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Abstract: Four new pentacyclic triterpenoids named Sabiadiscolor A–D (1 and 7–9) together with
eleven known ones were isolated by repeated column chromatography. Their structures were identi-
fied and characterized by NMR and MS spectral data as 6 oleanane-type pentacyclic triterpenoids
(1–6), 7 ursane-type ones (7–13), and 2 lupanane-type ones (14–15). Except for compound 15, all other
compounds were isolated from Sabia discolor Dunn for the first time. Their α-glycosidase inhibitory
activities were evaluated, which showed that compounds 1, 3, 8, 9, 13, and 15 implied remarkable
activities with IC50 values ranging from 0.09 to 0.27 µM, and the preliminary structure–activity
relationship was discussed.

Keywords: Sabia discolor Dunn; pentacyclic triterpenoids; isolation and purification; α-glycosidase
inhibitory activities

1. Introduction

Diabetes mellitus (DM) is one of the most prevalent metabolic diseases worldwide.
This disease is a chronic metabolic disease mainly characterized by hyperglycemia caused
by a variety of factors, among which type 2 diabetes mellitus (T2DM) is the most common,
accounting for 90% of the total number of diabetic patients. T2DM is a type of diabetes
that is associated with an imbalance in glucagon/insulin homeostasis that leads to the
formation of amyloid deposits in the brain, in pancreatic islet cells, and possibly in the
kidney glomerulus. With increasing human material resources and improvements in living
standards, the incidence of T2DM is increasing, which seriously affects human health and
quality of life. When diet and exercise fail to control hyperglycemia, patients are forced
to start therapy with antidiabetic agents. Currently, long-term medication remains an
important tool for T2DM control and treatment, and these drugs are characterized by low
bioavailability and immediate drug release, resulting in the need to increase the frequency of
administration to achieve therapeutic goals. It is inconvenient for the patient [1]. Therefore,
there is no ideal drug for the treatment of this disease and it is still urgent and necessary
to develop new candidates with improved clinical therapeutic effects. Natural products,
particularly those derived from plants, have been proven to exert anti-diabetic effects
via diverse mechanisms [2,3]. However, these drugs present several drawbacks that can
affect the course of treatment. α-Glucosidase inhibitors are an important class of drugs
that can be used for the treatment of T2DM and widely exist in fruits, leaves, seeds, and
other tissues and organs of plants. In the past 30 years, research on α-GI from Chinese
herbal medicine has become active at home and abroad, and has gradually become a
hot spot in the prevention and treatment of diabetes [4]. Based on this situation, in our
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continuous discovery of structurally interesting and biologically active triterpenes from
medicinal plants [5–7], four new pentacyclic triterpenes (1 and 7–9), including one new
oleanane and three new ursane-type triterpenes, as well as eleven known triterpenes,
were isolated from the dried stems of S. discolor Dunn. Furthermore, the α-glycosidase
inhibitory activities of these fifteen triterpenoids were screened by an enzyme-inhibitor
model using maltose as a substrate. Herein, we mainly describe the structural elucidation
of four new pentacyclic triterpenes (1 and 7–9) and the α-glycosidase inhibitory activities of
all triterpenoids obtained from S. discolor Dunn. It will be of great significance to provide a
scientific basis for the utilization and development of plant resources of genus Sabia.

2. Results and Discussion
2.1. Structural Analysis of New Compounds

The crude petroleum ether extract of S. discolor Dunn was isolated and purified by
various column chromatography techniques, including MCI gel, Sephadex LH-20, silica
gel, RP-C18 silica gel, and a semipreparative HPLC column, allowing for the isolation of
four new pentacyclic triterpenes, namely Sabiadiscolor A–D (1 and 7–9), along with eleven
known compounds. Their structures are shown in Figure 1. Compared with the literature,
eleven of these structures were known compounds based on their NMR and MS data, and
were identified as ursolic acid (2) [8], juglangenin A (3) [9], 3β, 28-dihydroxy-12-oleanene-l-
one (4) [10], 3-hydroxyolean-12-en-1-one (5) [11], 1α, 2α, 3β-trihydroxyl-olean-12-en-28-oic
acid (6) [12], dandelion alkan-3β, 20β-diol (10) [13], olean-12-ene-1, 3-diol (11) [14], 3-oxo-
20S-hydroxytaraxastane (12) [15], ψ-taraxasterone (13) [16], betulinic acid (14) [17], and
birch ester alcohol (15) [18].
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Compound 1 was obtained as a white solid and its molecular formula was inferred to
be C30H48O3 by HR-ESI-MS with m/z 457.3671 [M + H]+ (calc. 457.3676). The IR spectrum
showed absorption bands for the presence of a hydroxy group (3477 cm−1) and a ketone
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carbonyl group (1713 cm−1). 1H NMR (Table 1 and Figure S1), 13C NMR (Table 2 and
Figure S2), and DEPT (Figure S3) spectral data revealed the presence of eight quaternary
carbons, five methine groups, ten methylene groups, and seven methyl groups, including a
carbonyl group (δC 214.6) and a trisubstituted olefinic unit (δC 122.9 (CH) and δH 5.20 (dd,
J = 4.5, 2.9 Hz, 1H); δC 144.1 (C)). According to 1H NMR (Table 1) spectral data, the
compound has seven methyl groups at δH 0.88 (3H, s, H-30), 0.90 (3H, s, H-29), 1.00 (3H, s,
H-26), 1.03 (3H, s, H-24), 1.10 (3H, s, H-23), 1.21 (3H, s, H-27), and 1.32 (3H, s, H-25). The
comparison of the NMR data of compound 1 with those of the known compound 4 [10]
in Tables 1 and 2 showed that the two compounds should share the same basic skeleton
and that both were very similar. According to further HMBC (Figure S5) correlations in
Figure 2A, H-3 (δH 3.88, m, 1H) was correlated with C-1 (δC 214.6), C-5 (δC 51.3), and C-24
(δC 22.3), and H-28 (δH 3.30 and 3.21, 2H) was correlated with C-16 (δC 21.9), C-17 (δC 36.9),
and C-18 (δC 42.5). Based on this data, it was predicted that the two hydroxyl groups should
be at positions C-3 and C-28. Therefore, the planar structure of compound 1 was the same
as that of compound 4, as shown in Figure 2A. The relative configuration of compound
1 was further determined according to the NOESY (Figure S6) correlation spectrum in
Figure 2B. The correlation signals between H-23, H-25, and H-3 indicate that H-3 is in
the β configuration and the 3-substituted hydroxyl group has an α configuration. The
relative configuration of compound 4 was determined according to the NOESY (Figure S7)
correlation spectrum in Figure 2C. The correlation signals between H-24 and H-3 indicated
that H-3 was the α configuration and the 3-substituted hydroxyl group has a β configuration.
Therefore, it was confirmed that compound 1 and compound 4 are isomers, and compound
1 is 3α, 28-dihydroxy-12-oleanene-l-one, named Sabiadiscolor A.

Table 1. 1H NMR (600 MHz) data for 1, 4, 7, 8, and 9 (δ in ppm and J in Hz).

Position 1 a 4 a 7 b 8 a 9 b

1 3.80 (dd, 11.1, 4.2) 1.85 (m)
1.63 (t, 1.7)

1.22 (s)
1.42 (s)

2 3.23 (d, 10.9)
3.30 (d, 10.9)

3.57 (d, 10.9)
3.23 (d, 10.9)

2.34 (q, 12.0)
2.42 (dt, 12.6)

2.04 (m)
1.74 (m)

1.01 (s)
1.75 (d, 4.6)

3 3.86 (dd, 12.0, 4.6) 3.87 (dd, 12.0, 4.6) 3.63 (dd, 12.0, 4.4) 3.48 (dd, 12.4, 4.3) 3.49 (dd, 10.6, 5.6)
5 1.59 (d, 2.8) 2.0 (d, 4.3) 1.80 (d, 3.2) 0.59 (dd, 11.8, 2.2) 0.84 (m)

6 1.51 (d, 4.0)
1.59 (d, 2.9)

2.25 (d, 5.6)
2.0 (d, 4.3)

1.76 (d, 3.0)
1.68 (d, 1.8) 3.26 (dd, 12.4, 4.3) 1.60 (dt, 10.4, 2.6)

1.19 (s)

7 1.35 (d, 3.2)
1.53 (d, 4.2)

1.35 (d, 3.2)
1.53 (d, 4.2)

1.76 (d, 3.0)
1.68 (d, 1.8)

1.52 (d, 3.2)
1.57 (s)

1.30 (d, 3.8)
1.42 (s)

8 1.23 (s)
9 2.30 (dd, 11.3, 5.6) 2.25 (dd, 11.3, 5.6) 2.42 (dd, 12.6, 4.5) 1.52 (d, 3.2)

11 2.40 (dd, 12.0, 4.8)
2.25 (dd, 11.3, 5.6)

2.40 (dd, 12.0, 4.8)
2.25 (dd, 11.3, 5.6)

1.68 (t, 1.8)
1.80 (d, 3.2) 1.43 (d, 2.9) 2.35 (m)

12 5.20 (dd, 4.5, 2.9) 5.22 (dd, 4.4, 2.7) 1.80 (d, 3.2)
1.75 (d, 3.0)

1.34 (s)
1.43 (d, 2.9)

1.71 (m)
1.90 (m)

13 1.62 (s) 1.57 (s)

15 0.98 (s)
1.70 (d, 4.6)

1.01 (s)
1.32 (d, 4.6)

1.68 (t, 1.8)
1.28 (s)

1.34 (s)
1.63 (d, 1.7)

1.23 (s)
1.90 (m)

16 1.19 (s)
1.90 (d, 4.5)

1.21 (s)
2.0 (d, 4.5)

1.68 (t, 1.8)
1.28 (s) 1.26 (s) 1.81 (t, 3.3)

2.15 (d, 3.8)
18 1.97 (dd, 13.5, 4.2) 2.10 (dd, 13.6, 4.3) 1.28 (s) 1.06 (s) 1.33 (s)

19 1.14 (s)
1.74 (s)

0.91 (s)
1.32 (s) 1.96 (s) 1.65 (s) 1.41(s)

20 2.44 (td, 7.3, 3.9)

21 1.17 (d, 2.2)
1.31 (s)

1.17 (d, 2.2)
1.02 (s) 5.33 (dd, 6.7, 2.0) 5.30 (s) 1.79 (d, 3.2)

2.11 (m)

22 1.37 (d, 3.7)
1.53 (d, 4.2)

1.35 (d, 3.7)
1.51 (d, 4.3)

1.62 (s)
1.28 (s)

1.57 (s)
1.74 (m)

1.40 (s)
1.19 (s)

23 β 1.10 (s) β 1.08 (s) β 1.24 (s) α 0.93 (s) β 1.27 (s)
24 α 1.03 (s) α 1.04 (s) α 1.09 (s) β 0.96 (s) α 0.90 (s)
25 β 1.32 (s) β 1.32 (s) β 1.26 (s) β 0.96 (s) β 1.08 (s)
26 β 1.00 (s) β 1.02 (s) β 1.17 (s) β 1.06 (s) β 1.33 (s)
27 α 1.21 (s) α 1.21 (s) α 1.01 (s) α 0.76 (s) α 1.42 (s)

28 3.30 (d, 3.2)
3.21 (d, 10.9)

3.57 (d, 3.2)
3.23 (d, 10.9) β 0.80 (s) β 0.74 (s) β 1.01 (s)

29 α 0.90 (s) α 0.91 (s) α 1.65 (s) α 0.99 (d, 6.4) β 1.03 (d, 2.8)
30 β 0.88 (s) β 0.89 (s) β 0.99 (s) β 1.57 (s) α 1.03 (d, 2.8)

a Data measured in CDCl3. b Data measured in C5D5N.
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Table 2. 13C NMR (150 MHz) data for 1, 4, 7, 8, and 9 (δ in ppm).

Position 1 a 4 a 7 b 8 a 9 b

1 214.6 212.4 79.7 38.1 38.5
2 42.8 44.1 39.5 27.1 26.7
3 79.3 78.6 75.5 79.3 77.9
4 38.0 39.3 39.7 38.8 39.2
5 51.3 54 52.1 53.0 55.5
6 18.4 17.8 18.5 75.0 18.6
7 32.3 32.5 34.5 17.9 40.5
8 41.9 42 42.5 41.6 47.9
9 38.9 39.1 53.8 51.4 42.2
10 51.9 52.3 44.1 43.4 37.0
11 25.3 25.3 24.8 24.4 21.3
12 122.9 123 28.4 34.0 38.9
13 143.1 143.1 39.3 36.3 73.8
14 39.9 39.7 42.7 42.4 38.9
15 25.4 25.5 27.5 27.7 28.1
16 21.9 22.0 37.0 36.7 38.3
17 36.9 37 34.8 34.3 35.5
18 42.5 42.5 48.9 48.6 49.6
19 46.1 46.1 36.5 38.3 43.0
20 30.9 30.9 140.0 139.9 41.3
21 34.1 34.1 119.3 118.8 28.6
22 31.0 31.0 42.0 42.2 34.5
23 22.3 16 28.7 12.0 28.4
24 27 28.5 16.2 27.8 16.2
25 15 15 13.2 14.6 16.2
26 17.5 17.5 16.8 16.3 21.6
27 25.8 25.7 14.9 15.0 17.8
28 69.7 69.9 18.0 17.7 18.4
29 33.2 33.2 22.6 22.4 15.9
30 23.5 23.5 21.8 21.6 14.7

a Data measured in CDCl3. b Data measured in C5D5N.
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Compound 7 was obtained as a white solid and its molecular formula was inferred to
be C30H50O2 with 6 degrees of unsaturation by HR-ESI-MS with 465.3701 [M + Na]+ (calc.
465.3703). The IR spectrum of this compound revealed the presence of a hydroxyl group
(3368 cm−1). As shown in Tables 1 and 2, its 1H NMR (Figure S11), 13C NMR (Figure S12),
and DEPT (Figure S13) spectral data showed that compound 7 contained thirty carbons,
including six quaternary carbons, eight methine groups, eight methylene groups, and eight
methyl groups. 1H NMR (Table 1) spectral data at δH 0.80 (3H, s, H-28), 0.99 (3H, s, H-30),
1.01 (3H, s, H-27), 1.09 (3H, s, H-24), 1.17 (3H, s, H-26), 1.24 (3H, s, H-23), 1.26 (3H, s, H-25),
and 1.65 (3H, s, H-29) showed seven methyl groups at the sp3 quaternary carbons and one
methyl group at the sp3 tertiary carbon. According to the above data, compound 7 was
inferred to be a five-membered ring triterpene with one olefinic unit (δC 140.0 (C); δC 119.3
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(CH) and δH 5.33 (dd, J = 6.7, 2.0 Hz, 1H)) and two oxygen-substituted methine groups
(δC 79.7 (CH) and δH 3.80 (dd, J = 11.1, 4.2 Hz, 1H); δC 75.5 (CH) and δH 3.63 (dd, J = 12.0,
4.4 Hz, 1H)). Compared with the chemical structure of the pentacyclic triterpenes isolated
from the genus Sabia, all spectral data showed that the compound was an ursane-type
pentacyclic triterpene and was structurally similar to the known compound, which is
20-taraxastene-3β, 22α-diol [19]. By further analyzing the HSQC (Figure S14) and HMBC
(Figure S15) correlation signals of compound 7 in Figure 3A, it was shown that H-3 (δH 3.63,
dd, J = 12.0, 4.4 Hz) was correlated with C-2 (δC 39.5) and C-24 (δC 16.2), while H-1 (δH
3.63, dd, J = 12.0, 4.4 Hz) was correlated with C-3 (δC 75.5), C-5 (δC 52.1), and C-25 (δC
13.2). Based on the above-mentioned data, it was predicted that the two hydroxyl groups
should be at positions C-1 and C-3. According to the 1H-1H COSY (Figure S16) signal in
Figure 3A, both H-3 (δH 3.63) and H-1 (δH 3.80) are correlated with H-2 (δH 2.36), as shown
in Figure 3A. The relative configuration of compound 7 was further determined according
to the NOESY (Figure S17) correlation spectrum in Figures 3B and S16. The correlation
signals between H-3 and H-24 indicate that H-3 has an α configuration. The correlation
signals between H-3 and H-1 indicate that H-1 has an α configuration. Both substituted
hydroxyl groups at C-1 and C-3 had a β configuration. Therefore, the structure of the
compound can be determined as 20-taraxastene-1β, 3β -diol, named Sabiadiscolor B.
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Compound 8 was obtained as a white solid and its molecular formula was inferred to be
C30H50O2 by HR-EI-MS with m/z 442.3806 [M]+. The IR spectrum absorption at 3413 cm−1

revealed the presence of the hydroxyl group. In Tables 1 and 2, the 1H NMR (Figure S21),
13C NMR (Figure S22), and DEPT (Figure S23) spectral data of compound 8 showed that it
also contained 30 carbons, including six quaternary carbons, six methine groups, and ten
methylene and eight methyl groups. Two sp3 methines (δC 77.9 (CH) and δH 3.48 (m, 1H);
δC 75.0 (CH) and δH 3.26 (dd, J = 12.4, 4.3 Hz, 1H)) were typical of oxygen-bearing groups.
Similar to compound 7, eight methyl groups at δH 0.74 (3H, s, H-28), 0.76 (3H, s, H-27),
0.93 (3H, s, H-23), 0.96 (3H, s, H-24), 0.96 (3H, s, H-25), 0.99 (3H, s, H-29), 1.06 (3H, s, H-26),
and 1.57 (3H, s, H-30), and one trisubstituted olefinic unit (δC 118.8 (CH) and δH 5.30 (s, 1H);
δC 139.9 (C)) existed in compound 8. According to NMR spectral data, compound 8 was
found to be very similar to the known compound pseudotaraxasterol [20]. By comparing
their NMR data, it was found that the main difference lies in the chemical shift values of
C-6, C-7, C-23, and C-25. Therefore, it was speculated that another hydroxyl group might
be at C-6 or C-7. The HSQC (Figure S24) and HMBC (Figure S25) spectra of compound 8
showed that H-3 (δH 3.50) was correlated with C-1 (δC 38.1) and C-23 (δC 12.0). H-6 (δH 3.29)
is associated with C-7 (δC 17.9), C-24 (δC 27.8), and C-26 (δC 16.3). The relative configuration
of compound 8 was determined according to its NOESY (Figure S27) correlation spectrum,
as shown in Figure 4B. The strong correlations of Me-23/H-3/H-5 and H-6/Me-23 indicated
that these protons or methyl groups were α-orientations. Thus, Me-23, H-3, H-5, and H-6
were arbitrarily assigned α-orientations, while two hydroxyl groups on the third and sixth
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carbons were β-oriented. Therefore, the structure of compound 8 can be determined to be
6β-pseudotaraxasterol, named Sabiadiscolor C.
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Compound 9 was obtained as a white solid and its molecular formula was inferred
to be C30H52O2 by HR-ESI-MS with m/z 443.3339 [M − H]−. The IR spectrum revealed
the presence of the hydroxyl group (3388 cm−1). All 30 carbons observed in the 1H NMR
(Figure S31), 13C NMR (Figure S32), and DEPT (Figure S33) spectral data could be classified
into six sp3 quaternary carbons, eight sp3 methine groups, eight sp3 methylene groups, and
eight methyl groups, as shown in Tables 1 and 2. Among them, one sp3 methine (δC 77.9
(CH) and δH 3.49 (dd, J = 10.6, 5.6 Hz, 1H)) and one sp3 quaternary carbon(δC 73.8 (C)) were
ascribed as bearing oxygen atoms. According to 1H NMR data (Table 1), the compound
has eight methyl groups at δH 0.90 (3H, s, H-24), 1.01 (3H, s, H-28), 1.03 (3H, d, H-29), 1.03
(3H, d, H-30), 1.08 (3H, s, H-25), 1.27 (3H, s, H-23), 1.33 (3H, s, H-26), and 1.42 (3H, s, H-27).
The comparison of the NMR data of compound 9 with the known compound ursan-3β,
which is 5α-diol [21], suggested that compound 9 possessed an ursane-type pentacyclic
triterpene skeleton. The HSQC (Figure S34) and HMBC (Figure S35) spectra of compound
9 showed that C-13 (δC 73.8) was correlated with H-14 (δH 1.42) and H-18 (δH 1.33), which
revealed that the hydroxyl group should be assigned at C-13. The relative configuration of
compound 9 was determined according to its NOESY (Figure S37) correlation spectrum, as
shown in Figure 5B. The strong correlations of Me-24/H-3/H-5 indicated that Me-24, H-3,
and H-5 were α-orientations, while the hydroxyl group on the third carbon was β-oriented.
Therefore, the structure of compound 9 can be determined as ursan-3β, 13β-diol, named
Sabiadiscolor D.
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2.2. α-Glycosidase Inhibitory Activities

All compounds (1–15) isolated from S. discolor Dunn were evaluated for their α-
glycosidase inhibitory activity. As shown in Table 3, compounds 1, 3, 8, 9, 13, and 15
showed remarkable activities with IC50 values from 0.09 to 0.27 µM, while compound 7
showed weak activity with an IC50 value of 0.56 ± 0.0331 µM. The other compounds had
low inhibitory activity against α-glycosidase and are not listed in Table 3.
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Table 3. α-glucosidase inhibitory activity of compounds 1, 3, 7, 8, 9, 13 and 15. (n = 3) a.

Compound IC50 (µM) Compound IC50 (µM)

1 0.27 ± 0.0499 9 0.23 ± 0.0307
3 0.11 ± 0.0222 13 0.26 ± 0.0383
7 0.56 ± 0.0331 15 0.09 ± 0.0045
8 0.23 ± 0.0135 Acarbose b 0.35 ± 0.0006

a Data of inactive compounds are not listed. b Positive control.

2.3. Discussion

By modern natural medicinal chemistry experiments, fifteen natural pentacyclic triter-
penoids (1–15) were obtained and identified from the traditional Chinese ethnic medicinal
plant named S. discolor Dunn, collected from minority areas, and four of them (1 and 7–9)
were new compounds. Their preliminary α-glycosidase inhibitory activities were evaluated.
The results showed that six compounds (1, 3, 8, 9, 13, and 15) showed remarkable activities
with IC50 values of 0.27 ± 0.0499, 0.11 ± 0.0222, 0.23 ± 0.0135, 0.23 ± 0.0307, 0.26 ± 0.0383,
and 0.09 ± 0.0045 µM, respectively. It was found that ursane-type pentacyclic triterpenes
have better hypoglycemic activities and especially new compounds 1, 8, and 9 have more
significant activity than the positive control (Acarbose), which revealed that they might be
a class of potential α-glycosidase inhibitors. According to the structure and activity data
of these pentacyclic triterpenoids with potential hypoglycemic activity, it is speculated
that the number and location of hydroxyl groups as well as double-bond groups might
contribute more greatly to the inhibition rate of α-glycosidase, and both oleanane-type
pentacyclic triterpenoids and lupanane-type ones should be the potential α-glycosidase
inhibitor. Due to limited quantity of the isolated compounds, it is not possible to systemati-
cally discuss the structure–activity relationship of such compounds, but compound 15 with
the lupanane-type pentacyclic triterpenoid skeleton was implied to have the best activity.

S. discolor Dunn is one of the most important species in the genus Sabia, which is
rich in resources in the minority areas of southwest China. The medical plant is used to
treat rheumatism, bone pain, bruises, hepatitis, and other diseases in the folk [22]. The
main types of chemical constituents in the genus Sabia included pentacyclic triterpenoids,
alkaloids, benzene derivatives, and fatty acids [23], but there was less literature reporting on
the chemical composition of S. discolor Dunn. As our research suggested its hypoglycemic
activity for the first time, it provided an important basis for the comprehensive utilization
of this plant resource.

3. Materials and Methods
3.1. General Experimental Materials

One-dimensional and 2D NMR spectra were measured on a Bruker AM-600 spectrom-
eter. HRESIMS data were obtained by Q EXACTIVE FOCUS (Thermo Fisher Technologies
Co. Ltd., Waltham, MA, USA) spectrometers. Electrospray ionization (ESI) data were
obtained by an HP 1100SMD. Preparative HPLC separations were run on a SEP system
(Beijing Sepuruisi Scientific Co., Ltd., Beijing, China) equipped with a variable-wavelength
UV detector using a YMC-Pack ODS-A column (250 × 20 mm, 5 µm). IR spectra were
obtained using a Bruker Tensor-27 instrument (Bruker, Munich, Germany). The extract
was obtained through a 300 L extraction tank (JF21060, Jiangsu Jufeng Machinery Co. Ltd.,
Huaian, China). Column chromatography (CC) was performed on silica gel (40–80 mesh,
200–300 mesh, and 300–400 mesh, Qingdao Haiyang Chem. Ind. Ltd., Qingdao, China),
silica gel H (40–80 µm mesh, Qingdao, China), Sephadex LH-20 (40–70 µm, Amersham
Pharmacia Biotech AB, Uppsala, Sweden), MCI gel (CHP20P, 75–150 µm, Mitsubishi Chem-
ical Industry Co. Ltd., Kenyworth, NJ, USA), and C18 reversed-phase silica gel (20–45 µm,
Merck, Darmstadt, Germany). TLC plates were precoated with silica gel GF254 (Qingdao
Haiyang Chem. Ind. Ltd., Qingdao, China). All solvents were of analytical grade (An-
ergy Chemical Reagents Co. Ltd., Shanghai, China; Shanghai Titan Technology Co. Ltd.,
Shanghai, China).
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Altogether, dimethyl sulfoxide (DMSO; Beijing Mr. Lai Treasure Company, Beijing,
China); phosphate buffer solution (PBS; HyClone); centrifuge tubes, 96 cell culture plates,
and other consumables (NEST Biotechnology Co. Ltd., Beijing, China); and α-glucosidase
(Sigma Company, St. Louis, MO, USA) from saccharomyces cerevisiae were obtained for
this study. Acarbose (Shanghai Yuanye Biotechnology Co. Ltd., Shanghai, China) was
used as a positive control. The absorbance was read using a microplate reader (Varioskan
LUX, Thermo, Waltham, MA, USA) at 405 nm. The results were obtained for at least three
independent experiments.

3.2. Plant Materials

S. discolor Dunn was collected from Zhutou Mountain, Guangxi Province. The dried
stems and leaves were identified by Professor Qing-Wen Sun of Guizhou University of
Traditional Chinese Medicine. The samples were stored in the Key Laboratory of Chemistry
for Natural Products, Chinese Academy of Sciences, Guizhou Province.

3.3. Extraction and Isolation

The dry, powdered stems of S. discolor Dunn (18 kg) were refluxed three times with
75% ethanol for 4, 3, and 3 h successively. The ethanol in the extract was fully recovered
and then the alkaline substances in the extract were removed by 10% bitartrate acidification
to pH = 2. The above extracts were extracted and recovered with petroleum ether to obtain
120 g of extract. The petroleum ether extract was subjected to a petroleum ether/ethyl
acetate solvent gradient (80:1–1:1) by silica gel CC to obtain nine fractions (Fr. 1–Fr. 9). The
separation process is shown in Figure 6.

Fr. 4 was subjected to silica gel CC (petroleum ether/methylene dichloride, 8:1) to
obtain compound 14 (84 mg). Fr. 5 was subjected to Sephadex LH-20 CC (eluted with
CHCl3/MeOH, 1:1) to obtain compound 13 (5 mg). Fr. 6 was subjected to Sephadex LH-20
CC (eluted with CHCl3/MeOH, 1:1) to obtain four subfractions (Fr. 6.1–Fr. 6.4) and Fr.
6.2 was subjected to silica gel column (petroleum ether/ethyl acetate, 10:1) to obtain five
fractions (Fr. 6.2.1–Fr. 6.2.5). Compound 5 (6 mg) was obtained by Sephadex LH-20 CC
(eluted with CHCl3/MeOH, 1:1) from Fr. 6.2.1. Compounds 3 (95 mg) and 1 (105 mg) were
obtained by silica gel CC (petroleum ether/diethylamine, 15:1) from Fr. 6.2.2. Compound
12 (28 mg) was obtained by Sephadex LH-20 CC (eluted with MeOH) from Fr. 6.2.5. Fr.
7 was subjected to Sephadex LH-20 CC (eluted with CHCl3/MeOH, 1:1) to obtain eight
subfractions (Fr. 7.1–Fr. 7.8) and Fr. 7.4 was purified by both Sephadex LH-20 CC (eluted
with MeOH) and silica gel CC (petroleum ether/ethyl acetate, 6:1) to obtain compound 15
(16 mg). Fr. 8 was filtered and subjected to silica gel CC (petroleum ether/diethylamine,
15:1) to afford compound 7 (28 mg). The residue was subjected to Sephadex LH-20 CC
(eluted with MeOH) to obtain five fractions (Fr. 8.1–Fr. 8.5). Fr. 8.3 was subjected to silica
gel CC (petroleum ether/ethyl acetate, 3:1) to obtain compound 4 (40 mg). Compound 11
(93 mg) was obtained by Sephadex LH-20 CC (eluted with CHCl3/MeOH, 1:1) from Fr. 4.
Compound 10 (9 mg) was obtained by silica gel CC (petroleum ether/chloroform, 100:1)
from Fr. 8.6. Fr. 9 was subjected to Sephadex LH-20 CC (eluted with CHCl3/MeOH, 1:1) to
obtain four subfractions (Fr. 9.1–Fr. 9.4) and Fr. 9.1 was subjected to Sephadex LH-20 CC
(eluted with MeOH) to afford compounds 6 (34 mg) and 9 (9 mg). Fr. 9.4 was subjected to a
decompression silica gel CC (petroleum ether/chloroform, 50:1) to afford compounds 8
(11 mg) and 2 (15 mg).
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3.4. Assay of α-glycosidase Inhibition

The inhibitory activity of α-glucosidase was determined by the PNPG method [24]. PBS,
different concentrations of samples or positive drugs, α-glucosidase, and 10% DMSO solution
(100 µL) were mixed by shaking and incubated for 15 min in a constant temperature incubator
at 37 ◦C. Then, 20 µL of PNPG (2.5 mmol/L) was added, mixed by shock, and incubated in
a 37 ◦C constant-temperature incubator for 15 min. Then, 80 µL of Na2CO3 (0.8 mmol/L)
solution was added to stop the reaction and the absorbance was measured by a microplate
reader at 405 nm. Five groups were established, including the blank group (90 µL PBS + 10 µL
10% DMSO + 20 µL PNPG (2.5 mmol/L) + 80 µL Na2CO3 (0.8 mmol/L)), background group
(90 µL PBS + 10 µL compounds + 20 µL PNPG (2.5 mmol/L) + 80 µL Na2CO3 (0.8 mmol/L)),
negative control group (70 µL PBS + 20 µL α-glucosidase + 10 µL 10% DMSO + 20 µL PNPG
(2.5 mmol/L) + 80 µL Na2CO3 (0.8 mmol/L)), positive control group (70 µL PBS + 10 µL
acarbose + 20 µL α-glucosidase + 20 µL PNPG (2.5 mmol/L) + 80 µL Na2CO3 (0.8 mmol/L)),
and drug administration group (70 µL PBS + 20 µL α-glucosidase + 10 µL compounds + 20 µL
PNPG (2.5 mmol/L) + 80 µL Na2CO3 (0.8 mmol/L)), with 3 parallel replicates in each group.
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Inhibition rate = [(OD negative − OD blank) − (OD sample − OD background)]/(OD negative
− OD blank) × 100%.

If the inhibitory rate was close to or higher than that of acarbose, the compound was
considered to have α-glycosidase inhibitory activity. The IC50 of the potential compound
was measured and calculated by the same method after 5-fold dilution.

4. Conclusions

To isolate α-glycosidase inhibitors from natural products, almost all fifteen pentacyclic
triterpenoids were isolated for the first time from the branches and leaves of S. discolor Dunn,
which is a kind of ethnic medicinal plant. These triterpenoids included six oleanane-type
pentacyclic triterpenoids, seven ursane-type triterpenoids, and two lupanane-type triter-
penoids. Among them, four compounds (1 and 7–9) were new pentacyclic triterpenoids.
By further evaluating the α-glycosidase inhibitory activities of these compounds, com-
pounds 1, 3, 8, 9, 13, and 15 showed remarkable activities with IC50 values of 0.27 ± 0.0499,
0.11 ± 0.0222, 0.23 ± 0.0331, 0.23 ± 0.0307, 0.26 ± 0.0383, and 0.09 ± 0.0045 µM, respec-
tively. The results revealed that pentacyclic triterpenoids could be a class of potential
α-glycosidase inhibitors.

Supplementary Materials: Figures S1–S40: 1H NMR, 13C NMR, HSQC, HMBC, 1H-1H COSY,
NOESY, HRMS, and IR spectra data for compounds (1 and 7–9), and NOESY spectra data for
compound 4.
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