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Abstract: Antimicrobial peptides are a type of small-molecule peptide that widely exist in nature
and are components of the innate immunity of almost all living things. They play an important
role in resisting foreign invading microorganisms. Antimicrobial peptides have a wide range of
antibacterial activities against bacteria, fungi, viruses and other microorganisms. They are active
against traditional antibiotic-resistant strains and do not easily induce the development of drug
resistance. Therefore, they have become a hot spot of medical research and are expected to become a
new substitute for fighting microbial infection and represent a new method for treating drug-resistant
bacteria. This review briefly introduces the source and structural characteristics of antimicrobial
peptides and describes those that have been used against common clinical microorganisms (bacteria,
fungi, viruses, and especially coronaviruses), focusing on their antimicrobial mechanism of action
and clinical application prospects.

Keywords: antimicrobial peptides; structural characteristics; antimicrobial mechanism; clinical application

1. Introduction

Antimicrobial peptides (AMPs) are small molecular peptides (generally composed of
less than 100 amino acid residues) [1] that widely exist in nature. They can be extracted from
bacteria, fungi, plants, insects, amphibians, fish, birds, mammals and even the human body.
AMPs are an important part of almost all biological innate immunity and play an important
role in resisting the invasion of foreign microorganisms [2]. AMPs usually have a positive
net charge and an amphiphilic structure that allows strong interactions with hydrophobic
surfaces and membranes [1,3], showing strong broad-spectrum activity against bacteria,
fungi, viruses, and other microorganisms [3–5]. AMPs also exhibit antimicrobial activity
by targeting intracellular targets to inhibit the synthesis of cell walls, nucleic acids, and
proteins and regulate host immune responses [6,7]. Pathogen resistance is increasing at an
unprecedented rate and has become a major global public health threat [1,3]. The original
antimicrobial mechanisms of AMPs can better solve the problem of the increasing resistance
of pathogenic microorganisms to antibiotics [8], which has aroused great interest from
researchers in the field of biomedicine. In addition, AMPs are being actively researched
and developed as an alternative therapy for viral infections, such as coronavirus disease
2019 (COVID-19) and human immunodeficiency virus (HIV) infection [9,10]. Since micro-
biologist René Dubos discovered gramicidin, the first tested antimicrobial agent isolated
from soil Bacillus strains in 1939, more than 3000 AMPs have been reported in the AMP
database 3(APD3), the antimicrobial peptide database, which is a tool for research and
education [11].

Next, we briefly introduce the source, structural characteristics and biological activity
of AMPs and elaborate on AMPs with antimicrobial activity against common bacteria,
fungi and viruses, their mechanism of action, and their clinical applications.
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2. Sources, Structures and Activities of Antimicrobial Peptides
2.1. Sources of AMPs

AMPs widely exist in various species, including microorganisms, animals, plants and
even marine organisms [11]. Next, we briefly introduce the representative AMPs of each
species.

2.1.1. AMPs from Microorganisms

Polymyxins from the genus Bacillus are a group of cyclic peptide antibiotics produced
by Bacillus polymyxa [12]. Among them, polymyxin B and polymyxin E (colistin) have been
commercialized and applied in clinical practice, showing good effects against multidrug-
resistant Gram-negative bacilli [13,14]. Although the widespread clinical use of these
drugs has been limited in the past due to their renal and neural toxicities, the continuous
optimization of formulation, reduction in drug dose, avoidance of drug combinations with
other potential renal/neural toxic drugs, as well as comprehensive and better care and
possibly better manufacturing, have reduced the incidence of drug side effects [14,15].
Sumi et al. have well summarized the AMPs derived from the genus Bacillus [16]. Nisin
is a natural bioactive AMP with strong bactericidal activity synthesized and secreted by
Lactococcus and Streptococcus in the process of metabolism. It has antibacterial activity
against many Gram-positive cocci. It also has a certain inhibitory effect on Gram-negative
bacilli under the action of a complexing agent or fusion with a short peptide with anti-
Gram-negative bacterial activity [17]. As a biological preservative, it is widely used in the
food industry. It also has a variety of applications in the biomedical field, including for
bacterial infection, cancer, oral diseases and other fields, with recognized clinical application
potential [18]. Besides, there are many AMPs derived from different bacteria, such as
bacitracin produced by Bacillus [19], gramicidin S produced by Bacillus brevis [20] and
vancomycin produced by Streptococcus orientalis [21]. Fungal defensins, such as triinsin and
bldesin, have been extracted from fungi and identified as having antimicrobial activity [22,
23]. There are also many types of AMPs produced by fungi, such as amatoxins and
phallotoxins produced by Amanita phalloides mushrooms [24], and dikaritins produced by
Ascomycetes [25]. In conclusion, AMPs produced by microorganisms are widely diverse.

2.1.2. AMPs from Animals and Plants

The well-known families of AMPs derived from mammals are the cathelicidin family
and the defensin family. Nearly 30 different cathelicidin types have been described in
different kinds of mammals. However, LL-37 is the only AMP in the cathelicidin family
that exists in the human body, produced mainly by epithelial cells and neutrophils [26]. In
addition to lipopolysaccharide (LPS) neutralization and antibacterial activity, LL-37 also
has many different biological activities, such as the regulation of inflammation. It has been
verified that LL-37 can protect the body through a variety of mechanisms in a murine sepsis
model, such as the modulation of cell death and the release of antimicrobial neutrophil
extracellular traps and ectosomes, as well as direct bactericidal and LPS-neutralizing
activities [26]. In addition, LL-37 has potential value in preventing and treating drug-
resistant bacterial infections and inhibiting biofilm formation [27]. Defensins are the
primary components of the animal defense system. Most of them consist of 29~42 amino
acid residues and contain three pairs of intramolecular disulfide bonds with a relative
molecular weight of 2~6 ku. According to the position of disulfide bonds, defensins can
be divided into three classes: α-defensins, β-defensins and θ-defensins. Humans do not
express θ-defensins [28]. Host defense peptides (HDPs) can be detected in many parts
of the body, such as the skin, eyes, ears, mouth, respiratory tract, lungs, intestines, and
urethra. Some AMPs are constitutively produced, while the production of others is induced
during infection and inflammation/injury [29]. The types of AMPs expressed also vary at
different growth stages in humans, such as LL-37, which is usually detected in the skin of
newborn infants, and human β-defensin 2 (HBD-2), which is usually expressed in elderly
individuals rather than in younger individuals [30]. The constitutive expression of HBD-2,
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HBD-3 and cathelicidin has been shown to be significantly higher in keratinocytes from
fetal skin than in keratinocytes from postnatal skin [30].

Frogs are the main source of amphibian AMPs. The most famous AMPs in frogs are
magainins, which were first isolated from the skin of the African clawed frog Xenopus laevis.
Studies have shown that magainins have antibacterial activity against a large number of
Gram-positive and Gram-negative bacteria and some fungi from the human body [31].
Studies have also shown that magainin 2 has synergistic antibacterial and pore formation
activities with another positively charged and amphipathic AMP, PGLa, that is mediated
by anchoring between the anionic C-terminus of magainin 2 and the cationic C-terminus of
PGLa [32,33].

Insects are also major sources of AMPs, and cecropins are the best known AMP family
from insects, which were first isolated from the hemolymph (insect blood) of Hyalophora
cecropia pupae and were characterized for their antimicrobial activity against several Gram-
positive and Gram-negative bacteria, as well as fungi [34–36]. Subsequently, these peptides
have been identified in two other orders of Coleoptera and Diptera, as well as in other species
of Lepidoptera [37,38]. Other insect AMPs, such as insect defensins, proline-rich peptides
and attacins, have also been found and well studied [37]. The classification, structure and
potential applications of insect AMPs are well summarized in the review by Yi et al. [37].

AMPs are widely distributed in plants. A large number of AMPs can be extracted
and isolated from plants and plant organs, such as stems, roots, seeds, flowers and leaves.
According to their amino acid sequence and structure, they can be divided into several
categories, including thionins, defensins, snakins, lipid transfer proteins, glycine-rich
proteins, cyclotides and hevein-type proteins [39]. They perform various physiological
defensive mechanisms to eliminate viruses, bacteria, fungi and parasites and can be used
as therapeutic and preservative agents [40].

2.1.3. AMPs from Marine Organisms

Most antibiotics come from terrestrial ecosystem constituents: fungi, soil-borne bac-
teria, and some plants. There are an increasing number of studies on AMPs in marine
organisms [11,41]. A recent in vitro study on the antibacterial potential of a peptide ex-
tract from the marine mollusk Olivacillaria hiatula showed that the peptide extract had an
inhibitory effect on both Gram-positive and Gram-negative bacteria [41]. Another antibac-
terial peptide, MFAP9, isolated and purified from marine Aspergillus fumigatus BTMF9,
exhibited strong antibacterial activity against Bacillus circulans, had a strong antibiofilm ef-
fect, and was nontoxic to human red blood cells at the experimental concentrations. MFAP9
is a new type of anti-infective drug suitable for development [42]. Polyphemusin-I is a
marine AMP obtained from hemocyte debris of Lumulus polyphemus (American horse-shoe
crab), possesses high antibacterial activity against a variety of pathogenic microorganisms,
such as Escherichia coli and Candida albicans [43]. AaCrus1, a novel marine AMP identified
from Amphibalanus amphitrite, has antibacterial activity against a variety of Gram-positive
and Gram-negative bacteria [44].

2.2. Structures and Activities of AMPs

There are many types of AMPs, which are roughly divided into four categories ac-
cording to their secondary structure, including α-helical AMPs, β-sheet-containing AMPs,
AMPs with a loop stabilized by a single disulfide bond or cyclization of the peptide chain
and short AMPs with extended conformations [45]. Some AMPs consist entirely of an
α-helix or β-sheet, while others have a more complex structure. Among them, α-helical
peptides are the most studied AMPs thus far, such as magainin [46] and LL-37 [47]. The
main characteristics of this class of AMPs are that they do not contain cysteine, do not
form intramolecular disulfide bonds, and are disordered in aqueous solutions but form
amphiphilic helical structures in membranes or membrane-simulated environments [48].
α-helical AMPs are widely distributed, are abundant in quantity, have broad-spectrum
antimicrobial properties, are short in length (generally <40 amino acid residues) and are
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easy to chemically synthesize. Furthermore, these AMPs have a simple linear structure, can
be easily structurally characterized and have strong antimicrobial activity. They have few
side effects on mammalian cells. Therefore, the structure of α-helical peptides is currently a
primary research focus. β-sheet-containing AMPs have an anti-parallel β-sheet structure,
containing 2-4 disulfide bonds in the molecule. Disulfide bonds exist between two peptides
that constitute β-sheets to stabilize the AMP structure and promote penetration the cell
membrane [48]. Representative AMPs are α- and β-defensins [28], drosomycin [49], and
plectasin [50]. Cyclic AMPs include peptides with a cyclic structure formed by one or
more disulfide bonds, including bactenecin [51], subtilosin A [52], polymyxin B [12], and
θ-defensins [53]. The extended AMPs lack a typical secondary structure and are rich in
specific amino acids, such as proline, tryptophan, arginine, glycine and histidine. Their an-
timicrobial activity is exerted by hydrogen bonds or van der Waals forces between peptides
and membrane lipids, independent of hydrogen bonds between residues. Most extended
AMPs achieve antimicrobial activity by penetrating the cell membrane of pathogens and
interacting with intracellular targets [48]. Extended AMPs include proline-rich peptides,
such as insect oncocins and bovine bactenecins [54]; tryptophan-rich peptides, such as
indolicidin, tritrpticin and lactoferricin [55]; and histidine-rich peptides, such as histatin-3
and histatin-5 [56].

The activity of AMPs is related to many factors, including the size, sequence, charge,
structure and conformation, hydrophobicity and amphipathic properties. Their biological
functions can be divided into the following aspects. (1) Direct bactericidal effect: AMPs
directly kill microorganisms by acting on the microbial membrane or intracellular targets.
Most AMPs have direct bactericidal activity, such as LL-37 [57] and B22 [6]; (2) Antibiofilm
activity: A number of studies have shown that AMPs have antibiofilm activity, whether the
concentration is equal to or higher than the minimum inhibitory concentration (MIC) for
corresponding planktonic cells or the concentration is lower than the MIC for corresponding
planktonic cells [2,58]; (3) Immune system regulation: This mechanism includes regulation
of proinflammatory and anti-inflammatory responses, chemotaxis, cell differentiation,
wound healing, autophagy, apoptosis and pyrolysis and enhancement of host immune cell
activity. For example, the host defense peptides LL-32 and polymyxin B can neutralize
endotoxins by multifactorial mechanisms, including LPS interaction and targeting of host
cell membranes [59]. LL-37 can not only neutralize proinflammatory factors by inhibiting
endotoxin activity but also protect the body from serious damage and complications by
inhibiting pyrolysis [26]; (4) When used in combination with traditional antibiotics, AMPs
also show a synergistic effect by promoting the absorption of antibiotics [60]; (5) Some
AMPs also have anticancer effects. For example, epinecidin-1 is a cationic AMP with an
α-helical structure. Studies have reported seven functional uses of the peptide, including
those based on its antibacterial, antifungal, antiviral, antiprotozoal, anticancer, immune
regulation and wound healing properties [61].

3. Mechanism of Action of Antimicrobial Peptides

The antimicrobial activity of AMPs is achieved through complex mechanisms of action,
including acting on the cell wall, cell membrane, and different intracellular targets, as well
as antibiofilm formation and host immune system modulation activities. We will introduce
them one by one.

3.1. AMPs Acting on the Cell Wall

The cell wall of bacteria is essential for their survival [62,63]. The cell wall of bacteria
is the outermost layer of the cell surrounding the cell membrane. It is a membrane-like
structure with a complex composition that varies among different bacteria. Gram-positive
bacteria have thicker cell walls, 15–50 layers of peptidoglycan (PGN), and a large amount
of teichoic acid, which can be classified as wall teichoic acid (WTA) or membrane teichoic
acid [64,65]. Gram-negative bacteria have thin cell walls and complex structures, containing
1–2 layers of PGN and a unique outer membrane, which is composed of lipoproteins, a
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lipid bilayer and LPS [64,65]. Fungal cell walls are mainly composed of glucan, chitin and
glycoproteins [66]. The cell wall is a potential target for AMPs to recognize microbial cells.
AMPs acting on the cell wall exert antibacterial effects mainly by affecting the synthesis
of cell wall components and destroying the cell wall structure (Figure 1). The specific
mechanisms of action are as follows.

Figure 1. Schematic presentation of the antibacterial mechanism of AMPs. Some AMPs act on
cell membranes through different modes of action, increasing membrane permeability, leading to
leakage of cell contents and cell death. Modes of action include barrel-stave, toroidal-pore, carpet
models. Some AMPs act on the cell wall and exert antibacterial effects by affecting the synthesis
of cell wall components and destroying the cell wall structure. Some AMPs enter the cell through
direct penetration or endocytosis, and exert anti-microbial effects by targeting the nucleus, organelles,
present in fungi, or intracellular proteins.

(1) AMPs interfere with the biosynthesis of PGN, a component of the cell wall, thereby
causing damage to the cell wall. The bacterial PGN layer is critical to bacterial integrity
and survival and is a major target of many antibiotics. Lipid II is an important component
in the synthesis of PGN, which is located on the cytoplasmic side of the cell membrane and
transports cell wall subunits across the cell membrane for polymerization and insertion into
the existing cell wall [67]. AMPs can bind to the cell wall synthesis precursor lipid II, which
in turn interferes with further enzymatic processes, thereby inhibiting PGN synthesis [65].
Representative AMPs include vancomycin [68] and oritavancin [69], which bind to the
alanine stem and pentaacyl bridge of the pentapeptide portion of lipid II and inhibit the
synthesis of PGN by inhibiting transglycosylation and transpeptidation [69]. Nisin also
targets lipid II to exert antibacterial effects, and nisin additionally recruits lipid II to form
pores through the plasma membrane [70]. Teixobactin, a depsipeptide, arrests cell wall
synthesis by selectively inhibiting the transglycosylation of PGN [71,72]. Other AMPs
targeting lipid II include plectasin [73], plusbacin-A3 (pb-A3) [74], and tridecaptin A1 [75].
Ramoplanin, a lipoglycopeptide antibiotic, inhibits the biosynthesis of Gram-positive bacte-
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rial cell wall PGN by inhibiting the conversion of lipid intermediate I to lipid intermediate
II catalyzed by N-acetylglucosamine transferase [76]. Colicin M was demonstrated to
provoke Escherichia coli cell lysis via inhibition of cell wall PGN biosynthesis by enzymatic
degradation of the undecaprenyl phosphate-linked PGN precursors [77];

(2) AMPs damage cell wall integrity by inhibiting the biosynthesis of WTA. For
example, in addition to inhibiting the biosynthesis of PGN precursors lipid I and lipid
II, teixobactin can simultaneously inhibit the biosynthesis of teichoic acid lipid III, the
main precursor of WTA, thereby exerting a bactericidal effect on methicillin-resistant
Staphylococcus aureus (MRSA) [72];

(3) Some AMPs destroy bacterial cell walls by releasing autolysins. Pep5 and nisin are
cationic polypeptide antibiotics, and in addition to their membrane-disrupting effects, they
can also induce the autolysis of staphylococci. Pep5 and nisin show high affinity for the
phosphate wall and teichuronic acid of Gram-positive bacterial cell walls and competitively
displace cell wall-associated amidases, which results in the premature release of autolysins,
leading to cell lysis [78];

(4) The outer membrane is a special component of the cell wall of Gram-negative
bacteria, and AMPs acting on the outer membrane can exert anti-Gram-negative bacterial
activity. For example, thanatin, an insect-derived AMP, can act on a variety of microor-
ganisms through multiple modes of action. One of the modes of action is to induce the
aggregation of LPS micelles, disrupt the outer membrane of Gram-negative bacteria, and
cause outer membrane charge neutralization. In addition, the binding of thanatin to the
outer membrane can competitively replace the Ca2+ ions stably bound to LPS molecules
in the outer membrane and induce the release of LPS, thereby destroying the outer mem-
brane of bacteria [79]. Many studies have demonstrated that thanatin’s activity against
Gram-negative cells occurs mainly through the inhibition of LPS export in combination
with lipopolysaccharide transport protein A (LptA), a crucial component of the LPS export
machinery [80];

(5) In fungi, some AMPs exert antifungal effects by inhibiting the synthesis of fungal
cell wall components, such as glucan, chitin, and glycoproteins. For example, the glucan
inhibitor echinocandin is a noncompetitive inhibitor of β-(1,3)-glucan synthase, which
affects fungal cell wall synthesis. Representative AMPs are caspofungin, micafungin and
anidulafungin [63]. The cysteine-reduced form of psoriasin, as a fungicidal AMP, binds to β-
glucan, a basic component of the Candida albicans cell wall, thereby inhibiting the adhesion
of the pathogen to surfaces and increasing IL-8 production by mucosal epithelial cells [81].
Nikkomycin Z, a dipeptide with a nucleoside sidechain synthesized by Streptomyces tendae,
is a competitive inhibitor of chitin synthases [82]. Pradimicins and benanomicins target
cell wall mannan [83]. These antifungal peptides (AFPs) have been well summarized
in a previous review [63]. AMP-17 is a novel antibacterial peptide from houseflies with
good antifungal effects against Candida. Morphological observation showed that AMP-17
disrupted the integrity of the C. albicans cell wall. After AMP-17 treatment, the expression
of the C. albicans cell wall synthesis-related gene FKS2 was upregulated in response to
AMP-17-induced fungal cell wall damage [84]. In addition, AMP-17 can also destroy the
Candida cell membrane by downregulating the expression of ergosterol synthesis-related
genes, reducing their gene product levels in the cell membrane [84];

(6) Some AMPs interact with cell wall components to mediate agglutination and cap-
ture of microorganisms. Amyloid-β peptide (Aβ), a key protein in Alzheimer’s disease (AD)
pathology, is an AMP. Its mechanism of action is that Aβ oligomers first bind to microbial
cell wall carbohydrates through the heparin-binding domain, and propagating β-amyloid
fibrils mediates the agglutination and eventual capture of unattached microorganisms,
inhibiting pathogen adherence to host cells [85]. Thanatin can bind to outer membrane LPS
and form micellar complexes with LPS, leading to cell aggregation or agglutination [86].
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3.2. AMPs Acting on the Cell Membrane

The microbial cell membrane is an important target of most AMPs, and the difference
from the mammalian cell membrane composition is a major factor in the selective killing of
bacteria by AMPs [87]. AMPs combine with the microbial cell membrane through physic-
ochemical action, and continuously accumulate on the surface of the cell membrane and
undergo structural or conformational transitions. When a certain threshold concentration
is reached, AMPs can act on different microorganisms through different modes of action,
increasing the permeability of the membrane and leading to lysis of cell membranes and
release of cellular contents, thereby exerting antibacterial activity [87,88].

In the process of AMPs interacting with cell membranes, there are two main fac-
tors affecting the interaction, namely, conformational changes and the peptide-lipid ra-
tio [87,89,90]. Studies have shown that α-helical AMPs have a disordered structure in
an aqueous environment; however, upon binding to a phospholipid bilayer, they rapidly
form a strictly amphiphilic α-helical conformation that facilitates the interaction with the
membranes [91]. A study on the effect of KLA polypeptide conformation and membrane
surface properties on the electrostatic binding process showed that KLA polypeptides
with low helical propensity tended to form β structures at low lipid-peptide ratios [92].
Helical KLA polypeptides stabilize the anionic gel-state lipid 1,2-dipalmitoyl-sn-glycero-3-
phosphoglycerol (DPPG) bilayer, while β-structured polypeptides cause significant mem-
brane perturbations [92]. The binding efficiency of helical KLA peptides to DPPG vesicles
has been shown to be higher than that of β-structured KLA peptides, and the binding
affinity was proportional to the helical tendency of the peptides and the negative charge
on the membrane surface [92]. Another study showed that KLA peptides are flexible and
highly dynamic in adapting to their surroundings by adopting different conformations [92].
The peptide-lipid ratio is another major factor affecting the interaction of AMPs with
cell membranes. When the peptide-lipid ratio is low, AMPs are parallel to the surface of
the plasma membrane, and as the peptide-lipid ratio increases, AMPs directly insert into
the hydrophobic center of the membrane [93,94]. Ultimately, membrane permeability is
increased, leading to cell death.

Various modes of AMP interaction with cell membranes have been proposed. The three
models most commonly discussed are the barrel-stave, toroidal-pore, and carpet models
(Figure 1). They have been addressed in several literature reviews [63,87,88]. We only
briefly introduce them here. (1) In the barrel-stave model, helical polypeptides aggregate
within the cell wall and are introduced vertically into the lipid bilayer to form bundle-like
pores in the membrane, thereby affecting the permeability of the membrane [95] (Figure 1).
Only a few AMPs, such as alamethicin [96,97], ceratotoxins [98] and protegrins [99], have
been shown to form barrel stave channels. (2) In the toroidal-pore model, peptides interact
with the lipid head groups, inducing the bilayer to bend and vertically insert into the
membrane bilayer and form annular holes composed of the peptides and phospholipid
head bundles [100] (Figure 1). Representative AMPs are magainins [101], melittin [96],
protegrins [96,102], actinoporins [103] and lacticin Q [100]. (3) In the carpet model, AMPs
cover the membrane surface in a carpet shape and interact with the membrane in parallel
through electrostatic interaction with the anionic phospholipid head groups. The formation
of micelles at high peptide concentrations damages the phospholipid bilayer [93,104]
(Figure 1). Magainin [104], Citropin 1.1 [105] and LL-37 [106,107] are representative AMPs
that disrupt the cytoplasmic membrane via the carpet model.

Some AMPs interact with cell membranes through different modes of action, depend-
ing on the source and lipid composition of the membrane [104]. Since most amphiphilic
AMPs have an overall positive charge, cell membranes with large amounts of anionic
phospholipids, such as phosphatidylserine and phosphatidylglycerol, may be more sus-
ceptible to AMPs [104]. A study determined that the curvature strain of the lipid bilayer
significantly affects how magainin interacts with the lipid bilayer [108]. With the addition
of phosphatidylethanolamine, a zwitterionic phospholipid, the curvature strain of the lipid
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bilayer becomes more negative, and magainin fails to form annular pores [108]. In contrast,
the peptide disrupts the bilayer via the carpet model [108].

In addition, there are receptor-mediated AMPs that target the cell membrane, such as
nisin, as mentioned earlier. In addition to targeting lipid II to inhibit cell wall synthesis and
thereby exert antibacterial effects, nisin additionally recruits lipid II to form pores through
the plasma membrane [70]. Some AMPs exert antimicrobial effects by stimulating cells to
produce reactive oxygen species and damaging the membrane respiratory chain, such as
microcin J25 (MccJ25) [109,110].

3.3. AMPs Acting on Intracellular Targets

AMPs can not only act on the cell wall and cell membrane but also enter the cell
through direct penetration or endocytosis [111] and exert anti-microbial effects by tar-
geting the nucleus, organelles, present in fungi, or intracellular proteins [67] (Figure 1).
The transmembrane mechanisms of some AMPs are not fully understood. Studies have
shown that AMPs can directly cross the cell membranes through the formation of transient
toroidal gaps, or directly translocate through membrane boundary defects, and can also
transmembrane through receptor-mediated transport pathways. The detailed translocation
mechanisms of AMPs are introduced in reference [111]. The following section briefly
introduces the intracellular targets and representative AMPs.

(1) The first mechanism is binding to nucleic acids, destroying the conformation of
nucleic acids, and inhibiting the synthesis of DNA, RNA, or protein. Histone-derived AMPs
have high binding affinity for both DNA and RNA, as they share their entire sequence
with a portion of the histone core subunit [112]. Buforin II, a 21-amino-acid peptide with
potent antimicrobial activity against a broad range of microorganisms, is a good example
of a histone-derived AMP. Buforin II can cause cell death by dissolving cell membranes.
However, it has been shown that at low concentrations below MIC, Buforin II can penetrate
cell membranes and inhibit cellular functions by binding to the DNA and RNA of cells,
resulting in rapid cell death [113]. Indolicidin, a 13-residue AMP isolated from cytoplasmic
granules of bovine neutrophils, exhibits activity against Gram-positive and Gram-negative
bacteria as well as fungi [114]. Indolicidin can penetrate the bacterial cell membrane, enter
the cytoplasm and bind with DNA, inhibit DNA biosynthesis and play a bactericidal
role [114]. KW4, a synthetic peptide with lysine and tryptophan repeats, can inhibit cellular
function by binding to RNA and DNA, leading to the eradication of C. albicans [115]. PR-39,
an AMP isolated from the upper half of the pig’s small intestine, kills bacteria by preventing
the synthesis of proteins and DNA and causing the degradation of these components [116].
Other AMPs that can interact with nucleic acids include human neutrophil peptide (HNP)-
1 [117], porcine β-defensin 2 (pBD2) [118,119] and rondonin [120];

(2) The second mechanism for the inhibition of enzyme/protein activity in nucleic acid
and protein synthesis metabolic pathways. In addition to direct DNA binding, indolicidin
inhibits DNA relaxation by inactivating DNA topoisomerase I [121]. Microcin B17 (MccB17)
is an AMP produced by E. coli strains containing the plasmid-borne mccB17 operon. Tar-
geting bacterial DNA gyrase stabilizes the transient DNA gyrase-DNA cleavage complex,
interrupting DNA synthesis [122]. MccJ25 is a circular AMP that inhibits RNA polymerase,
thereby temporarily terminating the elongation of the transcript [123,124]. Polyphemusin-I,
a marine AMP isolated from hemocytes of an American horseshoe crab, possesses potent
antimicrobial activities. Screening of intracellular protein targets by an E. coli proteome
microarray revealed the mechanism by which polyphemusin-I targets nucleic acid-related
proteins [43];

(3) A third mechanism is the destruction of nucleic acid damage repair pathways.
HNP1 was originally found to penetrate the inner and outer membranes of E. coli and inhibit
bacterial DNA, RNA and protein synthesis [87,125]. A recent study found that recombinant
HNP-1 produced by E. coli triggers bacterial apoptosis and that HNP-1 disrupts the DNA
damage response pathway by interfering with the binding of RecA to single-stranded DNA
(ssDNA) and promotes programmed bacterial death [126];
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(4) A fourth mechanism is activity against the ribosome to inhibit protein synthesis.
Proline-rich antimicrobial peptides (PrAMPs) were first isolated from mammalian and
insect cells as host defense peptides against Gram-negative bacteria [80]. The PrAMPs
were divided into two classes based on the conformation in which they bind to the ri-
bosome [127]. Class I PrAMPs, such as Bac7, Onc112, pyrrhocoricin, and metalnikowin,
interfere with the initial step of translation to block the peptide transferase center and the
peptide exit channel of the ribosome [128], whereas class II PrAMPs, such as apidaecin
1b and Api137, act during translation termination and inhibit protein synthesis by trap-
ping release factors on the 70S ribosome following hydrolysis of the nascent polypeptide
chain [129]. There are quite a few recent studies on PrAMPs, which attempt to enhance
the antibacterial activity of PrAMPs against bacteria, even drug-resistant bacteria, through
de novo synthesis, chemical modification and other methods [130–132]. A recent study
showed that the PrAMP dimers produced by the bifunctional linker significantly enhanced
their antibacterial and anti-biofilm activities against a variety of Gram-negative bacilli,
including drug-resistant Acinetobacter baumannii strains [132]. In addition, PrAMP dimers
have potent immunomodulatory activities and neutralize inflammation through nitric
oxide production in macrophages [132].

(5) A fifth mechanism is interference with the proper folding and assembly of proteins.
Another intracellular target of PrAMPs is the bacterial heat shock protein DnaK. Inhibition
of DnaK leads to protein misfolding and aggregation, which ultimately leads to bacterial
death [133]. Pyrrhocoricin, drosocin and apidaecin, representatives of the short PrAMP
family, induce permanent closure of the DnaK peptide-binding cavity to inhibit chaperone-
assisted protein folding [134].

(6) A final mechanism is inhibition of cell division and blockade of the cell cycle.
Temporin L impairs E. coli cell division by interacting with FtsZ, a tubular protein with
GTPase activity involved in a key step of Z-loop formation at the onset of the division
process, and the divisome complex [135]. Temporin L inhibits the enzyme activity and
polymeric activity of proteins by binding to FtsZ [136]. C18G can inhibit cell division
by stimulating the PhoQ/PhoP two-component signaling system, which regulates QueE
transcription and increases the expression of QueE, an enzyme involved in the biosynthesis
of a hypermodified guanosine (queuosine) found in certain tRNAs [137].

3.4. AMPs Acting on Biofilms

The formation of biofilms is an orderly process that includes four processes: adhe-
sion, sessile growth, maturation and dispersal [2]. The main components of biofilms are
polysaccharides, extracellular DNA (eDNA), proteins and other substances secreted by
attached cells, which can protect microorganisms in biofilms (more common in chronic
bacterial and fungal infections) from adverse environmental conditions and increase the
resistance of microorganisms to antibiotics [2]. AMPs can combat biofilms through different
mechanisms. In addition to destroying the integrity and stability of cell membranes by pen-
etrating biofilms, interacting with intracellular targets, interfering with cell metabolism, and
inhibiting the biosynthesis of nucleic acids or proteins [6,138–140], some other antibiofilm
mechanisms have also been reported.

(1) The first mechanism is inhibition of the bacterial quorum sensing system (QS).
QS is a communication system between bacteria, and it relies on the signal molecules
produced by bacteria to function. Preventing biofilm formation by inhibiting QS is one
of the important mechanisms of AMPs against biofilms. Subinhibitory concentrations of
LL-37 inhibit biofilm formation and affect established P. aeruginosa biofilms [141]. LL-37
leads to the downregulation of genes essential for biofilm development by affecting two
major QS systems (Las and Rhl) [141]. D- and L-LL-37 significantly downregulated the
expression of the Rhl QS-related genes rhlA and rhlB in P. aeruginosa, inhibited the synthesis
of rhamnosyltransferase, reduced biofilm formation, and degraded an existing P. aerugi-
nosa biofilm [142]. LL-37 can also form supramolecular associations with Pseudomonas
quinolone signal (PQS) molecules, another important component of the QS regulatory
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network of P. aeruginosa, and the QS signal molecules captured by the peptides are se-
questered in coassemblies, thus helping to prevent and eradicate bacterial infection [143].
Gj-CATH2 has strong bactericidal and antibiofilm effects on Streptococcus mutans. One of
its mechanisms of action is to inhibit the expression of QS systems (luxS and comD/E),
resulting in decreased EPS synthesis [144];

(2) A second mechanism is inhibition of the adhesion of microbial cells or induction
of the dispersal of cell aggregates. LL-37 promotes twitching of P. aeruginosa by regulat-
ing genes related to flagellar biosynthesis, leading to bacterial movement and reduced
bacterial attachment [141]. LL-37 has been shown to stimulate twitching movement in a
dose-dependent manner, and twitching was significantly increased even in the presence
of a low concentration of the peptide (4 µg/mL) [141]. In S. aureus, LL-37- and LL-37-
derived peptides have also been shown to inhibit biofilm formation and degrade existing
biofilms [145]. Antibiofilm peptide 1037 can directly inhibit biofilm formation by reducing
P. aeruginosa swimming and swarming motilities, stimulating twitching movement, and
inhibiting the expression of multiple genes involved in biofilm formation [146];

(3) A third mechanism is attenuation of the production of extracellular polymer (EPS),
reduction of biofilm formation, and destruction or degradation of the biofilm matrix. AMPs
mainly inhibit the synthesis of polysaccharides, eDNA and proteins in the extracellular
matrix. Hepcidin 20, an AMP extracted from human liver, can reduce the mass of the
extracellular matrix and alter the structure of Staphylococcus epidermidis biofilms by target-
ing polysaccharide intracellular adhesin (PIA) [147]. Human β-defensin 3 (HBD3) also
has an antibiofilm effect by reducing the expression of the gene encoding PIA in S. epi-
dermidis biofilms [148]. The AMP piscidin-3 derived from fish has nucleosidase activity,
which can destroy eDNA of P. aeruginosa through the coordination of its N terminus with
Cu2+ [149]. The acyldepsipeptide antibiotic ADEP4 can activate the ClpP protease to de-
grade proteins to clear S. aureus biofilms [150]. P1, TL, (LIN-SB056-1)2-K and Pc-CATH1,
Cc-CATH2, Cc-CATH3, etc., have also been shown to disrupt the biofilm structures of
different microorganisms [151–154];

(4) A fourth mechanism is downregulation of the expression of transporters, reducing
the formation of biofilms. The peptide Nal-P-113 inhibits the formation of Porphyromonas
gingivalis biofilms by inhibiting the synthesis of ABC transporters and ATP-binding pro-
teins [140,155]. ABC transporters can promote cell surface and cell–cell interactions and
play a role in the cell adhesion stage of biofilm formation [156]. At low concentrations in
the nanomolar range, HBD2 has been found to reduce biofilm formation without reducing
the metabolic activity of P. aeruginosa and Acinetobacter baumannii. The outer membrane
protein profile of bacteria treated with HBD2 was altered, with reduced expression of sev-
eral proteins, accompanied by an increase in bacterial surface roughness. HBD2-induced
structural changes interfere with the transport of biofilm precursors into the extracellular
space [157].

In addition, some AMPs can act on cellular stress pathways to prevent the formation of
biofilms and clear the established biofilms [158,159]. Some AMPs show a synergistic effect
when combined with traditional antibiotics via the promotion of antibiotic uptake [60].

3.5. Antiviral Mechanism of AMPs

Viruses are different from bacteria, fungi and other microorganisms in that they have
the ability to replicate but lack the enzyme system needed to proliferate and can proliferate
only in susceptible living cells. They recognize host cells and complete the viral replication
cycle within the host cell using low molecular weight substances provided by the host
cell [160]. AMPs with antiviral ability are called antiviral peptides (AVPs), and currently,
AVPs account for approximately 15% of AMPs [161]. AVPs have become a research hotspot
and have shown great potential as medicinal antiviral drugs [162]. AVPs can not only
directly inhibit and kill viral particles but also exert antiviral effects at various stages of
the viral replication cycle: adsorption, penetration, uncoating, biosynthesis, assembly and
release [163] (Figure 2). In addition, AVPs may inhibit viral infection by interfering with



Molecules 2022, 27, 2675 11 of 29

cellular signaling pathways and modulating the host immune system [162] (Figure 2). The
antiviral mechanisms of AVPs are described below.

Figure 2. Schematic presentation of the antiviral mechanism of AVPs. AVPs can directly inhibit and
kill viral particles, and can also exert antiviral effects at various stages of the viral replication cycle,
including adsorption, penetration, uncoating, biosynthesis, assembly, and release. In addition, AVPs
can inhibit viral infection by interfering with cellular signaling pathways and modulating the host
immune system.

(1) The first mechanism is direct inhibition and killing of virus particles. AVPs can dis-
rupt the lipid bilayer in the viral envelope and cause membrane instability, preventing the
virus from infecting host cells [160,164]. LL-37 can directly inactivate HSV-1 extracellularly
due to its damage to the viral envelope, preventing binding to host cells and infection [165].
The effect of LL-37 directly inducing damage to the viral envelope has also been found
for respiratory syncytial virus (RSV), reducing viral binding to and infection of human
epithelial cells in vitro. Furthermore, in a mouse model of pulmonary RSV infection, exoge-
nous LL-37 has a protective effect against RSV-mediated disease [166]. In addition, AVPs
can accumulate on the envelope surface of the enveloped virus, resulting in membrane
tension or the formation of pores that destroy the envelope and release its contents. For
example, gloverin protects against the budded viruses of Autographa californica multiple nu-
cleopolyhedrovirus by disrupting the virus envelope to form pores [167]. Mucroporin-M1
is a derivative of mucroporin, a cationic HDP from scorpion venom. It has been shown to
have antiviral activity against severe acute respiratory syndrome coronavirus (SARS-CoV),
influenza A virus (IAV) and measles viruses. Mucroporin-M1 was shown to bind to the
virus envelope by surface charge interactions and drastically decrease the infectivity of
SARS-CoV, influenza A virus and measles virus. It exerts direct antiviral effects [168]. An
extended peptide from bovines, indolicidin, showed a direct inactivation effect on cell-free
herpes simplex virus (HSV)-1 virions by targeting the viral membrane/glycoprotein [169];
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(2) The second mechanism is blockade of the interaction with cell surface receptors and
inhibition of the adsorption and fusion of viruses. LL-37 and engineered LL-37 can inhibit
Ebola virus (EBOV) infection. These AMPs target EBOV infection at the endosomal cell-
entry step by impairing cathepsin B-mediated processing of EBOV glycoprotein (GP) [170].
Defensins have also been shown to block viral fusion in HIV infection [171]. By monoclonal
antibody competition, the regions of interaction with α-defensins were mapped to the D1
domain of CD4 and to a surface contiguous to the CD4- and coreceptor-binding sites of
gp120 [172]. The main mechanism of action of HNPs 1–3 against HIV-1 is to prevent HIV-1
from entering cells by interfering with the binding of viral gp120 to CD4+ T cells [172].
HNP-1 can also inhibit HIV-1 replication via the disruption of the protein kinase C (PKC)
signaling pathway in an HIV-infected cell [173]. In addition, HNP-1 can inhibit HIV-1
infection after reverse transcription and integration. HNP-1 exerts antiviral effects by
affecting more than one step of the HIV replication cycle [173]. Furthermore, AVPs can
inhibit viral entry by aggregating virions. AVPs with lectin-like functions have the potential
to inhibit viral spread and reduce the viral load by directed copolymerization with viral
target proteins and interfering with subsequent dysfunction of that protein [5]. The α-
defensins HNP1 and human α-defensin 5 (HD5) have been shown to inhibit BK virus (BKV)
infection by targeting early events in the viral life cycle. HD5 can bind to BKV and cause
virion aggregation, preventing normal virus binding to the cell surface and uptake by the
cell [174];

(3) The third mechanism is inhibition of virus uncoating, virus gene expression and
virus assembly and departure processes after entering cells. P9 and P9R, derived from
mouse β-defensin-4, showed potent antiviral effects against a variety of respiratory viruses,
including influenza virus, SARS-CoV and Middle East respiratory syndrome coronavirus
(MERS-CoV). They prevented viral RNA release by inhibiting late endosomal acidification,
which is required for uncoating early in the viral life cycle [175,176]. HD5 can inhibit human
adenovirus (HAdV) infection at low micromolar concentrations by binding to extracellular
HAdV, preventing the escape of internalized virus/defensin complexes from endosomes
and thereby preventing infection [177]. The study also revealed that virions strongly
colocalize with lysosomes rather than with the nucleus late after infection, suggesting
that viral trafficking after infection is altered due to HD5 binding [177]. During HSV-2
infection, the α-defensins HNP2 and HD5 can interact with the DNA of HSV-2, presumably
inhibiting HSV-2 infection by blocking gene expression [178]. During IAV infection, in vitro,
LL-37 does not prevent viral uptake but rather inhibits IAV replication at a postentry step
prior to viral RNA or protein synthesis [179]. During HIV-1 infection, LL-37 directly
inhibits HIV-1 reverse transcriptase activity in a dose-dependent manner through protein
interactions [180]. Some AVPs act on more than one stage of viral replication. For example,
Hp1036 and Hp1239, two newly discovered venom peptides from the scorpion Heterometrus
petersii, directly interact with the HSV-1 viral membrane extracellularly to inactivate viral
particles and, in postinfection steps, inactivate intracellular viral particles and inhibit viral
proliferation. They also exhibited potent inhibitory activity during the viral attachment
and entry phases [181];

(4) The fourth mechanism is modification of or interference with cellular signaling
pathways. Many viruses require the activation of PKC during infection, and AVPs block
the viral infection process by inhibiting the activation of PKC [182]. For example, in-
fluenza viruses utilize host PKC to regulate ribonucleoprotein complex assembly, a step
required for the transition from primary transcription to genome replication during the
infection cycle [183]. HNP-1 treatment of influenza virus-infected cells inhibited the ac-
tivation of PKC and significantly inhibited influenza virus replication and viral protein
synthesis [184]. HIV-1 requires phosphorylated PKC for viral fusion, transcription, integra-
tion, and aggregation [182,185,186]. HNP-1 acts on primary CD4+ T cells to inhibit HIV-1
replication and block infection by inhibiting PKC phosphorylation [173]. AVPs can also
inhibit viral infection by interfering with other signaling pathways. GF-17 and BMAP-18,
two cathelicidin-derived AMPs, can directly inactivate Zika virus (ZIKV) and can also
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inhibit ZIKV infection at higher levels by interfering with the type I interferon signaling
pathway. The specific mechanism of action is unclear [187]. Smp76, a scorpion venom
peptide, upregulates IFN-β expression by activating interferon-regulated transcription
factor 3 phosphorylation, thereby enhancing type I interferon responses and inhibiting
Dengue virus and ZIKV infection [188];

(5) The fifth mechanism is the regulation of the host immune response. AMPs can
directly bind to various cell surfaces or intracellular receptors on immune cells, triggering
the expression of chemokines and cytokines to attract antigen-presenting cells at the site
of infection, and then activate immature or nonfunctional T cells, neutrophils, natural
killer cells and dendritic cells, eliminating pathogens by inducing humoral and adaptive
immunity [189–191]. In a viral infection, AVPs can also modulate the host’s immune re-
sponse. In IAV-infected C57BL/6 mice, genes encoding β-defensin (Defb4), bactericidal
permeability-increasing protein (Bpifa1), and cathelicidin (Camp) were differentially regu-
lated after IAV infection, and the expression of Defb4 varied according to different virus
strains. For example, β-defensin reduced the infectivity of the A/CA/04/2009 virus but
not the A/PR/08/1934 virus. β-Defensin also altered the innate immune cell repertoire,
with increased alveolar macrophage and CD103(+) dendritic cell counts and decreased
CD11b(+) dendritic cell and neutrophil counts in mice pretreated with β-defensin [192].
AMPs appear to play a dual role in microbial infection, with proinflammatory and im-
munosuppressive effects [193]. LL-37 had anti-IAV activity and reduced disease severity
and viral replication in infected mice. LL-37 protected against influenza virus infection by
regulating inflammation in the lungs [191]. H1N1-infected mice treated with LL-37 had
lower concentrations of proinflammatory cytokines in the lung than did infected animals
that had not been treated with cathelicidin peptides. This finding suggested that AMPs
may play a protective role by inhibiting excessive inflammation [191].

(6) AVPs are used as adjuvants to design and synthesize multiepitope vaccines against
viruses to enhance the prevention and treatment of the viruses [194–196]. For example, in
the development of an effective DNA vaccine against bovine herpesvirus 1 (BOHV-1), the
fusion of bovine neutrophil β-defensin 3 (BNBD3) with the protective antigen in the DNA
vaccine increased the cell-mediated immune response [197]. In the development of univer-
sal influenza vaccines that provide protection against all or most influenza subtypes, many
researchers have attempted to generate conserved epitopes of influenza virus antigens in
the form of peptides with the hope of broadly inducing cross-reactivity against influenza
virus infection. Some of the multiepitope peptide vaccine candidates have entered the
clinical trial stage, such as Multimeric-001 and FLU-v [198].

AVPs have been found to have anti-coronavirus effects in past studies. Due to the
wide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lack
of effective drugs, AVPs are expected to be a new therapeutic strategy. Much research has
been conducted in this field, and the current research focus is on finding and developing
AVPs that can disrupt viral cell membranes and block viral entry into cells to reduce the
viral load of SARS-CoV-2 entering host cells. The potential AVPs against SARS-CoV-2 and
their mechanisms of action are summarized in Table 1.
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Table 1. Potential antiviral peptides against SARS-CoV-2 and their mechanisms of action.

AMP Source Peptide Type Sequence Infection Model Effect and Mechanism
of Action Reference

HD5 Human intestinal
Paneth cells β-sheet ATCYCRTGRCARESLSGVCEISGRLYRLCCR in vitro Shields ACE2 from binding to

SARS-CoV-2 [199]

P9R Modification β-sheet NGAICWGPCPTAFRQIGNCGRFRVRCCRIR in vitro
Binds to the virus and inhibits

virus–host endosomal
acidification

[176]

Brilacidin Synthetic Peptidomimetic Not provided in vitro

Interferes with virus entry and
destroys virus integrity;

synergistic antiviral activity
when combined with remdesivir

[200]

Nisin H Lactic acid
bacteria Cyclic peptide FTSISMCTPGCKTGACMTCNYKTATCHCSIKVSK in vitro Competes with SARS-CoV-2 for

binding to hACE2 [201]

Caerin 1.6 and
caerin 1.10 Amphibian α-helical GLFSVLGAVAKHVLPHVVPVIAEK/

GLLSVLGSVAKHVLPHVVPVIAEKL in silico discovery

Interacts with Arg995 located in
the S2 subunit of Sgp, which is
the key subunit that plays an

essential role in viral fusion and
entry into the host cell through

ACE2

[202]

DP7 Synthetic Not provided VQWRIRVAVIRK in vitro

Inhibits SARS-CoV-2 S
protein-mediated cell fusion and

inhibits SARS-CoV-2 3CLpro
enzyme activity

[203]

Peptoid 1 and its
derivatives Synthetic α-helical Not provided in vitro

Inactivates enveloped viruses
through a membrane disruption

mechanism
[165]

LL-37 Human α-helical LLGDFFRKSKEKIGKEFKRIVQ
RIKDFLRNLVPRTES in vitro and in vivo Simultaneously blocks viral S1

and cloaks ACE2 [204]
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Table 1. Cont.

AMP Source Peptide Type Sequence Infection Model Effect and Mechanism
of Action Reference

HBD2 Human mucosal
epithelium β-sheet GIGDPVTCLKSGAICHPVFCPRRYKQIGT

CGLPGTKCCKKP in vitro Binds the SARS-CoV-2 RBD and
blocks viral entry [205]

Meucin-18 and
its derivative Venom scorpion α-helical FFGHLFKLATKIIPSLFQ/

FFGHLFKLTTKIIPSLFQ in vitro

Interacts with the RBD of the
spike protein of SARS-CoV-2 to

inhibit the spike protein’s
interaction with the ACE2

receptor

[206]

Plectasin Pseudoplectania
nigrella Not provided GFGCNGPWDEDDMQCHNHCK

SIKGYKGGYCAKGGFVCKCY in silico discovery Interacts with the nucleocapsid
of coronaviruses [207]

HNP1 Human
neutrophil β-sheet Not provided in vitro

Destabilizes and precipitates
spike protein and inhibits the
interaction of spike with the

ACE2 receptor

[208]

RC-101 Modification Not provided Not provided in vitro

Destabilizes and precipitates
spike protein and inhibits the
interaction of spike with the

ACE2 receptor

[208]

RTD-1 Rhesus macaque
leukocytes Cyclic peptide GFCRCLCRRGVCRCICTR in silico discovery

Modulates host immunity by
inhibiting the release of

proinflammatory cytokines,
protecting the body from

immune-mediated organ damage

[209,210]
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4. Advantages, Disadvantages and Clinical Applications of Antimicrobial Peptides

As mentioned above, AMPs have a wide range of sources, diverse targets, and broad-
spectrum antimicrobial, immunomodulatory activities and other host-beneficial activities,
such as anticancer or wound healing effects. They can effectively act on multidrug-resistant
bacteria, and drug resistance to them is not easily developed, so they have broad application
prospects. However, there are a number of problems that prevent their clinical application
in humans. Due to the small-molecule nature of AMPs, the direct extraction of natural
AMPs from animal and plant tissues is low-yield, time-consuming, complex and expensive,
making it impossible to achieve large-scale production. Chemical synthesis and genetic
engineering have become the main means to obtain AMPs [211–213]. However, chemically
synthesized peptides are expensive. Besides, through genetic engineering, the direct
expression of AMP genes in microorganisms may cause the host microorganisms to commit
suicide and not yield the expression products. Although this shortcoming can be overcome
by expressing AMP genes in the form of fusion proteins, there are still few expression
products. In addition, many AMPs are easily cleaved by proteases in the human body and
are excreted rapidly through the kidneys, resulting in a particularly short half-life. Due
to the extremely short circulation time, the antibacterial effect in the body is short-lived,
and the antibacterial activity is not ideal [214]. Antibacterial activity may also be lost
due to serum binding or inactivation via physiological salt concentrations. These effects
greatly limit the use of AMPs. Cytotoxicity and lack of specificity are also important factors
preventing the clinical application of AMPs [214].

For better clinical application, researchers have explored different strategies to over-
come the current shortcomings of AMPs. AMPs are easily synthesized by automated
protein synthesis [215,216]. AMPs are abundantly produced in heterologous expression
systems in microbial cells [213,217]. Various chemical modifications, such as d-amino acid
insertion [218], cyclization [219], acetylation [220], encapsulation modification [221,222] and
synthetic AMPs [223], have been used to optimize candidate AMPs, improve the stability
of peptides to proteases, reduce cytotoxicity, and control half-life and release curves [224].

Currently, a few AMPs have been approved by the US Food and Drug Administration
(FDA) for clinical treatment. Listed below are several AMPs approved by the FDA. Grami-
cidin is extracted from Bacillus brevis and has an antibacterial effect by targeting the cell
membrane. It has an obvious effect on Gram-positive bacteria and has an inhibitory effect
on some Gram-negative bacteria at high concentrations [225]. Due to its severe cytotoxicity,
its clinical application is greatly limited. It is generally made into an ointment formulation
for the prevention and treatment of purulent skin diseases. Polymyxin is an antibacterial
polypeptide found in the culture medium of Paenibacillus polymyxa. It also targets the cell
membrane to exert an antibacterial effect and has a killing effect on most Gram-negative
bacilli, including antibiotic-resistant P. aeruginosa and Acinetobacter [226]. It can be applied
locally or systemically. It is mainly used for infections of wounds, the urinary tract, eyes,
ears, the trachea and other body parts caused by P. aeruginosa and other pseudomonads.
It can also be used for sepsis and peritonitis. The main adverse reactions to polymyxin
include renal toxicity and neurotoxicity [226], so it is necessary to closely monitor the
indicators of related adverse reactions during the application process. Vancomycin is a
glycopeptide antibiotic that plays an antibacterial role by inhibiting cell wall synthesis and
has a strong antibacterial effect on Gram-positive bacteria. It is usually used systemically
and is used for infectious diseases caused by drug-resistant bacteria [227]. In recent years,
reports of drug-resistant S. aureus have become increasingly frequent, and the active search
for alternatives that may prolong the clinical use of this important antibiotic has become
a research hotspot. Examples include telavancin, which was approved by the FDA in
2009, and dalbavancin and oritavancin, which were approved by the FDA in 2014 [227].
Daptomycin is a lipopeptide antibiotic produced by Streptomyces solani for the treatment of
concurrent skin and skin structure infections, such as abscesses, surgical incision infections,
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and skin ulcers, including those caused by MRSA [227,228]. The mechanism of action of
daptomycin is different from that of other antibiotics. By disrupting the transport of amino
acids across the cell membrane, daptomycin blocks the biosynthesis of peptidoglycan on
the bacterial cell wall and changes the properties of the plasma membrane. In addition,
it can also kill bacteria by destroying their cell membranes and causing their contents to
leak out [225,228]. There are also examples of antiviral AMPs used in clinical practice.
For example, enfuvirtide is a synthetic peptide HIV fusion inhibitor that can bind to viral
envelope glycoproteins and prevent the conformational changes necessary for virus fusion
with cell membranes, thereby inhibiting HIV-1 replication [229]. The application method is
subcutaneous injection for HIV infection, combined with reverse transcriptase inhibitor
drugs [229]. Lopinavir is a type of peptidomimetic approved by the FDA for the treatment
of HIV and has been shown to work against SARS-CoV-2 in recent clinical trials [230].

Preclinical feasibility studies are already underway for a variety of AMPs, but few
have entered clinical trials. Table 2 summarizes some of the AMPs that have entered clinical
or preclinical testing. Most AMPs are analogs of natural AMPs, but some are fully synthetic.
Additional clinical trial data are needed to improve peptide stability, reduce cytotoxicity,
and improve pharmacokinetics and pharmacodynamics when these molecules are used in
a clinical setting.
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Table 2. AMPs in clinical or preclinical trials.

AMP Template Phase of Clinical Trials Administration Application Reference

Iseganan Protegrin-1 Phase 2/3 Topical Prevention of ventilator-associated pneumonia [231]

XF-73 Porphyrin Phase 1 Nasal gel Prevention of postoperative S. aureus colonization
and infection [232]

P-113 Histatin 5 Phase 2 Mouth rinse Reduce gum bleeding, gingivitis and plaque [233]

Omiganan Indolicidin Phase 2 Topical gel Treatment of mild to moderate atopic dermatitis [234]

LTX-109 Synthetic peptidomimetic Phase 1/2 Topical Prevention of nasal infections caused by
methicillin-sensitive/resistant S. aureus [235]

Onc72 Oncocin Preclinical Subcutaneous Treatment of antibiotic-susceptible K. pneumoniae [236]

OP-145 LL-37 Preclinical Implant coating Prevention of S. aureus-induced
biomaterial-associated infections [237]

Lactoferrin Not applicable Phase 4 Oral Prevention of neonatal sepsis [238]

Murepavadin Protegrin-1 Phase 1 Intravenous Treatment of pneumonia caused by
P. aeruginosa infection [239]

Surotomycin Daptomycin Phase 2 Oral Treatment of C. difficile-associated infection [240]

LL-37 Not applicable Phase 2 Topical Control of infection of diabetic foot ulcers [241]
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In addition, clinical studies have demonstrated that AMP levels can be used clinically
as a prognostic indicator for some diseases. For example, elevated α-defensin levels may
increase the risk of thromboembolic complications [242]. In clinical studies, neutrophil-
derived HBP levels were significantly increased in COVID-19 patients who developed
organ failure compared with those in patients who did not. These results suggest that HBP
levels can predict the development of organ dysfunction caused by COVID-19 [243].

5. Conclusions

AMPs are unique molecules with a wide range of sources and broad-spectrum an-
timicrobial activity that can exert antimicrobial effects via multiple mechanisms of action,
including targeting cell walls, cell membranes, intracellular components, and biofilms. The
multiple mechanisms of action lead to a low possibility of microbial resistance development
and indicate broad application prospects. In addition, AMPs also have antiviral activity
and can act on each stage of viral replication. Due to the COVID-19 pandemic, researchers
are devoted to finding AMP markers that can help to judge the severity of COVID-19,
and research on AMPs against SARS-CoV-2 is increasing, but further research is needed
prior to clinical application. Although AMPs have many advantages, there are still many
disadvantages, such as instability, poor bioavailability, short half-life, cytotoxicity and lack
of specificity, which limit their clinical application. Abundant research is being directed to
this area, including analyzing the relationship between the structure and activity of AMPs,
modification of AMPs, artificial synthesis of AMPs, identification of a suitable system for
commercial production, and clinical research on AMP drugs. It is believed that in the near
future, these problems will be overcome and that AMPs will be safely and effectively used
in clinical practice for the benefit of humankind.
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