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Abstract: Fungal–bacterial co-culturing is a potential technique for the production of secondary
metabolites with antibacterial activity. Twenty-nine fungal species were screened in a co-culture with
carbapenem-resistant Klebsiella pneumoniae at different temperatures. A temperature of 37 ◦ showed
inhibition of bacterial growth. Antimicrobial susceptibility testing for K. pneumoniae was conducted
to compare antibiotic resistance patterns before and after the co-culture. Genotypic comparison of
the K. pneumonia was performed using next generation sequencing (NGS). It was shown that two
out of five K. pneumoniae, with sequence type ST 101 isolates, lost bla-OXA48, bla-CTX-M-14, tir, strA
and strB genes after the co-culture with Scopulariopsis brevicaulis fungus. The other three isolates (ST
383 and 147) were inhibited in the co-culture but did not show any changes in resistance. The total
ethyl acetate extract of the fungal–bacterial co-culture was tested against K. pneumoniae using a
disc diffusion method. The concentration of the crude extract was 0.97 mg/µL which resulted in
total inhibition of the bacteria. Using chromatographic techniques, the purified compounds were
identified as 11-octadecenoic acid, 2,4-Di-tert-butylphenol, 2,3-Butanediol and 9-octadecenamide.
These were tested against K. pneumoniae using the well diffusion method at a concentration of
85 µg/µL which resulted in total inhibition of bacteria. The co-culture results indicated that bacteria
under chemical stress showed variable responses and induced fungal secondary metabolites with
antibacterial activities.

Keywords: virulence factors; co-culture; mutation; gene deletion; bacterial–fungal interaction;
carbapenem resistance

1. Introduction

Resistance to multiple classes of antibiotics—especially resistance to carbapenems—is
one of the urgent threats identified by the World Health Organization (WHO) because
carbapenems are considered the drug of last resort against infections caused by the Gram-
negative pathogen (GNP) [1]. One of the most important pathogens that has shown notably
high patterns of resistance in healthcare settings is Klebsiella pneumoniae (K. pneumoniae) [2].

Carbapenem-resistant K. pneumoniae is a GNP responsible for fatal infections acquired
in hospitals in critically ill patients. These are patients who require prolonged hospital
stays and repeated antibiotic therapy resulting in the emergence of flora resistance shifts,
from normal sensitive flora to resistant flora [3]. Antimicrobial resistance (AMR) rates
to beta-lactam antibiotics (penicillins, cephalosporins, monobactams and carbapenems)
have increased particularly among healthcare-associated infections by GNP in develop-
ing countries. This is due to the lack of national antimicrobial stewardship programs,
the widespread abuse of antimicrobials, including carbapenems in hospitals, and poor
compliance with infection control practices. This has been a serious challenge in Egyptian
hospitals [4,5].
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The genes responsible for carbapenem resistance that were identified in Egypt included
blaOXA, blaNDM, blaVIM, blaIMP, and blaKPC [6]. Extended spectrum beta-lactamase (ESBL)
genotypes included blaCTX-M15, blaTEM-OSB, blaSHV-OSBL, and blaCTX-M-14 [7,8]. A recent
multicenter study from Egypt on 39 multi-drug resistant (MDR) K. pneumoniae isolates
using NGS revealed that the most common acquired resistance gene found was blaCTX-M15,
detected in 69.2%, and carbapenemase genes were found in 74.4%. The most common
carbapenemase genes were blaNDM (35.9%), blaOXA-48 (35.9%), and blaKPC (2.6%). Seven
strains (18%) contained more than a single carbapenemase gene. Yersiniabactin was the
most common virulence factor (69.2%). Hyper-mucoviscosity was documented for 6 out of
39 isolates [9].

To overcome infections, the host body has defense factors against bacterial infections.
These factors include physical barriers like skin and mucous membranes, along with
chemical factors. Once the bacteria invade the host cell, they develop virulence mechanisms
to sustain their growth in adverse conditions [10]. Acquiring iron from the host environment
is one of the most important virulence factors [9]. A range of Enterobacteriaceae encompass a
gene cluster called the high-pathogenicity island that codes for proteins of the yersiniabactin
siderophore and its uptake system [11], which enables the bacterial cell to acquire iron
from host cells through a set of genes. These include ybtA, ybtE, ybtP, ybtQ, ybtS, ybtT, ybtU,
and ybtX [12].

Another crucial virulence factor is the biofilm formation that is linked to chronic
bacterial infections. Infections caused by K. pneumoniae strains that are able to form biofilms
are more challenging to treat. Diago-Navarro E. and his colleagues [13] found that approxi-
mately half of the 40 studied carbapenem-resistant K. pneumoniae bacteremia strains were
able to form biofilms. The genes that code for biofilm formation in K. pneumoniae include
magA, aero, rmpA, rmpA2, allS, wcaG, and iutA [14]. As stated by Hancock V and his col-
leagues [15] fyuA gene encoding the yersiniabactin receptor, is one of the most upregulated
genes in biofilm formation in urinary tract infections caused by E. coli.

In spite of the global antimicrobial resistance threat, the discovery of new antibiotics
has not kept pace with the continuous spread of antibiotic-resistant infectious microorgan-
isms, calling for an urgent search for natural compounds with antibacterial effect [16].

In nature, microorganisms exist in a community; for survival, one microbe could pro-
duce biological products to inhibit or kill other microbes in the battle for limited nutritional
resources and the competition for space. Therefore, co-cultures of microorganisms in the
same confined environment results in the production of potentially novel compounds
through the stimulation of the silent genes of one partner or increasing the production
of secondary metabolites [17]. Microorganism co-cultures can be achieved in either solid
or liquid media and have recently been used extensively to study natural interactions
and discover new bioactive metabolites [18]. Successful co-culturing experiments can be
mediated through direct contact between the members of the co-culture, where the fungal
mycelia and bacterial cells of both microorganisms interact together [19]. Interactions of
microorganisms with the external environment is mediated through the cell wall, protecting
the cells from oxidative or osmotic stresses, and modulating the responses to antimicrobial
drugs [20]. Fungi are capable of adapting their cell walls in response to stress by activating
several mechanisms directed towards healing or as compensation for cell wall damage [21].

Antimicrobial compounds produced by fungi are generally secondary metabolites that
are not used for the growth of the fungi, but for self-defense and competition with other
microbes to obtain nutrients, habitats, oxygen, light, and other growth requirements [22].

The most studied category of this interaction is antibiosis, which led to the develop-
ment of several important antibiotics like the beta-lactam antibiotic, penicillin, that was
developed as the result of antibiosis between Staphylococcus and Penicillium [23]. Several
studies of fungal–bacterial interactions proved that co- culturing is a potential method for
the induction of secondary metabolites [19], yet very little is known about the underlying
molecular mechanisms of these interactions.
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This study was conducted to utilize the potential of bacterial–fungal interaction in
controlling carbapenem-resistant K. pneumoniae in vitro through the co-culture of fungi and
K. pneumonia in both solid and liquid media.

2. Material and Methods
2.1. Isolation, Identification, and Antimicrobial Susceptibility Testing of K. pneumoniae

K. pneumoniae were isolated from blood cultures of ICU patients who had been diag-
nosed with bacteremia and sepsis in a tertiary care hospital in Egypt. Samples of 10 mL
of peripheral blood were withdrawn aseptically from ICU patients with elevated sepsis
markers and inoculated into BACT/ALERT® blood culture bottles (Biomerieux, France).
Positive blood culture bottles were sub-cultured on blood agar and MacConkey agar plates
to isolate the pathogens. Identification of the isolated bacteria was performed by VITEK-2®

(Biomerieux, France) according to the published guidelines of the Clinical Laboratory
Standards Institute (CLSI, 2019).

Antibiotic susceptibility testing was performed by disc diffusion method according to
guidelines of the (CLSI, 2019).

2.2. Isolation, Screening, and Indentification of Fungi with Activity against K. pneumoniae

Fungi were isolated from the soil and hospital inanimate environment and the fungal
isolates were screened for antibacterial properties against K. pneumoniae. Soil samples
were collected from the garden of Cairo University and the hospital garden, at a depth of
10 cm below soil surface. An amount of 5 g of soil was added to 1 L of sterile water and a
serial dilution was made [24]. From each dilution, 1 mL of spore suspension was cultured
on Czapek’s Dox sterile agar media. The plates were incubated at 26 ◦C for 5 days [25].
Environmental swabs were collected from inanimate objects from empty rooms by wetting
sterile cotton swabs with sterile saline and rubbing a 10 cm2 surface of the tested area.
The swabs were streaked on Czapek’s Dox agar and incubated at 26 ◦C for 5 days. Fungal
isolates were identified in Assiut University Mycological Centre (AUMC, Assiut, Egypt).

2.3. Fungal Bacterial Co-Culture

Screening of 29 Fungal Isolates for Antibacterial Activity [26]. Fungal–bacterial co-
culture was performed by preparing 0.5 McFarland standard (MCF) suspension from each
K. pneumoniae isolate, streaking the suspension on Mueller–Hinton Agar plate (HIMEDIA
Laboratories, India) using a sterile cotton swab and leaving the plate to dry for 5 min.
A 0.5 cm in diameter fungal disc was collected from a 5-day-old fungal plate and placed
in the center of the petri dish using a sterile needle. Two petri dishes 3X replicates were
prepared for each K. pneumoniae isolate, with each of 29 fungal isolates, for incubation at
two different temperatures (37 ◦C which is optimum for bacterial growth and 26 ◦C which
is optimum for fungal growth). The plates were then examined daily for both fungal and
bacterial growth

2.4. Subculture of K. Pneumoniae after Co-Culturing with Fungi

After 14 days of co-culture incubation, K. pneumoniae were sub-cultured from the zone
around the fungal growth using a sterile loop and streaked on MacConkey agar (HIMEDIA
Laboratories, India) and incubated for 24 h at 37 ◦C. Antimicrobial susceptibility testing
was then performed by disc diffusion method to compare between the antimicrobial
susceptibility of K. pneumoniae before and after the co-culture. The inhibited isolates were
sub-cultured repeatedly on Mueller–Hinton agar. When retested for the susceptibility to
carbapenems, they were found to remain carbapenem-susceptible.

2.5. Next Generation Sequencing

Next generation sequencing was used for whole-genome sequencing of K. pneumoniae
isolates before and after the co-culture. The bacterial DNA was extracted from freshly
sub-cultured colonies using the QIAamp DNA Mini Kit (Qiagen, cat # 51304) according
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to the manufacturer’s instructions, and the DNA concentration was measured using a
Denovix Fluorometer (Denovix, Wilmington, DC, USA). The genomic DNA was stored
at −20 ◦C. Total bacterial DNA (1 ng) was used in the library preparation. The library
was prepared with Nextera XT DNA Library Preparation Kit (FC-131-1096, Illumina, San
Diego, CA, USA), according to the manufacturer’s instructions. To summarize, transposons
were used to fragment the DNA, subsequently, adapter sequences were added onto the
DNA template. The product was then size-selected for optimum insert length, enriched,
and quantified. Sequencing was carried out with the MiSeq reagent kit 600 v3 (Illumina,
USA) on the Illumina MiSeq, generating, on average, 301 base pair paired-end reads.

FastaQ files were uploaded on Illumine BaseSpace and were assembled de novo using
the Spades application. The assembled FASTA contig files were uploaded to both the
PATRIC online tool and the Center of genomic epidemiology online website database for
further analysis.

2.6. Preparation of Crude Extract of Fungal–Bacterial Co-Culture

The broth media was filtered using filter paper Whatmann No.1 to remove fungal
mycelia and then centrifuged at 8000× g for 10 min to remove the bacteria. The supernatant
was transferred to a separatory funnel mixed with same volume of dichloromethane 3 times.
The funnel was strongly shaken and then left to allow partitioning. Ethyl acetate was added
and the same process mentioned with dichloromethane was repeated. dichloromethane
and ethyl acetate extracts were evaporated to dryness under reduced pressure using a
rotary evaporator at temperatures of 45 ◦C and 60 ◦C, respectively, and then the 2 extracts
were weighed separately.

2.7. Testing the Crude Extract against K. pneumoniae

After evaporation of both extracts, they were tested against K. pneumoniae isolates
before co-culture using the disc diffusion method by adding 50 µL of each extract on 1 cm
in diameter filter paper disc, which was then allowed to dry to assess their antibacterial
effects at the same time MIC was performed.

2.8. Column Chromatography for Compound Elucidation

Sephadex® LH-20 (Merk, Darmstadt, Germany) was used as stationary phase. The Sephadex
was suspended in chloroform to pack the column. The solvent-resistant column was 40 cm
long, with a diameter of 2.5 cm and had a glass stopper at the bottom. The Sephadex sus-
pension was introduced gradually, and the final column size was 30 × 2.5 cm. A 243.3 mg
ethyl acetate extract was dissolved in 5 mL of chloroform and was passed through the
column with flow rate 0.2 mL/min. A gradient solvent system of cyclohexane–chloroform–
methanol (3:1:1, 2:1:1, 1:1:1) was used. Fractions of 5 mL were collected.

Each fraction was dissolved in 200 µL ethanol and 10 µL were added to each well and
tested against K. pneumoniae using the agar well diffusion method to detect which fraction
expressed the most antibacterial activity

2.9. Gas Chromatography Mass Spectroscopy (GC-MS)

GC-MS analyses were performed with an injection volume of 2 µL and a split ratio of
30. Specifications for the measurements in DCM and ACE are as follows:

1. Injector temperature 200 ◦C, Temperature program: T1 = 35 ◦C/3 min, R1 = 10 ◦C/min,
T2 = 220 ◦C

2. Injector temperature 280 ◦C, Temperature program: T1 = 35 ◦C/3 min, R1 = 10 ◦C/min,
T2 = 300 ◦C

Specifications for the measurements in MET.
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2.10. Ethical Consideration

The study protocol was approved by the Research Ethics Committee of Cairo Uni-
versity Medical School in accordance with the Declaration of Helsinki (Ethical approval
number: N-13-2020).

3. Results

Five carbapenem-resistant K. pneumoniae isolates were selected. They were also re-
sistant to other antibiotics commonly used for treatment of patients with Gram-negative
infections. The 5 isolates were referred to as K5, K92, K14, K15, and K16, and their sequence
types were ST101, ST101, ST383, ST147, and ST383, respectively.

A total of 29 fungal isolates were isolated from the soil and from environmental swabs
of the hospital, belonging to 11 fungal species. Table 1.

Fungal isolates that exhibited better growth in co-culture with K. pneumoniae were
identified in Assiut University Mycological Centre (AUMC, Egypt). The fungal isolate that
exhibited the best growth rate in co-culture with K. pneumoniae was Scopulariopsis brevicaulis,
a common soil saprophyte and rare human pathogen [27]. Although the fungal growth at
26 ◦C was faster, it did not show a definite inhibitory effect on the bacterial growth. On the
contrary, at 37 ◦C there was a decrease in the density of bacterial growth around the fungal
inoculums (Figure 1). Accordingly, we completed the study at 37 ◦C.
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Table 1. Identification of Fungal isolates.

AUMC No. Identification
1167 Scopulariopsis brevicaulis (Saccardo) Bainier

11678 Curvularia Lunata (Wakker) Boedijn

11679 Aspergillus niger van Tieghem

11554 Aspergillus flavus (Link)

11555 Curvularia brachyspora (Boedijn)

11556 Penicillium chrysogenum (Thom)

11557 Aspergillus flavus (Link)

11559 Penicillium chrysogepnum (Thom)
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Table 1. Cont.

AUMC No. Identification
11561 Cladosporium sphaerospermum Penzig

11562 Alternaria alternate (Fries) Keissler

11564 Stemphylium botryosum Wallroth

K. pneumoniae that was isolated from the less dense zone around the fungal growth in
the co-culture that after 14 days’ incubation at 37 ◦C as shown in Figure 2, and retested their
antimicrobial susceptibility (AST) compared to the corresponding AST before co-culture.
We noticed that both K5 and K92 became sensitive to Imipenem and Meropenem after the
co-culture, while K14, 15 and 16 AST remained resistant to Imipenem and Meropenem after
co-culture (Table 2).
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of incubation.

Table 2. Antimicrobial susceptibility test results using disc diffusion method of original K. pneumoniae
isolates compared to the inhibited K. pneumoniae after the co-culture.

Antibiotic
K. pneumoniae K5 before

Co-Culture
K5 after

Co-Culture
K92 before
Co-Culture

K92 after
Co-Culture

K15 before
Co-Culture

K15 after
Co-Culture

K14 before
Co-Culture

K14 after
Co-Culture

K16 before
Co-Culture

K16 after
Co-Culture

Imipenem (IMP) 11 mm (R) 25 mm (R) 9 mm (R) 23 mm (S) 9 mm (R) 9 mm (R) 10 mm (R) 10 mm (R) 8 mm (R) 8 mm (R)

Meropenem (MEM) 6 (R) 20 mm
(R) 6 (R) 19 mm

(S) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R)

Piperacillin/Tazobactam (TZP) 6 (R) 20 mm (R) 6 (R) 21 mm 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R)

Cefepime (FEP) 6 (R) 12 mm
(R) 6 (R) 12 mm 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R)

Cefotaxime (CRO) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R)

Cefotaxime (CTX) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R)

Amoxicillin/Clavulanate (AMC) 6 (R) 15 mm
(S) 6 (R) 16 mm 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R)

Ceftriaxone (CRO) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R)

Trimethoprim-sulfamethoxazole
(SXT) 6 (R) 17 (R) 6 (R) 20 mm 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R)

Ciprofloxacin (CIP) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R) 6 (R)

Whole-genome sequencing was conducted for genotypic analysis of K. pneumoniae
before and after co-culture (NCBI submission SUB9435847) and each K. pneumonia sample
was given a genomic accession number as shown in Table 3 Thirty-one antimicrobial
resistance genes (ARGs) were selected for comparison (Table 4). We compared those that
confer resistance to beta-lactams (blaCTX-M-14b, blaCTX-M-15, blaTEM-1B, blaOXA-48, blaSHV-1,
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blaSHV-12, blaNDM-5 and blaOXA-9), those that confer resistance to aminoglycoside resistance
(aph(3′)-Ia, aac(6′)Ib-cr, aph(3′)-Via, aph(3′)-VIb, aadA1, armA, strA, and strB), those that
confer resistance against quinolones (oqxA, oqxB, QnrS1, and QnrB1), and those that confer
resistance to rifampicin, fosfomycin, macrolides, sulphonamides, trimethoprim, tetracycline
and phenicol (ARR-3, fosA, mph(A), msr(E), mph(E), sul1, sul2, dfrA5, tet(A) and catA1).

Table 3. Genome accession number for each K. pneumoniae.

Sample Genome Accession

K5_BEFORE JAHTMJ000000000

K5_AFTER JAHTMI000000000

K14_BEFORE JAHTMF000000000

K14_AFTER JAHTME000000000

K15_BEFORE JAHTMD000000000

K15_AFTER JAHTMC000000000

K16_BEFORE JAHTMB000000000

K16_AFTER JAHTMA000000000

K92_BEFORE JAHTMH000000000

K92_AFTER JAHTMG000000000

Table 4. Comparison of the antimicrobial resistance genes before and after co-culture with five
K. pneumoniae.

Resistance Genes Phenotype
K5

before
(ST 101)

K5
after

(ST 101)

K92
before

(ST 101)

K92
after

(ST 101)

K14
before

(ST 383)

K14
after

(ST 383)

K15
before

(ST 147)

K15
after

(ST 147)

K16
after

(ST 383)

K16
before

(ST 383)

aph(3′)-Ia Aminoglycoside
resistance + + + + _ _ + + + +

aac(6′)Ib-cr

Fluoroquinolone
And

aminoglycoside
resistance

_ _ _ _ _ _ + + + +

aph(3′)-VIa Aminoglycoside
resistance _ _ _ _ _ _ _ _ + +

aph(3′)-VIb Aminoglycoside
resistance _ _ _ _ + + _ _ _ _

aadA1 Aminoglycoside
resistance _ _ _ _ _ _ _ _ + +

armA Aminoglycoside
resistance + + + + _ _ + + + +

strA Aminoglycoside
resistance + _ + + + + + + + +

strB Aminoglycoside
resistance + _ + + + + + + + +

fosA Fosfomycin
resistance + + + + + + + + + +

sul1 Sulphonamide
resistance + + + + _ _ + + + +

sul2 Sulphonamide
resistance + + + + _ _ + + + +

dfrA5 Trimethoprim
resistance + + + + _ _ + + + +

tet(A) Tetracycline
resistance _ _ _ _ + + _ _ + +

catA1 Phenicol
resistance _ _ _ _ + + _ _ _ _
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Table 4. Cont.

Resistance Genes Phenotype
K5

before
(ST 101)

K5
after

(ST 101)

K92
before

(ST 101)

K92
after

(ST 101)

K14
before

(ST 383)

K14
after

(ST 383)

K15
before

(ST 147)

K15
after

(ST 147)

K16
after

(ST 383)

K16
before

(ST 383)

oqxA Quinolone
resistance + + + + + + + + + +

oqxB Quinolone + + + + + + + + + +

QnrS1 Quinolone
resistance _ _ _ _ _ _ + + + +

QnrB1 Quinolone
resistance _ _ _ _ _ _ _ _ + +

blaCTX-M-14b
Betalactam
resistance + _ + __ + + + + + +

blaCTX-M-15
Betalactam
resistance + + + + _ _ + + + +

blaTEM-1B
Betalactam
resistance _ _ _ _ _ _ _ _ + +

blaOXA-48
Betalactam
resistance + __ + _ + + + + + +

blaSHV-1
Betalactam
resistance + + + + + + _ _ + +

blaSHV-12
Betalactam
resistance _ _ _ _ _ _ + + _ _

blaNDM-5
Betalactam
resistance _ _ _ _ _ _ _ _ + +

blaOXA-9
Betalactam
resistance _ _ _ _ _ _ _ _ + +

catA1 Phenicol
resistance _ _ _ _ _ _ _ _ + +

Plasmid replicons
K5

before
(ST 101)

K5
after

(ST 101)

K92
before

(ST 101)

K92
after

(ST 101)

K14
before

(ST 383)

K14
after

(ST 383)

K15
before

(ST 147)

K15
after

(ST 147)

K16
after

(ST 383)

K16
before

(ST 383)

IncFIB(Mar) + + + + _ _ + + + +

IncL/M(pOXA- 48) + __ + _ + + + + + +

IncFIB(pKPHS1) + + + + + + + + _ _

IncHI1B + + + + _ _ + + + +

IncFII(pKPX1) _ _ _ _ _ _ + + _ _

IncFIB(pQil) _ _ _ _ _ _ _ _ + +

IncFII(K) _ _ _ _ _ _ _ _ + +

Comparing the antibiotic resistance, virulence factors, efflux pumps, and efflux pump-
related products of five isolates before and after co-culture, we noticed that blaCTX-M-14b,
blaOXA-48, tir, strA, and strB genes were lost from K5 and K92 after co-culture with the
fungus. However, the resistance genes of K14, K15, and K16 showed no change after
co-culture, nor did K5 show any change in virulence genes, efflux genes, or efflux- related
products. K92 showed loss of the pagO gene, which belongs to virulence genes. It was
observed that fyuA gene and the ybtA, ybtE, ybtP, ybtQ, ybtS, ybtT, ybtU, and ybtX set of
genes belonging to virulence factors were lost from K16 after co-culture. We did not notice
any gene loss in either K14 or K15.

Both ethyl acetate (EA) and dichloromethane (DCM) extracts (243.3 mg and 214.5 mg,
respectively) were dissolved in 250 µL ethanol and 10 µL were added to each disc and then
tested against K. pneumoniae using the disc diffusion method. The results showed a zone of
inhibition around the EA disc while the DCM disc showed no zone of inhibition as shown
in Figure 3 seven fractions were collected and then left to dry. Table 5 shows the dry weight
in each fraction.

Fraction 2 showed significant inhibition in bacterial growth around the disc, as shown
in Figure 4
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Table 5. Weight of fractions separated from liquid chromatography.

Fraction Weight in mg

Fraction 1 4.31 mg

Fraction 2 17 mg

Fraction 3 20 mg

Fraction 4 16 mg

Fraction 5 31 mg

Fraction 6 33 mg

Fraction 7 62 mg

Four different compounds were identified by GC-MS as 11-octadecenoic acid, 2,4-Di-
tert-butylphenol, 2,3-Butanediol, and 9-octadecenamide, which showed complete inhibition
of bacteria around the well.

4. Discussion

K. pneumoniae resistance has become a public health hazard worldwide. It has become
gradually resistant to penicillin, aminoglycosides, extended-spectrum β-lactamase, and
fluoroquinolones. This resistance is due to chromosomal mutations and the presence of
many transmissible plasmids [28]. When carbapenem antibiotics were introduced in the
2000s as drugs of the last resort for the treatment of infection caused by extended-spectrum-
lactamase (ESBL) producing Gram-negative bacteria, resistance to carbapenems emerged
in strains that produced carbapenemases. High rates of K. pneumoniae were reported
from Egypt [29], and in carbapenem-resistant K. pneumoniae isolates there was a high
prevalence of K. pneumoniae carbapenemase (KPC), New-Delhi metallo beta-lactamases
(NDM), and OXA-48 genes [30]. Facing such an urgent challenge, only a limited number of
antimicrobials have been introduced into the market. Modern improvements in microbial
genomics have proved that many microorganisms can produce natural products under
specific laboratory conditions [31].

Previous studies showed remarkable fungal–bacterial interactions in co-cultures.
Nogueira et al., 2019 [32], examined the interactions of K. pneumoniae and different As-
pergillus species using co-cultures. The results showed that K. pneumoniae could inhibit
spore germination, hyphal growth, and biofilm formation of Aspergillus species in vitro.
The study also presented the importance of physical contact between fungi and bacteria for
the effect to take place. A similar antagonistic effect of K. pneumoniae on biofilm formation
of Candida albicans was reported by Fox et al., 2014 [33].

In our study, the antibacterial activity of fungal secondary metabolites was observed
during the co-culture of S. brevicaulis with K. pneumoniae isolates. The results showed that
the growth rate of the fungus was enhanced at 26 ◦C compared to its growth rate at 37 ◦C.
This finding is in agreement with previous reports [34]. However, the co-culture at 37 ◦C
showed a more clearly identifiable zone of lower density bacterial growth that was not
observed at 26 ◦C.

It has been anticipated that bacterial population is made up of identical cells. However,
according to Gómez, 2010 [35], genetically matching bacterial cells may have variable
metabolism and growth rates along with other cell functions such as efflux pump and
biofilm formation. Ackermann M, 2015 [36], referred to this phenomenon as ‘phenotypic
heterogeneity’ and it has been detected in many different bacterial species.

A group of genes that belongs to the resistance nodulation superfamily of efflux
pumps is considered a main reason for multi-drug resistance in bacteria [37]. By ejecting
structurally unrelated antibacterial compounds, it decreases the intracellular concentration
of the antibacterial agent [38]. Among those genes are AcrA and AcrB, which are responsible
for a protein complex, TolC, that is located asymmetrically in the bacterial cell at the poles
of rod-shaped bacteria such as those belonging to Enterobacteriaceae family [39]. The mother
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cell retains an old cell pole that originated in a past binary fission, which enables the mother
cell to pump out drugs more efficiently than daughter cells, giving the mother cell the
advantage of having a faster growth rate than daughter cells at low concentrations of
antibacterial agents [40].

It was speculated that the K. pneumoniae that survived the presence of small concentra-
tions of the antibacterial agent secreted from S. brevicaulis during co-culture had the same
efflux pumping capacities as the mother cell, allowing their survival, while the daughter
cells that lacked the same efflux pumping capacities ceased to survive causing the formation
of the less dense zone of bacterial growth around the fungi at 37 ◦C.

The less dense zone of bacterial growth did not occur when the co-culture was allowed
to grow at 26 ◦C. This is likely because the antibacterial agent secreted by S. brevicaulis was
produced in much higher concentrations at 37 ◦C than at 26 ◦C. It is a well-established
fact that fungi secrete secondary metabolites during stress conditions, and we assume
that two stress factors were present in this study. The first stress factor being the high
temperature at 37 ◦C, which is not favorable for fungal growth [41], and the second being
the presence of bacteria in the same confined area [42]. To evaluate the effect of the co-
culture on K. pneumoniae at the molecular level, a comparison of genes responsible for
antibiotic resistance, virulence factors, efflux pumps, and efflux pump related products was
conducted. The loss of carbapenem resistance was detected in two isolates (ST 101). In spite
of the inhibited growth, the other three isolates (ST 383 and 147) remained carbapenem-
resistant, suggesting different inhibition mechanisms.

The NGS analysis showed that after the co-culture with S. brevicaulis, the two K. pneu-
moniae strains, K5 and K92 (ST 101), lost the IncL/M(pOXA-48) plasmid, which harbors the
gene responsible for resistance to carbapenem. This was confirmed by the AST of both
strains before and after co-culture, as well as after sub-culturing a sample from the same
plate after 14 days of co-culture away from the fungal growth. This result indicated the
permanent loss of the plasmid.

The blaCTX-M-14b gene encoding for extended-spectrum beta-lactamase (ESBL) pro-
duction may be subject to mutation or deletion after co-culture, although the bacteria
remained an ESBL producer due to the presence of blaCTX-M-15b (which may be present on
bacterial chromosome or on a different plasmid). There was also a loss of the tir gene that
encodes a protein accountable for transfer inhibition through transposon Tn1999 and its
alternatives [43].

Additionally, both the strA and strB genes, which are responsible for streptomycin
resistance [44], were lost from both strains, while the other three did not show any change
in resistance genes. Furthermore, the pagO gene that was lost from K92 is a putative
membrane protein gene that belongs to the drug/metabolite transporter superfamilies [45].
Its main function is unknown.

Genomic analysis was performed for the other three K. pneumoniae strains (K14, K15
and K16) to explore virulence genes and efflux pump genes. K16, before and after the
co-culture, revealed the loss of some of the following virulence genes that encode different
components of the bacterial siderophore systems: fyuA gene, along with the ybtA, ybtE,
ybtP, ybtQ, ybtS, ybtT, ybtU, and ybtX set of genes.

Iron is a crucial nutrient for most bacterial species as it is a cofactor for the electron
transport [46]. These results show that K16 lost crucial vitality and virulence determi-
nants after the co-culture. In concordance, Perry RD, 2011 [12], demonstrated that a
number of virulence factors were important for the development of the bubonic plague
caused by Yersinia pestis due to the siderophore-dependent iron transport system. Yersini-
abactin encoded on a high pathogenicity island that is prevalent among many pathogenic
bacteria of Enterobacteriaceae family. Previous research evaluated the dissemination of
siderophores among K. pneumoniae clinical isolates and found that most K. pneumoniae
isolates produce enterobactin, while a much smaller percentage produce either aerobactin
or yersiniabactin [47,48]. Yersiniabactin is vital for the infectivity and pathogenicity of
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K. pneumoniae against a mammalian host, and the presence of yersiniabactin contributes to
a more virulent phenotype of K. pneumoniae [49].

5. Conclusions

In this study, the molecular genotypes and phenotypes of antibiotic-resistant K. pneu-
monia were investigated before and after the co-culture with S. brevicaulis. The correlation
between bacterial–fungal interaction, antibiotic resistance, and virulence factors in K. pneu-
monia were determined. Our results indicated that K. pneumonia ST101 lost blaCTX-M-15b and
blaOXA-48 genes and that the consortium of compounds were able to inhibit K. pneumonia
isolates with ST101, 383, and 147, which could facilitate future attempts to control drug
resistant bacteria.

Such findings may increase our understanding of the potential of bacterial–fungal
interaction in the control of antibiotic resistance and in the production of compounds with
antibacterial effects.
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