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Abstract: The COVID-19 pandemic is still affecting many people worldwide and causing a heavy
burden to global health. To eliminate the disease, SARS-CoV-2, the virus responsible for the pandemic,
can be targeted in several ways. One of them is to inhibit the 2′-O-methyltransferase (nsp16) enzyme
that is crucial for effective translation of viral RNA and virus replication. For methylation of substrates,
nsp16 utilizes S-adenosyl methionine (SAM). Binding of a small molecule in the protein site where
SAM binds can disrupt the synthesis of viral proteins and, as a result, the replication of the virus. Here,
we performed high-throughput docking into the SAM-binding site of nsp16 for almost 40 thousand
structures, prepared for compounds from three libraries: Enamine Coronavirus Library, Enamine
Nucleoside Mimetics Library, and Chemdiv Nucleoside Analogue Library. For the top scoring ligands,
semi-empirical quantum-chemical calculations were performed, to better estimate protein–ligand
binding enthalpy. Relying upon the calculated binding energies and predicted docking poses, we
selected 21 compounds for experimental testing.

Keywords: SARS-CoV-2; nsp16 inhibitor; docking; quantum chemistry; virtual screening

1. Introduction

Pandemic coronavirus disease 2019 (COVID-19) is one of the most serious challenges
we face [1]. The struggle against this disease requires the solving of various problems,
including the urgent development of antiviral drugs with direct action on the therapeutic
target proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that
caused the pandemic [2]. By the beginning of the pandemic, deep knowledge of the
mechanisms of coronavirus replication at the molecular level had been gained thanks to
studies of earlier diseases such as SARS [3] and MERS [4]. Currently, several therapeutic
target proteins of this coronavirus are well established [5–9]. In this work, we focus our
study on the SARS-CoV-2 2′-O-methyltransferase (2′-O-MTase; EC 2.1.1.296), which is
referred to henceforth as nsp16 [10]. Non-Structural Protein 16 (nsp16), a viral RNA 2′-
O-MTase, is one of the highly viable targets for the design of agents against SARS-CoV-2.
Nsp16, with its cofactor nsp10, forms a heterodimer and stimulates 2′-O-methyltransferase
activity. 2’-O-methylation is essential for formation of the cap structure in viral RNAs. The
presence of the cap part on RNA of SARS-CoV-2 allows it to make its genetic information
readable to the host translation machinery. It has been shown that this 2′O-MTase is
indispensable for replication of coronaviruses in cell cultures [11].

Given the importance of the RNA capping process for mRNA stability and transla-
tion, and as an immune evasion mechanism, RNA-capping machineries are an attractive
target for antiviral-drug design [12,13]. In the viral RNA capping process, non-structural
protein 16 (nsp16), an S-adenosyl methionine (SAM)-dependent 2′-O-MTase, methylates
the first transcribed nucleotide at the ribose 2′-OH position, to form a cap-1 structure. To
perform a methyl transfer, nsp16 utilizes SAM that contains an activated methyl group

Molecules 2022, 27, 2721. https://doi.org/10.3390/molecules27092721 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27092721
https://doi.org/10.3390/molecules27092721
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-4777-6522
https://doi.org/10.3390/molecules27092721
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27092721?type=check_update&version=1


Molecules 2022, 27, 2721 2 of 16

and represents a common co-substrate for methyl transfer reactions in living organisms.
Blockage of the SAM-binding site of nsp16 results in inhibition of the methylation process
catalyzed by this enzyme. 2′-O-methylation is essential for formation of the cap structure in
coronavirus (CoV) RNAs, and, therefore, plays an important role in the replication of CoVs.
Furthermore, 2′-O-methylation allows CoVs to escape the recognition of immune sensors
and resist the type I interferon-mediated anti-infective immune response. Importantly,
2′-O-MTase/nsp16 is highly conserved in structure and function among various CoVs,
together with its indispensable role in CoV replication and immune escape, making it an
attractive and effective target for broad-spectrum antivirals.

After the first SARS outbreak, the search for nsp16 inhibitors of SARS-CoV-1 led to
identification of sinefungin (1) (see Figure 1) as a potent suppressor of the methyltransferase
activity of nsp16 [14]. Sinefungin is similar to S-adenosylmethionine, an endogenous
cofactor of nsp16, and binds to the same pocket. Recently, the ability of sinefungin to
block the methyltransferase activity of nsp16 in SARS-CoV-2 was confirmed by X-ray
crystallography [11].
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Figure 1. Experimentally confirmed nsp16 inhibitors.

In the study by [15], several nsp16 inhibitors were designed using bioisosteric replace-
ments of the sulfonium and amino acid substructures of the S-adenosylmethionine. Virtual
close analogs of S-adenosylmethionine were docked into active site of nsp16. Activity
testing of the synthesized prioritized compounds showed nanomolar to sub-micromolar
IC50 values for five compounds. The best IC50 was 8 nM for methylbenzoic acid derivative
(2). However, selectivity testing on human glycine N-methyltransferase revealed that all
inhibitors are non-selective and also inhibit this methyltransferase. The main reason for
the non-selectivity can be attributed to the very high similarity between the found nsp16
inhibitors and S-adenosylmethionine, a co-factor used by most methyltransferases.

Since nsp14 is another viral methyltransferase with a similar active site architec-
ture, some scientific groups initiated a combined search for both nsp16 and nsp14 in-
hibitors. In the study of [16], docking-based high-throughput virtual screening of 7 million
commercially-available drug-like compounds and S-adenosylmethionine analogs was per-
formed. As a result, 80 virtual screening hits (39 against nsp14 and 41 against nsp16)
were identified, which were purchased and tested using an enzymatic homogeneous time-
resolved fluorescent energy transfer assay. Of these, nine compounds showed a micromolar
inhibition activity with an IC50 less than 200 µM. The best inhibitor (3) was based on
a sulfanyl-thiazole core and possessed an IC50 against nsp16 of 51 µM. Similarly to the
above-mentioned study, most of the compounds showed poor selectivity against human
glycine N-methyltransferase.

Pharmacophore-based screening for 48 million drug-like compounds of the Zinc
database was used to identify nsp16 inhibitors in [17]. A 3D pharmacophore model
was constructed based on the complex of nsp16 with sinefungin (PDB ID: 6WKQ). The
24 best-scoring ligands were then docked in the SAM-binding pocket. Finally, molecular
dynamics (MD) simulation experiments for the three best compounds were carried out, as
a refinement step. These simulations revealed one compound (4, Figure 2) with a triazine
scaffold as the potential nsp16 inhibitor. Testing of its activity has not yet been performed.
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Figure 2. Inhibitors of nsp16 predicted by molecular modeling in the literature, with no confirmation
of activity.

In the study by [10], the authors applied an virtual drug repurposing approach to
identify nsp16 inhibitors binding to active site of the enzyme. Shape-based screening
among FDA approved drugs, followed by molecular dynamics (MD) simulation, revealed
that raltegravir and maraviroc can bind tightly to the active site of the protein, compared
to sinefungin, and could be potential candidates for inhibition of nsp16. No in vitro
confirmation of their activity has been completed to date.

Another strategy to target nsp16, is disrupting the nsp16–nsp10 complex, without
affecting the S-adenosylmethionine-binding site. Such an approach was used, for example,
in [18]. The authors virtually screened the North African Natural Products database for
compounds that can interact with the nsp10 interface and disturb the nsp10–nsp16 com-
plex formation. They identified four compounds (genkwanin-6-C-beta-glucopyranoside,
paraliane diterpene, 4,5-di-p-trans-coumaroylquinic acid, and citrinamide A—Figure 2) that
showed the best binding affinity, predicted by AutoDock Vina. Of the four compounds,
genkwanin-6-C-beta-glucopyranoside showed the most stable complex with nsp10 in a
molecular dynamics simulation, but it was not tested in vitro.

In this study, virtual screening of the databases of on-the-shelf low molecular weight
compounds using docking was carried out, followed by quantum-chemical calculations
of the protein–ligand binding enthalpy, with the goal of finding inhibitors of nsp16. The
inhibition strategy was to target the SAM-binding site of the enzyme. As a result, twenty
one compounds were selected for experimental testing of their inhibition of the nsp16
target protein.

2. Results and Discussion
2.1. Nsp16 Structure Preparation

To create a model of nsp16, we used corresponding structures from the Protein Data
Bank [19]. We found eight crystal structures of nsp16 co-crystallized with small molecules in
the Protein Data Bank. Of these, four contain S-adenosylmethionine (SAM), an endogenous
cofactor of nsp16, which carries an activated methyl group (see Figure 3). Two other
complexes have crystallized sinefungin. Sinefungin is an unselective pan-inhibitor of
methyltransferases, an analog of SAM. One complex contains SAM, together with RNA
substrate (m7GpppA), and another is nsp16 with SAH, a conjugate form of SAM without a
methyl group. The PDB IDs and resolution values for these complexes are listed in Table 1.
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Table 1. Deposited complexes of SARS-CoV-2 nsp16 in PDB.

PDB ID Ligand Resolution, Å

6W4H SAM 1.8
6W61 SAM 2
6W75 SAM 1.95
7C2J SAM 2.8

6WKQ SFG 1.98
6YZ1 SFG 2.4
6WKS SAM + RNA substrate 1.8
6WJT SAH 2

The SAM molecule was not parameterized in the MMFF94 force field [20], which was
implemented in our SOL docking program [21,22]. Thus, structures with SAM were not
taken into account when choosing complexes for further model preparation. To estimate the
general flexibility of the active site of nsp16 and possible induced fit effects, we performed
the alignment of three complexes: 6WKS, 6WKQ, and 6YZ1 (see Figure 4). No large
differences were found after alignment, which could be related to the high similarity
between the ligands co-crystallized with complexes under study.
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For further model preparation, we chose two complexes with sinefungin, since it is
the only inhibitor co-crystallized with nsp16. Both complexes possess a good resolution
(6WKQ has the better one) and no large gaps in their structure (Table 2).

Table 2. Features of the crystal complexes chosen for preparation of the fully-atomic nsp16 model.

PDB ID Resolution, Å R-Value Work Missing Elements

6YZ1 2.4 0.187 One residue on N-
and C-terminus

6WKQ 1.98 0.162 Four residues missed
on N-terminus

We carried out docking of the native ligand for both complexes. “Native ligand”
means a ligand that is co-crystallized with its target protein and deposited with it in one
PDB file. Native ligand docking allows one to perform primary estimation of the prepared
model, to reproduce the binding of the known ligand, as well as to estimate the suitability
of the chosen docking tool to model the interactions crucial for binding of the particular
ligand to the given target. To perform native ligand docking, a ligand is extracted into a
separate file from the initial PDB file and protonated at pH 7.4. The peculiarity of sinefungin
after protonation is the presence of three charged atoms (see Figure 5).
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Figure 5. Protonated form of sinefungin at pH = 7.4. Charged groups are highlighted by orange
circles. Protonation was carried out with the molecule editor and visualizer Avogadro [23].

In a crystal complex of sinefungin and nsp16, one of three groups ionized at pH = 7.4
does not have any interactions with the protein and is exposed to the solvent (see Figure 6).
This can influence the positioning accuracy, since in most physics-based force fields (in-
cluding MMFF94), the electrostatic term dominates in the primary scoring of poses, due to
insufficient modelling of solvent-based electric-field screening.
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Structures of nsp16 obtained from the PDB files were protonated at pH = 7.4 with the
Aplite program [21,25]. The missing residues mentioned in Table 2 were not repaired, since
they are far from the SAM-binding site of nsp16 and do not influence the accuracy of the
docking procedure.

The docking of native ligands into the corresponding 6YZ1 and 6WKQ failed, in terms
of RMSD from the initial ligand coordinates (see Table 3).

In Table 3, we can see that the RMSD between the positions of the crystallized and
docked native ligand is too large for the protein structures from the 6YZ1 and 6WKQ
PDB complexes. We assumed that this failure could be related to the above-mentioned
fact that one of two charged amino groups is not implicated in any interactions that can
bias the results of modeling, where the electrostatic forces dominate. This phenomenon
is illustrated in Figure 7: the best energy docking pose in the active site of nsp16 after
native ligand docking for 6YZ1 has all charged groups implicated in polar interactions with
charged residues.

Table 3. Native docking results for a model based on 6YZ1 and 6WKQ.

Protein Ligand RMSD, Å
1st Cluster

Popul.
N. of

Clusters
Score,

kcal/mol

6YZ1 SFG (fully
charged) 4.02 2 45 −4.89

6WKQ SFG (fully
charged) 10.28 2 42 −4.66
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To remove the bias related to the ionic interaction dominance, we neutralized one
charged amino group of sinefungin (the one that was solvent-exposed in the crystal com-
plex, see Figure 5) and re-docked this neutralized form of sinefungin into the nsp16 models
prepared on the basis of 6YZ1 and 6WKQ. As can be seen from Table 4, 6YZ1 failed again;
whereas, native ligand docking for 6WKQ, after partial neutralization of sinefungin, was
successful in terms of the RMSD value and the score of the SOL program.

Table 4. Native docking results for a model based on 6YZ1 and 6WKQ, with partially neutralized SFG.

Protein Ligand RMSD, Å
1st Cluster

Popul.
N. of

Clusters
Score,

kcal/mol

6YZ1 SFG
(neutralized) 4.0197 2 45 −4.89

6WKQ SFG
(neutralized) 0.87 1 38 −7.05

6WKQ* SFG
(neutralized) 0.87 8 36 −7.07

In Table 4, two results of native docking for the protein model prepared using the
6WKQ PDB structure are presented. First, the results of docking of the native ligand with
default genetic algorithm (GA) parameters (see Section 3.2) are presented in the 6WKQ row.
Here, RMSD is low, the SOL score is sufficiently negative, but the population of the first
cluster is equal to 1. This means that the reliability of this docking, i.e., the reliability of the
global energy optimization, is low. To increase our confidence that we had, indeed, found
the global energy minimum of the protein–ligand complex, we performed docking of the
native ligand at elevated GA parameters, and the results are presented in Table 4 in the row
of 6WKQ*. For this docking, we employed the parallel version of the SOL docking program,
and the following GA parameters were used: population size was equal to 6,000,000, the
number of generations was equal to 1500, and the number of GA independent runs was
equal to 99. This docking took five hours to complete using 512 cores on the Lomonosov-2
supercomputer [26]. For the elevated GA parameters, the docking found practically the
same ligand position corresponding to the global energy minimum, and the population of
the first cluster increased to eight. This result supported the assumption that this ligand
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position, found either with the default or elevated GA parameters, corresponded to the
global energy minimum.

To check the model based on 6WKQ, we, additionally, performed cross-docking for
S-adenosylmethionine (SAH) from the 6WJT complex and preliminary aligned it with the
protein structure from 6WKQ. The results of this docking can be considered satisfactory,
and they are outlined in Table 5.

Table 5. Cross-docking of SAH into the model constructed on the basis of the 6WKQ complex: docking
with the default GA parameters—6WKQ, docking with the elevated GA parameters—6WKQ*.

Protein Ligand RMSD, Å
1st Cluster

Popul.
N. of

Clusters
Score,

kcal/mol

6WKQ

SAH (quasi-
native—from

6WJT
complex)

2.54 1 44 −5.63

6WKQ*

SAH (quasi-
native—from

6WJT
complex)

0.97 9 57 −7.48

For the default GA parameters, the docking was not very good: RMSD > 2 Å, the
population of the first cluster was only 1, and the SOL score was noticeably less negative
than that of the native ligand from the 6WKQ complex. For the elevated GA parameters:
population size = 6,000,000, number of generations = 1500, and number of GA runs = 99,
the docking was successful: RMSD < 1 Å, the population of the first cluster was noticeably
greater than 1, and the SOL score was even more negative than that of the native ligand.
This docking took 3 h and 43 min, using 512 cores on the Lomonosov-2 supercomputer.
The results presented in Table 5 show that a better accuracy in the positioning of the ligand
can lead to noticeably better (more negative) SOL score values. In addition, one can see
the importance of the population of the first cluster: a population equal to 1 can indicate
failure of docking.

The need to use elevated GA parameters, both for native and cross-docking, can
be attributed to the complex nature of SFG/SAH, not the protein system. Both organic
molecules are zwitterions and possess seven rotational degrees of freedom, complicating
conformational search during docking. Therefore, virtual screening of selected libraries
was done with the default parameters.

2.2. Results of the Virtual Screening

A two-step virtual screening of the three databases of low molecular weight ligands
using docking, followed by quantum-chemical calculations of the protein–ligand binding
enthalpy, resulted in the selection of the 21 best candidates to become inhibitors of nsp16
for experimental testing. Here, a low molecular weight compound means an organic
molecule with molecular weight less than 1000 Da. The results of calculations for the
best ligands and their structures are presented in Table 6 and Figure 8 (ligands selected
from the Enamine Coronavirus Library) and Figure 9 (ligands selected from the Chemdiv
Nucleoside Analogue Library), respectively.
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Table 6. Results of calculations for the best compounds selected for experimental testing for nsp16
inhibitory activity.

Ligname Score, kcal/mol 1st Cluster Popul. ∆H Bind, kcal/mol

Reference (SFG) −7.07 8 −93.8

Enamine Coronavirus Library

Z1129470080 −6.04 36 −38.3
Z1230400661 −5.26 20 −51.2
Z1333277068 −5.24 47 −53.8
Z1538127913 −6.13 34 −40.7
Z1631839283 −6.38 2 −62.5
Z1715767396 −5.38 23 −53.0
Z195979162 −5.24 40 −53.4

Z2003934806 −6.41 30 −44.8
Z2045761676 −6.76 4 −30.8
Z2202904986 −5.94 17 −60.8
Z2242846709 −5.51 30 −61.6
Z2394358664 −6.11 32 −51.6
Z2396606359 −5.81 30 −54.5
Z2968942047 −6.15 17 −55.4
Z3018438176 −6.43 12 −42.3
Z445470482 −5.54 15 −60.0
Z871858820 −5.70 38 −54.7

Chemdiv Nucleoside Analogue Library

8012-4548 −5.41 33 −39.3
C692-0494 −5.27 10 −48.4
E714-0026 −5.00 10 −43.2
FF01-2805 −5.03 37 −37.7

As can be seen from Figures 8 and 9, most of top compounds from both libraries
contain basic nitrogen, charged positively at pH 7.4, which is consistent with the chemical
nature of SAM and the reported basic inhibitors of nsp16. The presence of a charged group
helped select compounds form a salt bridge interaction with Asp131 and other negatively
charged residues of the SAM-binding site. All compounds listed in Table 6 completely
block the SAM-binding site of nsp16, according to the docking studies. Some of the top
compounds from the Enamine Coronavirus Library contain fragments typical for nucleo-
side analogs: indazole (Z2003934806, Z2394358664) and pyrrolopyrimidine (Z2968942047).
These scaffolds are privileged fragments for inhibiting, for example, kinases [27], enzymes
which use adenosine triphosphate (nucleoside) for phosphate transfer, and, thereby, have
the potential to bind to other enzymes that bind to nucleoside-like molecules, including
nsp16. Similarly to sinefungin and SAM, three of the four top compounds from the Chem-
div Nucleoside Analogue Library belong to purines. The compound with the most negative
SOL score (Z2045761676) belongs to the 4-aminopyridines. The best potential binder in
terms of enthalpy calculated by PM7, Z1631839283, is a derivative of diamino-indan, with
two aliphatic amino groups.
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As a representative of nucleoside-like potential inhibitors of nsp16, a docked pose
of Z2968942047, a derivative of pyrrolopyrimidine, is shown on Figure 10. It forms three
hydrogen bonds: (1) a crucial H-bond between the acceptor of the pyrimidine ring and
Cys115NH observed for SAM and sinefungin bound to nsp16, (2) an H-bond between the
pyrrolic NH donor and carboxyl group of Asp114, and (3) an H-bond between the proto-
nated pyridine ring and the carboxyl group of Asp99. Z2968942047 also has pi-stacking
between the pyrrolopyrimidine ring and phenyl ring of Phe149. The protonated posi-
tively charged pyridine of Z2968942047 interacts with the negatively charged carboxyl
group of Asp99. A distal subpocket, where the alpha-amino carboxyl fragment of sine-
fungin is bound, is not occupied in the case of Z2968942047, revealing possible sites for
potency optimization.
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Figure 10. A docked pose of Z2968942047 in the SAM-binding site of nsp16. The ligand is shown
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PyMol [28].

The docked pose of Z2045761676, a compound with the best value of SOL scoring func-
tion, is shown in Figure 11. As in the case of Z2968942047, it contains two heteroaromatic
rings linked by an aliphatic piperidine ring. Z2045761676 forms four interactions: three
H-bonds and pi-stacking. A pyrazole ring provides a bidentate H-bond with Cys-115NH
and a carboxyl group of Asp-114. Another H-bond is found between a carboxyl group
of Asp-99 and the protonated nitrogen of a pyridine ring of Z2045761676. Phe-149 and a
pyrazole ring form pi-stacking.
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3. Materials and Methods
3.1. Preparation of Ligands

Compounds from three databases were used for virtual screening: the Enamine Coro-
navirus Library, the Enamine Nucleoside Mimetics Library, and the Chemdiv Nucleoside
Analogue Library.

The Enamine Coronavirus Library [29] contains 16,800 ligands. These ligands demon-
strated good results in docking against coronavirus target proteins. We eliminated PAINS
molecules and molecules containing chemical warheads. A total of 16,561 compounds
were selected, and of these, 34,405 conformers were deployed in three dimensions for
docking. The LigPrep module [30] was used to protonate these molecules at pH = 7.4 and
generate their low-energy 3D conformers. The selection of the best ligands for further
quantum-chemical processing was made in two steps. The first selection criterion, the SOL
score was more negative than −6.0 kcal/mol, and the population of the first cluster (see
Section 3.2) could be any number. This means that for ligands with sufficiently negative
SOL scores, we did not take into account the reliability of finding the global minimum
corresponding to the best ligand position. The second selection criterion, the SOL score was
more negative than −5.0 kcal/mol, and the population of the first cluster (see Section 3.2)
was greater than or equal to 10. This means that for ligands with sufficiently negative SOL
scores, we do not take into account the population of the first cluster, which characterizes
the reliability of finding the global energy minimum corresponding to the best position
of the ligand. This helped prioritize only compounds with reliable docking results, and
allowed not performing the second stage of screening for all compounds with scores in a
range from −6.0 to −5.0 kcal/mol. Using these criteria, the 242 best ligands were selected
for quantum-chemical calculations of the protein–ligand binding enthalpy. Finally, the 17
best ligands were selected for further experimental testing. They had the most negative
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SOL scores, the most negative binding enthalpies, and good complementarity to the active
site, where the SAM cofactor bound to nsp16.

The Enamine Nucleoside Mimetics Library [31] contains 290 ligands. All these ligands
are nucleoside analogues, and they can bind to polymerase or methyltransferase, as does
SAM. We used 276 of these 290 ligands for docking, after filtering the reactive species, and
their 2D structures were transformed into 898 3D conformers using the LigPrep module.
However, none of these ligands satisfied the two criteria mentioned above, and were,
therefore, not selected for experimental testing.

Third, the Chemdiv Nucleoside Analogue Library [32] contains 2600 ligands. All these
ligands are nucleoside analogues. As for the other two libraries, we performed filtration of
molecules with reactive groups, and for docking used 2107 of these 2600 ligands, and their
2D structures were transformed into 4047 3D conformers using the LigPrep module. Using
the two criteria mentioned above, the 22 best ligands were selected for quantum-chemical
calculations. The four best ligands were selected for further experimental testing. A total of
21 ligands were selected from three libraries for experimental testing.

3.2. Ligand Docking

In this study, docking was carried out using the SOL program [21,22]. SOL uses the
preliminary calculated grid of interaction potentials between ligand and protein atoms,
the MMFF94 force field, a simplified form of the generalized Born solvent model, a rigid
protein approximation, and the genetic algorithm (GA) of global energy optimization. The
grid of potentials is calculated in the auxiliary SOLGRID program with the size of the
grid, by default, being a cube with the edge 22 Å covering the active site of the protein.
The flexibility of a ligand includes translation and rotation of a ligand as a rigid body
and rotations of each torsion. Conformations of macrocycles are not sampled. The target
function in solving the global optimization problem is the sum of the energy of protein–
ligand interaction and the ligand internal strain energy. The main parameters of GA are the
following: population size is 30,000 by default, the number of generations is 1000, and the
number of independent runs of GA is 50 by default. The latter is needed to estimate the
reliability of the global minimum finding, as follows. After docking a ligand, 50 solutions of
the global optimization problem are obtained. These 50 solutions to the global optimization
problem correspond to 50 ligand positions in the active site of the protein, corresponding to
the lowest values of the target energy function that are found in each GA run. These ligand
positions are clustered by RMSD <1 Å for each pair of ligand positions, and the clusters are
ranked by the lowest energy corresponding to ligand positions in each cluster. Therefore,
the ligand position corresponding to the global energy minimum is in the first cluster.
Obviously, the reliability of the global energy minimum finding is high if the population
of the first cluster is relatively large. This means that in several independent GA runs,
practically the same ligand position is found corresponding to the lowest energy value. In
the limited case of fifty different clusters, one cannot assume that a global minimum has
been found. The same can be said in the case of a smaller number of clusters, when the
population of the first cluster is 1. In the latter case, docking can be repeated with higher
GA parameters and with an increased number of GA runs. If the same position of the
ligand corresponding to the global minimum is obtained, and the population of the first
cluster is greater than 1, then the found global minimum can be considered reliable, and
docking is successful. The scoring function of SOL is a weighted sum of physics-based
terms (van-der-Waals, electrostatic, desolvation) and a simplified entropy term (a number of
torsions), with coefficients calculated in such way to best reproduce known Gibbs binding
free energies from a test dataset of protein–ligand complexes.

The SOL program was adapted for virtual screening on the Lomonosov-2 supercom-
puter of the Lomonosov Moscow State University [26]. Depending on the size and number
of ligand torsions, the docking of one ligand on one computational core takes between one
and several hours. The parallel version of SOL, based on MPI (message passing interface),
allows docking of one ligand using many hundreds of supercomputer cores. This can be
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useful for docking with increased GA parameters. For virtual screening of large databases
of ligands, a sequential version of the SOL program is used: each ligand is docked on a
separate computing core.

3.3. Protein–Ligand Binding Enthalpy

The enthalpy of protein–ligand binding was calculated using the MOPAC program [33],
using the PM7 semi-empirical quantum chemical method [34], and taking into account
the interaction with an aqueous solvent in the COSMO model [35]. The binding enthalpy
∆Hbind was calculated as follows:

∆Hbind = ∆Hprotein−ligand −
(

∆Hprotein + ∆Hligand

)
, (1)

∆Hprotein−ligand is the enthalpy of formation of the protein–ligand complex; ∆Hligand
is the enthalpy of formation of the unbound ligand; ∆Hprotein is the enthalpy of formation
of unbound protein. In this equation, ∆Hprotein is calculated for the same conformation
of the protein that was used for docking, ∆Hligand is calculated for the unbound ligand
conformation with the lowest PM7+COSMO energy, and ∆Hprotein−ligand is calculated as
follows. The local optimization of the energy of the protein–ligand complex using the PM7
method is carried out from the ligand pose that has been found during docking, when the
positions of all ligand atoms are varied. In the identified local minimum, the energy of the
complex was recalculated using PM7 and the COSMO model.

The total computation time spent on screening was about 149,000 CPU × hours,
including SOL and MOPAC calculations.

4. Conclusions

In this work, an atomistic model of nsp16 SARS-CoV-2 was constructed and verified
using native docking and cross-docking. This model was used in the search for new low-
molecular-weight inhibitors of nsp16 in commercially available databases, using docking
followed by quantum-chemical calculation of the enthalpy of protein–ligand binding. The
best 21 candidates to become inhibitors of nsp16 were selected for experimental testing.
These inhibitors belong to several chemical classes. Some of them are nucleoside analogs:
indazole (Z2003934806, Z2394358664) and pyrrolopyrimidine (Z2968942047). Three com-
pounds 8012-4548, C692-0494, and E714-0026 are purines, and the other compounds belong
to various chemical classes. All of the selected compounds have not yet been published
as inhibitors of SARS-CoV-2 nsp16. The findings of the study can accelerate the design of
antiviral agents against SARS-CoV-2.

After confirmation of activity, the next iterations will include structural optimization
of the potency for validated hits. The protein model prepared at this stage can accelerate
optimization by revealing the places in an active site that can be exploited to favor binding.
Design of SAM-competitive inhibitors of nsp16 should also be accompanied by the crucial
step of a selectivity check for human methyltransferases, since they bind to the same
cofactor. From this perspective, protein models of human methyltransferases can be
prepared for docking in the next steps of the design.
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