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Abstract: Commercialization of anion exchange membrane fuel cells (AEMFCs) has been limited
due to the chemical degradation of various quaternary ammonium (QA) head groups, which af-
fects the transportation of hydroxide (OH−) ions in AEMs. Understanding how various QA head
groups bind and interact with hydroxide ions at the molecular level is of fundamental importance
to developing high-performance AEMs. In this work, the binding and degradation reaction of
hydroxide ions with several QA head groups—(a) pyridinium, (b) 1,4-diazabicyclo [2.2.2] octane
(DABCO), (c) benzyltrimethylammonium (BTMA), (d) n-methyl piperidinium, (e) guanidium, and
(f) trimethylhexylammonium (TMHA)—are investigated using the density functional theory (DFT)
method. Results of binding energies (“∆” EBinding) show the following order of the binding strength
of hydroxide ions with the six QA head groups: (a) > (c) > (f) > (d) > (e) > (b), suggesting that
the group (b) has a high transportation rate of hydroxide ions via QA head groups of the AEM.
This trend is in good agreement with the trend of ion exchange capacity from experimental data.
Further analysis of the absolute values of the LUMO energies for the six QA head groups suggests the
following order for chemical stability: (a) < (b)~(c) < (d) < (e) < (f). Considering the comprehensive
studies of the nucleophilic substitution (SN2) degradation reactions for QA head groups (c) and (f),
the chemical stability of QA (f) is found to be higher than that of QA (c), because the activation energy
(“∆” EA) of QA (c) is lower than that of QA (f), while the reaction energies (“∆” ER) for QA (c) and
QA (f) are similar at the different hydration levels (HLs). These results are also in line with the trends
of LUMO energies and available chemical stability data found through experiments.

Keywords: anion exchange membrane; quaternary ammonium; binding strength; degradation;
chemical stability; density functional theory

1. Introduction

A fuel cell is an electrochemical device that converts the chemical energy of fuel
oxidation into electrical energy [1,2]. Among various types of fuel cells, anion exchange
membrane fuel cells (AEMFCs) have been receiving increasing attention due to their low
cost of production, the possibility of using platinum-group-metal-free catalysts, moderate
operation temperature, and high power density [2,3]. However, there is no commercialized
anion exchange membrane (AEM) that could satisfy the current demand for the fuel cell
to be competitive with proton exchange membrane fuel cells (PEMFCs). An AEM is a
polymer matrix that has positively charged head groups (mainly quaternary ammonium
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(QA) groups) covalently bound to the polymer backbone, conducts hydroxide (OH−) ions,
and prevents physical contact of electrodes [4]. There are many challenges that need to
be solved for the large-scale commercialization of AEMFCs. Along with the demand for
a platinum-group-metal-free catalyst with high activity towards oxygen reduction and
hydrogen oxidation reactions in alkaline media, and carbonation issues while working with
an ambient air feed, the insufficient hydroxide ion conductivity and chemical degradation
of various QA head groups should be urgently addressed [2,5,6]. In this regard, a major
limitation of AEMFCs is their low chemical stability under alkaline conditions, because of
the degradation of various QA head groups [4]. Three different degradation mechanisms
of various QA head groups of AEMs at high pH have been proposed, including Hofmann
elimination, nucleophilic substitution (SN2), and ylide formation [4]. However, the degra-
dation mechanisms of various QA head groups at high pH are not well understood from
insights down to the molecular scale.

Computational modeling and simulations have become critically important tools to ex-
plore the chemical degradation and transportation of hydroxide ions via positively charged
QA head groups of the polymeric backbone of the AEM. Particularly, coarse-grained molec-
ular dynamics (MD) simulations are commonly implemented to study the microphase
segregation morphology and transportation mechanisms of hydroxide ions for polyether
(ether ketone) (PEEK)-, poly phenylene oxide (PPO)-, and polystyrene (PS)-based AEMs in
the presence of explicit water [7–12]. In addition, the nanophase-segregated structure and
transportation mechanisms of hydroxide ions via the positively charged QA head groups
of poly(p-phenylene oxide) (PPO), poly (vinyl benzyl trimethylammonium) (PVBTMA),
polystyrene (PS), polyether (ether ketone) (PEEK), and poly (arylene ether sulfone ketone)
have been well studied by reactive and classical all-atom MD simulations [13–16]. More-
over, ab initio calculations via the density functional theory (DFT) method have also been
implemented to study the degradation pathways of various QA head groups in the pres-
ence of hydroxide ions in previous literature [6,17–23]. However, studies on the binding
strength and degradation of various QA head groups with hydroxide ions to link with
experimental properties—such as chemical stability and transportation of hydroxide ions
in AEMFCs—are scarce.

In this work, DFT calculations were performed to investigate the binding and SN2
degradation reactions of various QA head groups with the hydroxide ions of AEMs. Six
typical QA head groups were selected as candidates for DFT calculations.

In Section 2, the DFT calculation methodology, molecular electrostatic map, optimized
geometry, binding energy (∆EBinding), bond length, molecular orbital, reaction energy (∆ER),
transition state, and activation energy (∆EA) for six typical QA head groups of AEMs are
described.

2. Model and Method
2.1. System of Interest

Six representative segments in AEMs—hereafter referred to as QA head groups—were
selected as theoretical models for our DFT calculations. As shown in Figure 1, those
six QA head groups were (a) pyridinium, (b) 1,4-diazabicyclo [2.2.2] octane (DABCO),
(c) benzyltrimethylammonium (BTMA), (d) n-methyl piperidinium, (e) guanidium, and
(f) trimethylhexylammonium (TMHA).

Firstly, the electronic ground state geometries for the six QA head groups in the
implicit solvation model, and in the presence and absence of hydroxide ions, were selected
as a system of interest for DFT calculations.

Secondly, transition state geometries for SN2 degradation reactions of two QA head
groups—(c) and (f)—in the explicit solvation model and in the presence of hydroxide ions,
were designed as a system of interest for DFT calculations.
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change-correlation functional of the electron density functional theory. These methods 
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tion effect. However, the main assumption in implicit solvation states that the solvent 
(water) does not interact with the solute. For this reason, we considered explicit water 
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Figure 1. Structure of representative segments containing different QA head groups: The six dif-
ferent QA head groups are (a) pyridinium, (b) 1,4-diazabicyclo [2.2.2] octane (DABCO), (c) BTMA,
(d) n-methyl piperidinium, (e) guanidium, and (f) TMHA.

2.2. DFT Calculations

Density functional theory (DFT) is a quantum-mechanical atomistic simulation method
to compute a wide variety of properties of almost any kind of atomic system [22,23]. In this
work, DFT-based calculations were used to optimize the electronic ground state geometries
and calculate molecular electrostatic potential maps, bond length, molecular orbital densi-
ties, ∆EBinding, ∆ER, transition state, and ∆EA. In our study, the molecular interactions of
positively charged QA head groups with hydroxide ions in the aqueous phase contained
covalent and noncovalent interactions. The electronic ground state geometries for the six
QA head groups in the presence and absence of hydroxide ions were optimized using the
B3LYP DFT level of theory and employing the polarizable continuum model (PCM) as an
implicit solvation model [24,25]. The optimized conformers of the six QA head groups
were taken from the ATB server [26].

In quantum chemistry calculations, one of the most common types of exchange func-
tional is called B3LYP (Becke, 3-parameter, Lee–Yang–Parr). The B3LYP is a hybrid func-
tional. Moreover, B3LYP is the most widely used to predict molecular properties. This
functional is based on a hybrid functional in which the HF method is used to calculate the
exchange energy. The hybrid functional method approximates the exchange-correlation
functional of the electron density functional theory. These methods use the sum of the ex-
change energy calculated by the HF method and the exchange-correlation energy obtained
in other ways [27].

Moreover, explicit solvation in DFT is expensive for computation. In this regard, the
PCM treatment is the DFT method generally implemented to model the implicit solvation
effect. However, the main assumption in implicit solvation states that the solvent (water)
does not interact with the solute. For this reason, we considered explicit water molecules
for our DFT model [26].

2.2.1. Molecular Electrostatic Maps, Binding Energies, and LUMO Energies

The B3LYP 6-311+G(d,p) DFT calculations for geometrically optimized structures of
hydroxide ions, and of QA head groups in the presence and absence of hydroxide ions in
the implicit water phase, were conducted to obtain LUMO energies, molecular electrostatic
maps, and ∆EBinding [28,29]. Herein, ∆Ebinding was estimated using the differences between
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the total energy values of the QA head groups in the presence of hydroxide ions and
constituent components, as shown in Equation (1) and in Table S1.

∆Ebinding = EQA with OH− − (EQA + EOH− ) (1)

2.2.2. Degradation Reaction

The transition states for the SN2 degradation reactions of two QA head groups—(c)
and (f)—in the presence of hydroxide ions and explicit water molecules at the different
hydration levels (HLs) (0–3), were optimized using the B3LYP 6-311 ++ g (2d, p) DFT level
of theory, employing the implicit solvation model for DMSO to take the effects of explicitly
hydrated water molecules into account [28,29]. The DFT calculations for the transition
state structure of hydroxide ions and QA head groups in the implicit DMSO phase at the
different hydration levels (HLs 0, 1, 2, 3) were conducted to calculate ∆EA and ∆ER for the
SN2 degradation reaction. In addition, HL was defined as the number of water molecules
per hydroxide ion. Herein, the reaction energy (∆ER) and activation energy (∆EA) were
estimated using the scheme shown in Figure 2, along with Equations (2) and (3). Moreover,
the basis set superposition error (BSSE) was evaluated using the counterpoise correction
method for the optimized transition state structures. For the BSSE evaluation, the transition
state was divided into two fragments: the electrophile and the nucleophile clusters.
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different HLs.

For HL = 2 and HL = 3, water molecules on the product side are represented by water
cluster form, because the error of representing the water environment between the reactant
and product sides can be maximally cancelled this way. In our earlier investigations, water
molecules were treated as isolated monomers on the product side. Those results are shown
in the Supplementary Materials (Table S3 and Figure S1). Because the energy for breaking
the water cluster was essentially included in the calculated reaction energy, treating water
molecules as isolated monomers was inappropriate, and led to overestimation of reaction
energy, which became more severe as the number of involved explicit water molecules
increased (Table S3 and Figure S1).

∆ER = ∑ ∆E(products) − ∑ ∆E(reactants) (2)

∆EA = ∑ ∆E(transition state) − ∑ ∆E(reactants) − ∑ ∆E(BSSE) (3)

A low value of ∆EA suggests a higher degradation reaction of the QA head group via
hydroxide ions [25]. By further calculations of the second energy derivatives, all stationary
points were confirmed to be true minima on their respective potential energy surfaces.



Molecules 2022, 27, 2686 5 of 12

All DFT calculations were performed using GAUSSIAN16 (Gaussian, Inc., Wallingford,
CT, USA), and post-analysis was carried out using the GaussView (v6.0) software (Gaussian,
Inc., Wallingford, CT, USA) [30].

3. Results and Discussion

In this section, DFT results related to the transportation of hydroxide ions and chemical
stability of QA head groups are presented. The quantum chemical properties—including
the molecular electrostatic map, optimized structure, ∆EBinding, distribution of LUMO
orbitals, ∆ER, transition state, and ∆EA—are analyzed and discussed.

3.1. Molecular Electrostatic Potential Maps

Here, we illustrate molecular electrostatic potential (ESP) maps for the binding of
hydroxide ions with various QA head groups of the AEM via the B3LYP DFT method.

Initially, hydroxide ions were placed near the nitrogen atoms of QA head groups to
stabilize their positive charge. In addition, the charge distribution of the different QA head
groups was successfully investigated, and the results are shown in Figure 3. In the AEM,
the hydroxide ions and the QA head groups have a net charge of −1 and +1, respectively. It
is clear that hydroxide ions mainly interact with the nitrogen atoms of the QA head groups
of the AEM to stabilize their positive charge.
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Figure 3. Representation of molecular electrostatic potential maps for QA head groups (a–f) and their
complexes with hydroxide ions in the presence of implicit water. Surface |Isovalue| = 0.02 a.u. Value
range [−0.177; 0.177] a.u. Legend of colors: red (negative) to blue (positive).

Further analysis and more information related to the calculation of ESP values at
maximum electrostatic potential on the van der Waals surfaces of the QA head groups can
be found via Multiwfn (http://sobereva.com/multiwfn, (accessed on 2 April 2022)) [31–33],
which will be investigated in a future work.

3.2. Binding Energies

This subsection presents the optimized structure and EBinding for the binding of hy-
droxide ions with various QA head groups of the AEM by the B3LYP DFT method.

Moreover, the oxygen reduction reaction generates hydroxide ions on the catalyst
surface at the cathode, which are then transported to the anode through the AEM. Figure 4
presents the structures when the hydroxide ions arrive at the electrolyte membrane (AEM
in our case) in implicit water solvation. In those structures, hydroxide ion was arranged
near the various QA head groups through three bifurcated H-bonds between hydroxide
ions and the QA head groups. Consequently, to describe the hydroxide ion transportation
process in AEMs, we performed structural optimizations for various QA head groups of
the AEM, via B3LYP 6-311+G(d,p) DFT and EBinding calculations.

http://sobereva.com/multiwfn
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Consequently, we investigated the optimized structures and binding strength of
various QA head groups in the presence of hydroxide ions, and by adding implicit water
via the DFT method, to get ∆EBinding. Herein, hydroxide ions were placed near the nitrogen
atoms of the QA head groups in order to stabilize their positive charge, as discussed above.

The results of the corresponding ∆EBinding with optimized structures for complexes
of hydroxide ions with the various QA head groups are shown in Figure 4 and detailed
in Table 1. The ∆EBinding was calculated according to Equation (1). From the results of the
∆EBinding, it can be seen that the order of the binding strength of hydroxide ions with the
various QA head groups is as follows: (a) > (c) > (f) > (d) > (e) > (b). This DFT trend for
∆EBinding is in good agreement with the experimental trend of conductivity data [34–36],
which is also shown in Table 1. Herein, the higher ∆EBinding was defined as strong interac-
tion, which indicates that hydroxide ions could transfer to this site automatically following
the traction of those three hydrogen bonds. However, the movement of hydroxide ions
from one side of the QA group to another side requires high energy to cross the ∆EBinding
values. In this regard, and according to the of ∆Ebinding results in Table 1, higher binding
strength corresponds to lower transportation of hydroxide ions via QA head groups, re-
sulting in lower conductivity. In addition, the values of the bond distance between the
oxygen atoms of hydroxide ions and acidic hydrogens of QA head groups are as follows:
(a) > (c) > (f) > (d) > (e) > (b), suggesting that lower bond length and bond strength are
correlated with better conductivity—possibly due to improved transportation of hydroxide
ions in implicit water. The results in Table 1 show that the binding energies of different QA
head groups to hydroxide ions are quite different. This could be explained by calculating
the electrostatic potential value at the maximum electrostatic potential on van der Waals
surfaces of the QA head groups in our future works. It is expected that the more positive
the electrostatic potential value, the stronger the binding [37].

Table 1. Values for ∆ EBinding of QA head groups with hydroxide ions, and the values for experi-
mental conductivity (see Table S1 in the Supplementary Materials for detailed contributions to the
binding energy).

QA ∆Ebinding (kJ/mol) Conductivity (mS/cm)

(a) −32.91
(c) −23.37 5.12 [34]
(f) −21.91
(d) −17.28
(e) −8.89 6.40 [35]
(b) −7.16 8.60 [36]
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3.3. LUMO Distribution and Energy

Here, we present the distribution of LUMO orbitals and their energy for the six QA
head groups of the AEM by the B3LYP DFT method.

Firstly, the chemical stability of different QA head groups in alkaline media can be
assessed by their lowest unoccupied molecular orbital (LUMO) energies [16]. Essentially,
hydroxide ions could readily interact with the LUMOs of different QA head groups due
to the strong nucleophilic (electron rich) nature of hydroxide ions. In this regard, the
alkaline stability of QA head groups can be measured in terms of the acceptance ability of
nucleophiles by LUMO orbitals. This means that the higher the LUMO energy of the QA
head group, the greater the difficulty of hydroxide ion attack, resulting in greater stability.
In other words, the lowest energy of LUMO means that it is more likely for the degradation
of the QA head group via SN2 by hydroxide ions to proceed [16]. Figure 5 shows that the
benzyl group is the main contributor to LUMOs for QA head groups (b), (c), (d), and (f).
In addition, the location of the LUMO for QA head group (a) is distributed around the
nitrogen atom of the pyridinium group, while for (e), the LUMO is located on the nitrogen
atom of DABCO.
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It can also been seen in Figure 5 that the TMHA head group exhibited the highest
LUMO energy (−0.548 eV), indicating the most stable QA head groups among the other QA
head groups investigated. The results indicate the trend of increasing stability as follows:
(a) pyridinium < (b) 1,4-diazabicyclo [2.2.2] octane (DABCO)~(c) BTMA < (d) n-methyl
piperidinium < (e) guanidium < (f) TMHA. Furthermore, the above obtained alkaline
stability trend is also consistent with the experimental results obtained by Noh et al. [34].
Among the above order, TMHA showed the highest alkaline stability. According to the
literature, it was found that most of the benzyl-substituted QA head groups (f) in the
presence of hydroxide ions, as complexes, undergo degradation to yield the final product
of benzyl alcohols by SN2 reaction during the GC–MS and NMR analysis. This observation
suggests that the benzylic carbon is susceptible to nucleophilic attack by hydroxide ions,
due to the electron-withdrawing inductive effect of the aromatic ring [38–40].

3.4. Degradation Reactions at the Different HLs

Here, we present the results of reaction energy, transition state, and activation energy
for two QA head groups of the AEM by the B3LYP DFT method. From the results of the
LUMO energies shown earlier, we can note that the QA head group (c) of the AEM is
moderately chemically stable, while the QA head group (f) of the AEM is highly stable.
Here, the benzylic carbon atoms of those two QA head groups—(c) and (f)—are susceptible
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to attack by hydroxide ions, and then could chemically degrade via the SN2 degradation
reaction. We further studied the SN2 degradation reaction for QA head groups (c) and (f).
Results of the reaction energy (∆ER), transition state, and activation energy (∆EA) for the
SN2 degradation of those two QA head groups are shown in Table 2 and Figure 6.

Table 2. Values of the computed ∆ER and ∆EA for the SN2 degradation reaction mechanisms of
QA head groups (c)/(f). Unit: kJ/mol (see Table S2 in the Supplementary Materials for detailed
contributions to the results shown here).

QA HL ∆ER BSSE ∆EA

(c)

0 −124.72 11.89 41.56
1 −69.67 8.88 53.57
2 −40.02 7.76 64.91
3 −19.7 6.14 86.69

(f)

0 −121.20 12.93 61.08
1 −66.15 10.16 76.17
2 −36.49 7.68 88.78
3 −16.21 6.39 106.25
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Our DFT transition state calculations reveal that the ∆ER for SN2 degradation of the
QA head group (c) is exothermic, with a value of −124.72 kJ/mol for HL 0, −69.67 kJ/mol
for HL 1, −23.14 kJ/mol for HL 2, and −19.74 kJ/mol for HL 3. Similarly, the ∆ER for the
SN2 degradation of QA head group (f) is exothermic as well, with a value of −121.20 kJ/mol
for HL 0, −66.15 kJ/mol for HL 1, −19.62 kJ/mol for HL 2, and −16.21 kJ/mol for HL
3. The results of ∆ER for SN2 degradation of the QA head groups (c) and (f) indicate that
the SN2 degradation reaction energy increases thermodynamically with HL from 0 to 3.
Moreover, the value of SN2 degradation ∆ER for QA head group (f) is similar to the value
of SN2 degradation ∆ER for QA head group (c).

The ∆EA for hydroxide ion attack on QA head group (c) is 41.56 kJ/mol for HL 0,
53.57 kJ/mol for HL 1, 64.91 kJ/mol for HL 2, and 86.69 kJ/mol for HL 3. The ∆EA for
hydroxide ion attack on QA head group (f) is 61.08 kJ/mol for HL 0, 76.19 kJ/mol for HL
1, 88.76 kJ/mol for HL 2, and 106.25 kJ/mol for HL 3. These results elucidate that the
vinyl carbon of QA head group (c) is exceedingly vulnerable to attack from the hydroxide
ion and, consequently, less chemically stable compared to the vinyl carbon of QA head
group (f). Moreover, the activation energy barrier increases from HL 0 to 3, suggesting
that the stability of QA head group (c) over (f) is higher at higher HLs. Consequently, the
SN2 reaction becomes slower. In other words, in contrast to the case of high HLs, when no
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water is present the QA head group degrades quite rapidly via the SN2 reaction mechanism.
Essentially, both QA head groups—(c) and (f)—were more stable and degraded less at
higher HLs. These results reveal that water molecules, which are strongly bound to the
hydroxide ion, reduce its nucleophilicity, “shielding” it from attacking the QA head group,
as schematically illustrated in Figure 6.

4. Conclusions

In this work, DFT calculations were implemented to investigate the complexation of
hydroxide ions on six different QA head groups of an AEM. For instance, it is clear that
hydroxide ions mainly interact with the acidic hydrogen of QA head groups of the AEM to
stabilize a positive charge, as can be seen from the molecular electrostatic maps. Moreover,
from the results of the ∆EBinding, it can be seen that the order of the binding strength of
hydroxide ions with various QA head groups was as follows: (a) > (c) > (f) > (d) > (e) > (b),
indicating that (b) offers the most pronounced transportation of hydroxide ions via the
QA head groups of the AEM among those considered. The obtained LUMO energy
values for the six QA head groups via the DFT method revealed the following order for
chemical stability: (a) < (b)~(c) < (d) < (e) < (f). Furthermore, the above DFT-calculated
alkaline stability trend is also consistent with the experimental results from the literature.
Considering the comprehensive studies of the SN2 degradation reactions for QA head
groups (c) and (f), the chemical stability of QA (f) was higher than that of QA (c), the ∆EA of
QA (c) was lower than the ∆EA of QA (f), while the ∆ER for QA (c) and QA (f) was similar
at the different HLs.

On the method side, this work demonstrates applications of DFT calculations to obtain
optimized structures of our designed systems, so as to better understand the molecular
interaction and degradation reactions of hydroxide ions with six different QA head groups
of an AEM. Similar calculations can be carried out to explore the degradation mechanisms
of other QA head groups of AEMs and hydroxide ion transportation in AEMs, which may
help with the molecular rational design of AEMFCs.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27092686/s1. Table S1: Detailed contributions to the
calculated binding energies shown in Table 1; Table S2: Detailed contributions to the calculated
reaction energies, transition states, and activation energies shown in Table 2. Table S3 and Figure S1:
Results for the reaction energies, transition states, and activation energies at different HLs using the
isolated monomers representing the water molecules in the product side.
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Abbreviations

AEMFCs Anion exchange membrane fuel cells
BSSE Basis set superposition error
BTMA Benzyltrimethylammonium
DABCO 1,4-Diazabicyclo [2.2.2] octane
DFT Density functional theory
∆EBinding Binding energy
∆ER Reaction energy
∆EA Activation energy
ESP Electrostatic potential
LUMO Lowest unoccupied molecular orbital
OH− Hydroxide ion
PEEK Poly (ether ether ketone)
PEMFCs Proton exchange membrane fuel cells
PPO Poly phenylene oxide
PS Polystyrene
PVBTMA Poly (vinyl benzyl trimethylammonium)
QA Quaternary ammonium
SN2 Nucleophilic substitution degradation reaction mechanism
TMHA Trimethylhexylammonium
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