2 nanosheets simultaneously. However, MnO2 could
be decomposed into Mn2+ after introducing BchE and its substrate to produce thiocholine,
restoring the blue fluorescence of SQDs and inhibiting the production of yellow fluores-
cence of OPD. There was a linear relationship between the ratio of fluorescence intensity
(F435/F560) and BChE in the concentration range of 30–500 U/L, with a detection limit of
17.8 U/L. In the same year, Zhuang et al. [25] developed a ratiometric fluorescent sensor
for sensitive detection of doxycycline (Dox) in food based on SQDs and calcium ion (Ca2+).
In this work, the fluorescence of SQDs at 450 nm could be effectively quenched by Dox due
to static quenching and IFE. Meanwhile, a new fluorescence peak at 520 nm was produced
due to the formation of Dox-Ca2+ complex through coordination. Therefore, the ratio of
F520/F450 and Dox concentration showed a satisfactory linear relationship, with a detection
limit of 0.19 µM. These ratiometric methods demonstrate the potential applications of SQDs
in designing anti-interference sensors.

3.1.4. Electrochemical Sensing

The electrochemical sensor has been widely explored due to its simplicity, sensitivity,
convenience, and cheapness [68–70]. SQDs cannot conduct electricity, but they can affect
the electrochemical signal of gold (Au) electrodes modified with SQDs, so they can be used
to develop electrochemical sensors based on competitive response. In 2020, Fu et al. [71]
proposed an electrochemical sensor for detection of silver ions (Ag+) based on an SQDs-
modified Au electrode (Figure 10). In this work, SQDs could be modified on the surface of
Au electrode due to the Au-S bond, leading to the decrease in the electrochemical signal of
the Au electrode because of the poor electro-conductivity of SQDs. However, the SQDs/Au
system exhibited a significant electrochemical response after introducing Ag+, and the
strong affinity between Ag and S enabled the system to be highly sensitive for the detection
of Ag+, with a detection limit of 71 pM.
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3.1.5. Electrochemiluminescence Sensing

Due to the combined characteristics of electrochemistry and chemiluminescence, ECL
has developed into a powerful analytical technique for sensing and diagnostics [72,73].
ECL has shown the merits of facile controllability, low background, strong sensitivity, high
selectivity, and wide response range [74]. In 2018, Shen et al. [30] found significant ECL
signal from the prepared SQDs in an annihilation reaction, but they did not extend this
finding to further application. Until 2020, Liu et al. [75] developed an SQDs-based (off-on)
ECL biosensor with excellent ECL performance and an efficient DNA walking machine for
miRNA-21 detection (Figure 11). In this work, the authors improved the ECL performance
by optimizing the size and dispersity of SQDs, and the detection limit of this ECL sensor
was 6.67 aM in the concentration range of 20 aM to 1 nM, opening the application of SQDs
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in the ECL field. In 2021, Han et al. [76] proposed a boosted anodic “off-on” ECL sensor
based on high-quality SQDs (H-SQDs) for glutathione (GSH) detection. The ECL signal of
the prepared SQDs was decreased by in situ assembly of MnO2 due to the ECL-resonance
energy transfer system. However, the ECL signal could be recovered after introducing GSH
to reduce MnO2 into Mn2+, leading to the release of H-SQDs. This ECL sensor showed
excellent linearity in the range of 0.050–5.0 µM with the detection limits as low as 35 nM.
This work promoted the development of ECL emitters, and more importantly, it provided
a new avenue for exploring SQDs-based ECL biosensors in clinical diagnosis.
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3.2. Bioimaging

Based on their good colloidal stability, tunable and stable optical properties, excellent
aqueous dispersibility, low toxicity, and bioavailability, SQDs have been utilized as an
attractive fluorescent agent for bioimaging applications. In 2019, Zhang et al. [37] first
proved that SQDs can be applied as probes in live-cell imaging (Figure 12). In this work,
BEAS-2B cells were incubated with SQDs in fresh medium, and intensive green emission
could be observed in the cytoplasm of the BEAS-2B cells, indicating the cell imaging
potential of SQDs. In 2020, Qiao et al. [61] investigated the bioimaging capability of
SQDs. They demonstrated the potential of PEG-1000 passivated SQDs for imaging in
two cell lines (HeLa and leukemia K562), and these SQDs were located in the cytoplasm
after incubation with the cells for 8 h. Four sorts of chemical inhibitors were used to
study the endocytosis mechanism of SQDs, and the results showed that the internalization
processes of SQDs were mainly based on the clathrin and lipid-raft-mediated endocytosis
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mechanism. Moreover, cellular tracking of mercury ions was realized due to the specific
fluorescence response between SQDs and mercury ions. Meanwhile, Song et al. [32] used
fluorescent SQDs (20 µg/mL) to stain MCF-7 cancer cells for 2 h, and strong green and
yellow emission could be observed in the cytoplasm under excitation at 458 and 514 nm,
respectively, demonstrating the efficient internalization of SQDs by the MCF-7 cells. In
2021, Arshad et al. [26] synthesized fluorescent SQDs by mechanochemical method to
incubate with Du-145 cells for 24 h at a concentration of 400 µg/mL, and they found that
these as-prepared SQDs were highly internalized into the Du-145 cells and mainly located
in both the cytoplasm and nucleus. In the same year, Wang et al. [41] investigated the
cellular imaging of SQD-18 (3.0 mg/mL) incubating with HeLa cells for 24 h, and a bright
blue fluorescence under 405 nm excitation was observed in the cytoplasmic area in the
HeLa cells, suggesting that SQD-18 could penetrate cell membrane and label the cytoplasm.
These studies all indicate a new insight that SQDs could be a promising application in
cellular imaging fields.
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4. Challenges and Prospects

In this minireview, we summarized the latest research progress of SQDs, including
synthetic methods and sensing applications. Since the first report of using CdS as precursors
in 2014, impressive progress has been achieved in the synthetic methods of SQDs, and
due to their unique optical and physiochemical properties, SQDs have been applied in
environmental and biological detection. However, compared to other QDs, the research of
SQDs is still in the preliminary stage, and there are still many challenges and opportunities.

1. Currently, as shown in Table 1, for most reported synthetic methods, the synthesis
time was shortened but with a relatively low QY, or QY was effectively improved
but with a prolonged synthesis process. This suggested that more research efforts
should be made to develop faster and simpler synthesis methods with higher QY and
well-defined luminescence mechanisms. Meanwhile, the optical characteristics can be
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affected by side products, so the complex purification process should be simplified to
achieve efficient product separation and purification.

2. In these reported methods, most of the precursors were bulk sulfur powder, PEG, and
NaOH; thus requiring a large amount of bulk sulfur powder. Although Arshad et al. [45]
used sodium thiosulfate as precursors to produce elemental sulfur, that is not enough,
and it is necessary to find new precursors to design effective reaction systems.

3. From the perspective of sensing and bioimaging applications, one limitation for the
reported SQDs is that most of their emission colors were focused on blue and green,
which could be easily interfered with by the self-fluorescence of biological samples.
This problem can be solved by synthesizing SQDs with red or near infrared or even
infrared-II fluorescence, and such emission modulation can be achieved by doping
heteroatoms, changing passivators and reaction conditions, etc.

4. For sensing applications, the target molecules are limited, including metal ions (Fe3+,
Ag+, Hg2+, Co2+, Zn2+, Cr6+, Ce4+), Dox, AA, CQ, norfloxacin, BChE, miRNA-21,
and GSH. One of the possible reasons for this is the limited functional groups on the
surface of SQDs, resulting in their limited ability to recognize the target molecules.

Overall, SQDs are promising nanomaterials, and once well studied, they can be applied
in various fields. We hope that this minireview can provide researchers useful information
to further the basic and applied development of SQDs.
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