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Abstract: The Stefan problem regarding the formation of several liquid–solid interfaces produced by
the oscillations of the ambient temperature around the melting point of a phase change material has
been addressed by several authors. Numerical and semi-analytical methods have been used to find
the thermal response of a phase change material under these type of boundary conditions. However,
volume changes produced by the moving fronts and their effects on the thermal performance of
phase change materials have not been addressed. In this work, volume changes are incorporated
through an additional equation of motion for the thickness of the system. The thickness of the phase
change material becomes a dynamic variable of motion by imposing total mass conservation. The
modified equation of motion for each interface is obtained by coupling mass conservation with a local
energy–mass balance at each front. The dynamics of liquid–solid interface configurations is analyzed
in the transient and steady periodic regimes. Finite element and heat balance integral methods are
used to verify the consistency of the solutions to the proposed model. The heat balance integral
method is modified and adapted to find approximate solutions when two fronts collide, and the
temperature profiles are not smooth. Volumetric corrections to the sensible and latent heat released
(absorbed) are introduced during front formation, annihilation, and in the presence of two fronts.
Finally, the thermal energy released by the interior surface is estimated through the proposed model
and compared with the solutions obtained through models proposed by other authors.

Keywords: several front formation; phase change material; thermal performance

1. Introduction

Liquid–solid phase transitions have industrial applications, where on the one hand,
phase change materials (PCMs) can be used as backup systems for thermoelectric gen-
eration [1,2] and on the other hand, as thermal barriers for air conditioning applications
in the building industry [3,4]. The energy density of materials is enhanced through the
latent heat absorbed in thermal energy storage units for thermoelectric generation during
periods of low solar irradiance [5]. In contrast to applications related to thermoelectric
generation, PCMs with low thermal conductivities are highly desirable when used as a
thermal barrier to provide thermal comfort in building applications. The performance of
PCMs used as thermal shields through PCM wallboards [4,6], PCM ceilings [7] and energy
storage units for day/night cooling to reduce energy consumption [8], has been previously
studied. Numerical simulations have been used to analyze the thermal performance of
PCM walls, where the exterior surface is subjected to daily periodic boundary conditions
and under real weather data [9]. The effects of natural convection on PCM layers with
different orientations have been previously studied [10]. The authors conclude that energy
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transfer rates are reduced in PCM ceilings when the exterior surface is above the melting
temperature Tm and the liquid phase is in the conductive regime.

Numerical methods have been used to incorporate volume displacements produced
by the density change during the phase transition [11–14]. The authors of Refs. [11,12] use
several ways to accommodate mass during freezing of liquid water in confined systems.
The authors perform numerical simulations with models that conserve mass properly,
while considering the density difference between ice and liquid water. They found that
solidification times are 19% higher and the energy absorbed by the PCM is 9% higher, when
compared with models where the total mass of the system is not conserved. Finally, the
authors assume incompressible phases, so the methods proposed can only be applied for
isobaric transitions or materials with low isothermal compressibility. Thermo-mechanical
models that consider the volume changes of a melting salt when confined in an elastic
spherical shell have been developed [15]. The effects of the salt volume expansion played a
significant role on the melting dynamics, thermal energy stored, and mechanical response of
the shell. Experimental estimations of the latent heat, sensible heat, and mechanical energy
stored in a micro-encapsulated KNO3/NaNO3 salt were performed [16]. The thermo-
mechanical model proposed in Ref. [15] was tested against the experimental estimations
of the melting dynamics [16]. The results show a qualitative agreement between the
the proposed model and the experimental estimations. The observed difference can be
attributed to density changes produced by the thermal stress during the melting process
and that are not considered in the original model [15]. Experimental studies of micro-
encapsulated phase change materials (MEPCMs) with voids have also been performed [17].
The voids prevent the loss of latent heat storage capacity produced by the thermal stress
during the melting process. Density variations produced by the thermal stress during
melting of confined salts have also been studied. The model proposes a mass balance that
considers the compressibility of each phase [18], extending the applicability of the original
models [11,12,15] to the melting of confined PCMs.

Semi-analytical solutions to the Stefan problem on finite systems and with different
types of boundary conditions have been reported in Refs. [19,20]. Periodic boundary
conditions were preferred, since PCM layers used for thermal shielding applications are
subjected to temperature oscillations produced by daily thermal variations [20]. The thermal
performance of PCM walls and ceilings for building applications with periodic bound-
ary conditions has also been addressed. Semi-analytical solutions to the Stefan problem
in a finite PCM layer subjected to periodic boundary conditions have been previously
reported [20]. The problem is simplified by assuming temperature oscillations on the
external surface that are always above the melting temperature of the PCM. Additionally,
temperature variations on the interior surface and below the melting temperature of the
PCM were assumed. The situation produces the formation of one liquid-solid interface in
the PCM layer that oscillates with the same frequency as the thermal oscillations on the
layer boundaries [20]. The problem was also addressed in Ref. [21], where the authors
use an enthalpy method and neglect volume changes produced by the oscillations of the
interface. Experimental and numerical evidence in PCM layers subjected to temperature
oscillations above the melting temperature on the external surface has been reported [22].
The temperature on the interior surface was fixed to a constant value and below the melting
temperature of the PCM through a cooling system. Good agreement between the experi-
mental results and a model where volume changes were not considered, was observed in
the liquid phase. Discrepancies between the numerical predictions and the experimental
results were observed on the temperature oscillations in the solid phase. According to the
authors, the observed discrepancies could be produced by the assumption of one dimen-
sional heat transfer. The weather or experimental conditions may produce the formation
of several liquid–solid interfaces or fronts. Temperature oscillations around the melting
temperature of the PCM layer on the external surface and homogeneous temperatures
below the melting point of the PCM on the internal surface, have also been considered [23].
The authors found that during the heating process, the solid PCM melts on the exterior



Molecules 2022, 27, 2158 3 of 33

surface and the interface or front moves towards the interior surface. Additionally, when
the ambient temperature is below Tm, a thin solid layer in contact with the external surface
is formed. The PCM layer is then divided into three regions and in the presence of two
fronts during the cooling process. Formation of three liquid-solid interfaces may also occur,
dividing the PCM layer into four regions. The configuration of phases and number of
existing fronts depends on the amplitude of the temperature oscillations, the thickness
of the PCM layer and thermodynamic properties of the PCM [23]. Periodical and non-
sinusoidal boundary conditions have also been considered to address the effects of weather
variations due to season changes during an entire year [24,25]. The phase configuration
in the PCM layer when the exterior surface is subjected to variable periodic boundary
conditions may change during each season. The Stefan problem with periodic boundary
conditions around or above the melting temperature of the PCM, has been extensively
studied. The problem studied by the mentioned authors has a one-dimensional treatment
and no volume changes are incorporated. The literature that is focused on the Stefan
problem with applications on thermal shielding, frequently neglects volume changes when
describing the phase transition dynamics. It is commonly stated that volume changes
in liquid-solid transitions represent at most 10% of the total volume of the system and
can be neglected in the modeling by assuming phases with equal densities [26]. Recently,
the issue of volume changes during isobaric transitions and in several types of organic
PCMs was addressed to test this claim [26]. The authors found that, depending on the
chemical composition of the PCM, volume changes can represent as much as 24% of the
original volume in polymers. According to the authors, the treatment of volume changes
experienced by the PCM during the phase transition represents a challenge that needs to
be addressed in practical applications.

The effects of volume change on the thermal performance of PCM layers subjected to
temperature oscillations about the melting temperature of the PCM has not been addressed.
In this work, we consider the effects of volume changes on the energy released (absorbed)
and energy transferred by the PCM in the presence two fronts. The energy transferred
by the PCM is significantly influenced by the volume changes of the system and mainly
in the presence of the two-front configuration, during the cooling stage of the cycle. A
model that incorporates volume changes by promoting the layer thickness to a dynamic
variable, is proposed. The oscillations of the layer thickness in the presence of several
fronts obey an additional equation of motion that results from imposing total mass as a
constant of the motion. The equation of motion for each interface is obtained through a
local energy–mass balance that must be consistent with conservation of mass. The density
used in each equation of motion results from the mass balance proposed in this work. The
thermal performance of the PCM layer in the transient and steady periodic regimes, is
analyzed through the thermal energy released (absorbed). The volumetric effects on the
latent heat and sensible heat released (absorbed) during the solidification (melting) process
are discussed in detail. Numerical and semi-analytical methods consisting on the finite
element method (FEM) and heat balance integral method (HBIM), are used to solve the
proposed equations of motion. Two different methods are used to verify the consistency
of the solutions for the dynamical variables, released (absorbed) energy by the PCM layer
and the energy released by the interior surface. The collision of two fronts produces a
continuous temperature profile that is not smooth at the collision site. The HBIM is adapted
by introducing a local energy balance at the collision site and predicting the time evolution
of the temperature field just after the annihilation of two interfaces. The FEM is used to
verify the consistency of the semi-analytical solutions. The total mass of the PCM layer is
registered at every time interval to guarantee that no mass is created or destroyed during
the entire phase change process. The time evolution of the released (absorbed) sensible and
latent heats, and the energy released by the interior surface into the room are compared
with models proposed by other authors. Finally, we find that the efficiency of a PCM layer
as a thermal barrier close to the steady periodic regime may be reduced when considering
the volume changes during the phase transition.
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2. Description of the Physical System and Mathematical Model

The volumetric effects produced by the density difference between liquid and solid
phases is considered when the external surface is subjected to periodic boundary conditions
and the temperature of the internal surface is constant and below Tm. The temperature
dependence of liquid and solid densities is negligible within the temperature range and
PCM considered in this work [27]. Octadecane is used as the PCM, and within the experi-
mental error, the density of the solid is practically constant in a wide temperature range
[260, 301.13] K. The largest variation of the liquid density is less than 1.5% within the
maximum temperature range in the liquid phase [301.13, 313.15] K, that will be used in
this work. Thermal expansion effects are negligible and only volume variations produced
by the density difference between liquid and solid phases will be considered. Two case
scenarios will be discussed:

• Temperature oscillations on the external surface above the melting temperature of the
PCM: one-front dynamics, and

• Temperature oscillations around the melting temperature of the PCM: two-front dy-
namics with three phase coexistence, one-front dynamics with two phase coexistence
and no phase change presence.

The system under consideration consists of a PCM that constitutes a layer of thickness
L and cross section S with a left (outer) boundary in contact with the ambient air and
the right (inner) boundary in contact with the air at the interior of a room. The thermal
flux is perpendicular to the surface of the PCM layer and the temperature is uniformly
distributed throughout the exterior and interior surfaces. Isothermal boundary conditions
are employed at each liquid–solid interface with a temperature value equal to the melting
temperature Tm of the PCM. The right boundary at x = L(t) is subjected to isothermal
boundary conditions and the left boundary at the outside air–PCM interface (x = 0) is
subjected to periodic boundary conditions, as follows:

T2(0, t) = T0 + δ sin (ωt + φ) and,

T2(ξ1(t), t) = T1(ξ1(t), t) = Tm,

T1(L(t), t) = TC, (1)

where T0 represents the average daily temperature, δ the amplitude of the temperature
oscillations, ω = 2 π/T the angular frequency with a 24 h period and φ is the phase angle.
The liquid solid front at any time t is located at x = ξ1(t). The oscillations of the ambient
temperature were obtained through fitting weather data to a periodic function, in a tropical
region located at Villahermosa, Tabasco in Mexico [28]. The temperature on the right
boundary at x = L(t) is represented by TC and is below the melting temperature of the
PCM. The temperature is uniform and homogeneously distributed throughout the interior
surface. Maximum temperature differences in the liquid are TH−Tm � Tm, and in the solid
phase are Tm − TC � Tm. The net heat flux at the interface is small in these temperature
ranges and the phase transition takes place close to thermodynamic equilibrium; then,
supercooling effects are not considered. Additionally, octadecane has a low supercooling
degree within the operating temperature range considered in this work [29].

2.1. One-Front Dynamics: Transient and Steady Periodic Regime

The thickness of the PCM layer must incorporate volume changes during the phase
transition according to total mass conservation and it is promoted to a dynamic variable
defined as L(t). Volume changes have been previously considered during phase transitions
at constant pressure [14]. We briefly describe the corresponding equations of motion, which
can be applied to any type of boundary conditions. In a PCM layer of thickness L(t), when
the temperature at x = 0 is above Tm, the domain of the liquid phase lies on the interval:
0 ≤ x ≤ ξ1(t), where ξ1(t) is the position of the liquid-solid interface. Additionally, the
domain of the solid phase lies on the interval ξ1(t) ≤ x ≤ L(t), where the boundary at
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x = L(t) is always below Tm. The local energy-mass balance at x = ξ1(t) that is consistent
with volume displacements on these type of configurations [14], is given by:

ρ` L f
d ξ1(t)

dt
= −k`

∂ T(`)
2 (x, t)
∂ x

∣∣∣∣
x=ξ1(t)

+ ks
∂ T(s)

1 (x, t)
∂ x

∣∣∣∣
x=ξ1(t)

, (2)

where T(s)
1 (x, t)(T(`)

2 (x, t)) is the temperature distribution in the solid(liquid) phase as
illustrated in Figure 1, ρ` is the density of the liquid phase and L f is the latent heat of fusion
of the PCM. The equation of motion for L(t) can be obtained straightforward through the
total time derivative of the PCM’s mass per unit area A, and promoting this quantity as a
constant of the motion, as follows:

ρs
dξ1(t)

dt
+ ρs

(
d L(t)

dt
− d ξ1(t)

dt

)
= 0. (3)

Figure 1. Schematic representation of the PCM layer in the presence of one liquid–solid interface or
front with the temperature profiles in the liquid phase (region 2) and solid phase (region 1).

Equations (2) and (3) are valid for melting and solidification processes, and consider
volume changes during the phase transition produced by the density difference between
liquid and solid. The density of the liquid phase appears in Equation (2) when the moving
boundary is L(t), as shown in Ref. [14]. The local energy–mass balance within the liquid
and solid phases is taken into consideration through the following heat equation:

ρi Ci
∂ Ti(x, t)

∂ t
− ki

∂2 Ti(x, t)
∂ x2 = 0, (4)

where ρi, Ci and ki is the density, specific heat capacity and thermal conductivity of phase
i, with i = `(s) for liquid (solid). The one-front dynamics problem is defined through
Equations (2)–(4), with the corresponding boundary conditions, given by Equation (1).

Homogeneous isothermal boundary conditions have been applied to the one-front
dynamics problem where, on the one hand, the temperature at x = 0 is constant and higher
than Tm. On the other hand, the temperature at x = L(t) is constant and below Tm. Steady
state solutions for the thickness L(t) and liquid-solid interface position ξ1(t) have been
found when the system is subjected to this type of boundary conditions [14]. Periodic
boundary conditions are applied at x = 0, which emulate the ambient temperature on the
exterior surface of the PCM layer. The steady state values found in Ref. [14] can be applied
to define upper and lower bounds to the interface position and layer thickness when the
system is subjected to the boundary conditions shown in Equation (1). According to the
steady state values for the liquid–solid interface position found in Ref. [14], an upper and



Molecules 2022, 27, 2158 6 of 33

lower bound for ξ1 when the system is in the steady periodic regime and subjected to the
boundary conditions given by Equation (1) are given by:

ξ
(u)
sp =

k`(T0 + δ− Tm)(ρsL(0)− (ρs − ρ`)ξ1(0))
ρ` k`(T0 + δ− Tm) + ρs ks(Tm − TC)

, and (5)

ξ
(l)
sp =

k`(T0 − δ− Tm)(ρsL(0)− (ρs − ρ`)ξ1(0))
ρ` k`(T0 − δ− Tm) + ρs ks(Tm − TC)

, (6)

where ξ
(u)
sp and ξ

(l)
sp , represent the upper and lower bound of the interface position in the

steady periodic regime. Highest and lowest temperature values are represented by T0 + δ
and T0 − δ. The initial interface position and thickness of the PCM layer are represented
by ξ1(0) and L(0), respectively. Additionally, we can apply the analytical expression for
the thickness of the PCM layer in the steady state [14], to determine the upper and lower
bounds of L in the steady periodic regime as follows:

L(u)
sp =

(ks(Tm − TC) + k`(T0 + δ− Tm))(ρsL(0)− (ρs − ρ`)ξ1(0))
ρ` k`(T0 + δ− Tm) + ρs ks(Tm − TC)

, and (7)

L(l)
sp =

(ks(Tm − TC) + k`(T0 − δ− Tm))(ρsL(0)− (ρs − ρ`)ξ1(0))
ρ` k`(T0 − δ− Tm) + ρs ks(Tm − TC)

. (8)

Here, L(u)
sp (L(l)

sp ) represents the upper(lower) bound of L in the steady periodic regime. Mass
conservation in Equation (2) was applied by promoting the boundary in contact with the
interior at x = L(t) to a dynamical variable. Consequently, Equations (5)–(8) are only valid
when the exterior surface of the PCM layer at x = 0 is fixed in time and the right boundary
in contact with the interior at x = L(t) is the moving boundary.

2.2. Two-Front Dynamics

The formation of two or more liquid-solid fronts and coexistence of several adjacent
liquid and solid phases, depends on the oscillations of the ambient temperature, the
thermodynamic properties of the PCM and layer thickness. In this part of the section, the
equations of motion that describe the effects of volume displacements on the dynamics of
two liquid–solid interfaces will be introduced. The thermodynamic properties of the PCM,
layer thickness and ambient temperature used in this work, will produce two liquid-solid
fronts during the periods of the day when the ambient temperature is lower than Tm. The
two fronts will collide at some instant during the cooling stage, and one liquid-solid front
will be formed and evolve in time when the ambient temperature oscillates above Tm.

Initially, the configuration of the PCM layer will consist of two thin solid slabs and
the ambient temperature is below Tm. The ambient temperature lies below the melting
temperature of the PCM for the first few hours of the initial part of the cycle, when the
two initial solid fronts propagate and collide during the cooling stage. The PCM layer
will be in its solid state after the collision when only sensible heat is absorbed, while the
ambient temperature is increasing but is still below Tm. The heating process starts when
the ambient temperature is increasing and reaches Tm. A thin liquid slab is formed on the
exterior surface and a single front dynamics is observed during the time interval where
the ambient temperature is above Tm. The single front position is bounded by the value
shown in Equation (5); therefore, a one-front configuration will always be present during
the heating process of the cycle. The cooling process starts when the ambient temperature is
decreasing and reaches Tm. Finally, a thin solid slab is formed on the exterior surface while
the existing front within the PCM layer is moving towards the recently formed interface.
The PCM layer is under the presence of a two-front configuration during the cooling stage,
and the process is repeated.

Figure 2, is an schematic illustration of the front and phase configuration during the
periods of the day where two liquid-solid fronts are present. The temperature distribution
within each phase is labeled according to regions: 1, 2 and 3 from right to left, as shown in
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Figure 2. Regions 1, 2 and 3 represent a solid-liquid-solid phase configuration with a tem-
perature distribution T(s)

1 (x, t), T(`)
2 (x, t) and T(s)

3 (x, t), respectively. The temperature on
the interior surface (right boundary) at x = L(t) is constant and equal to TC < Tm. Figure 2
assumes that the temperature on the exterior surface is below the melting temperature of
the PCM; therefore, the liquid layer between ξ2(t) and ξ1(t) will gradually transform into
solid. The mass of liquid ∆ m(1)

` in close contact with ξ1(t) that is transformed into solid
phase between t and t + ∆ t can be obtained through a mass balance of the solid phase in
region 1 as follows:

∆ m(1)
` = ρs (L(t + ∆ t)− xi1(t + ∆ t))− ρs (L(t)− xi1(t)). (9)

Here, the first term on the right hand side represents the mass of solid in region 1 at t + ∆ t
and the second term is the mass of solid at time t. Mass balance implies that ∆ m(1)

` is
equivalent to the mass of solid in region 1 that is formed between t and t + ∆ t. The last
equation can be simplified as follows:

∆ m(1)
` = ρs(∆ L(t)− ∆ ξ1(t)), (10)

where ∆ L(t) = L(t + ∆ t)− L(t) and ∆ ξ1(t) = xi1(t + ∆ t)− xi1(t) represent the displace-
ment of the layer thickness and interface motion between t and t + ∆ t, respectively. The
solidification rate of liquid mass ∆ m(1)

` in contact with the interface at x = ξ1(t) is produced

when ∆ m(1)
` releases thermal energy in form of latent heat during a small time interval ∆ t.

Consequently the thermal flux dQ(1)
s /dt released at the interface position ξ1(t) is higher

than the thermal flux absorbed from the liquid layer dQ(2)
` /dt at x = ξ1(t), as shown in

Figure 2. The energy–mass balance at x = ξ1(t) is then, given by

ρs L f

(
dL(t)

dt
− dξ1(t)

dt

)
=

dQ(1)
s

dt
−

dQ(2)
`

dt
. (11)

Figure 2. Three phase configuration with a PCM layer in the presence of two fronts. The two-front
configuration is observed when the temperature on the exterior surface is below Tm. The liquid
layer releases thermal energy to the solid phases at regions 1 and 3 (supercooling effects are not
considered).

The temperature profile in region 1 must be a decreasing function of x and must
have a negative concavity at region 2 within the liquid layer, as illustrated in Figure 2.
Consequently, the net thermal flux at x = ξ1(t) can be obtained as follows

dQ(1)
s

dt
−

dQ(2)
`

dt
= −ks

∂ T(s)
1 (x, t)

∂x

∣∣∣∣
x=ξ1(t)

+ k`
∂ T(`)

2 (x, t)
∂x

∣∣∣∣
x=ξ1(t)

. (12)
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The rate of energy released by the liquid mass ∆ m(1)
` is equal to the net thermal flux

at ξ1(t), and the energy–mass balance at ξ1(t) is given by

ρs L f

(
dL(t)

dt
− dξ1(t)

dt

)
= −ks

∂ T(s)
1 (x, t)

∂x

∣∣∣∣
x=ξ1(t)

+ k`
∂ T(`)

2 (x, t)
∂x

∣∣∣∣
x=ξ1(t)

(13)

Additionally, some of the liquid mass ∆ m(2)
` adjacent to the solid phase at region 3,

will transform into solid phase between t and t + ∆ t. The mass of solid at region 3 will
increase during this time interval, since the temperature on the exterior surface is below Tm

as illustrated in Figure 2. According to mass balance, ∆ m(2)
` should be equal to the mass of

solid that forms during this time interval, and is given by

∆ m(2)
` = ρs (ξ2(t + ∆ t)− ξ2(t)). (14)

The energy released by this mass of liquid as latent heat, results from the net thermal
flux at x = ξ2(t). The mass of liquid ∆ m(2)

` releases thermal energy to the solid phase at
region 3 and absorbs thermal energy from the liquid layer. The rate of energy released
dQ(3)

s /dt at ξ2(t), exceeds the rate of energy absorbed from the liquid layer dQ(2)
` /dt close

to the interface ξ2(t) when solidification takes place. Additionally, the temperature profile
at region 3 is an increasing function of x since the temperature on the exterior surface
is below the melting temperature of the PCM, as shown in Figure 2. The temperature
distribution in the liquid layer close to x = ξ2(t) shows a positive slope due to its concavity
as illustrated in Figure 2. Consequently, the net amount of thermal flux at x = ξ2(t) is
given by:

dQ(3)
s

dt
−

dQ(2)
`

dt
= ks

∂ T(s)
3 (x, t)

∂x

∣∣∣∣
x=ξ2(t)

− k`
∂ T(`)

2 (x, t)
∂x

∣∣∣∣
x=ξ2(t)

. (15)

The rate of thermal energy transfer at x = ξ2(t) is equal to the rate of latent heat
energy released by ∆ m(2)

` . Applying a thermal balance between the last two equations, the
local energy–mass balance at ξ2(t) can be obtained as follows

ρs L f
dξ2(t)

dt
= ks

∂ T(s)
3 (x, t)

∂x

∣∣∣∣
x=ξ2(t)

− k`
∂ T(`)

2 (x, t)
∂x

∣∣∣∣
x=ξ2(t)

. (16)

The density that appears in Equations (13) and (16) must be the density of the phase
that incorporates the correct mass balance. Conservation of the PCM’s total mass may
now be applied to obtain the equation of motion for the thickness of the PCM layer. In the
presence of two fronts, as shown in Figure 2, the total mass of the PCM is given by

m(t) = ρs ξ2(t) + ρ` (ξ1(t)− ξ2(t)) + ρs (L(t)− ξ1(t)). (17)

The time derivative of m(t) is equal to zero when the mass of the PCM layer is
conserved, and the equation of motion for L(t) is given by

ρs
dξ2(t)

dt
+ ρ`

(
dξ1(t)

dt
− dξ2(t)

dt

)
+ ρs

(
d L(t)

dt
− dξ1(t)

dt

)
= 0. (18)

Equations (13), (16), and (18) represent the equations of motion for ξ1(t), ξ2(t) and
L(t) that incorporate the volume changes induced by the presence of two moving fronts
during the cooling stage of the cycle (when the exterior surface is below Tm).

The liquid mass ∆ m(1)
` used to obtain Equation (13), can also be estimated by sub-

tracting the mass of liquid ∆ m(2)
` close to ξ2(t) from the total mass of liquid ∆ m` that will
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transform into solid between t and t + ∆ t. The mass of liquid that will change into its solid
state is given by:

m`(t)−m`(t + ∆ t) = ρ`(ξ1(t)− ξ2(t))− ρ`(ξ1(t + ∆ t)− ξ2(t + ∆ t)); (19)

therefore, ∆ m(1)
` can be obtained from Equation (14) and the last equation, as follows

∆ m(1)
` = ρ`(ξ1(t)− ξ2(t))− ρ`(ξ1(t + ∆ t)− ξ2(t + ∆ t))− ρs (ξ2(t + ∆ t)− ξ2(t)). (20)

The rate of transformed mass ∆ m(1)
` /∆ t when ∆ t→ 0 is then:

d m(1)
`

dt
= ρ`

(
dξ2(t)

dt
− dξ1(t)

dt

)
− ρs

dξ2(t)
dt

, (21)

which also results by solving ρs (d L(t)/dt− dξ1(t)/dt) from Equation (18). Consequently,
through a mass balance at the liquid layer or from total mass conservation, an equivalent
equation of motion for ξ1(t) is obtained as follows

ρ` L f

(
(1− ρs/ρ`)

dξ2(t)
dt

− dξ1(t)
dt

)
= −ks

∂ T(s)
1 (x, t)

∂x

∣∣∣∣
x=ξ1(t)

+ k`
∂ T(`)

2 (x, t)
∂x

∣∣∣∣
x=ξ1(t)

. (22)

Equation (22) is completely equivalent to Equation (13) due to the mass balance at the
liquid layer and total mass conservation. The two-front dynamics problem is described
through Equations (13), (16), and (18) or equivalently through Equations (16), (18), and (22).
The net thermal flux that is shown on the right hand side of Equations (13), (16), and (22)
can be obtained through the temperature field at each phase, which is found by solving the
local energy balance shown in Equation (4).

2.3. Volume Adjustments on Front Formation and Annihilation

The problem of several front formation takes place when the temperature on the exte-
rior surface oscillates about the melting temperature of the PCM. Three possible scenarios
will take place due to the thermodynamic properties, thickness of the PCM layer and the
ambient temperature oscillations considered in this work. Solid phase will form when the
ambient temperature reaches Tm, decreasing towards its daily minimum, a liquid phase
will form when the ambient temperature reaches Tm and increases to its daily maximum,
and the two fronts, ξ1(t) and ξ2(t) will collide during the time intervals when the ambient
temperature is below the melting temperature of the PCM. The thickness of the PCM
layer used in this work is such that ξ1(t) and ξ2(t) will meet at some instant when the
temperature on the exterior surface is still below Tm.

In this work, volume adjustments will be introduced during the creation of one-front
and during the annihilation of ξ1(t) and ξ2(t). Volume displacements of the PCM layer
will be incorporated so that mass is not created or destroyed during the creation of a new
phase. In this work, the supercooling of liquid is not considered, and it is assumed that
the liquid–solid saturation temperature is equal to its value at thermodynamic equilibrium
Tm. A new solid phase will be formed and will be thermodynamically stable when the rate
of energy released to the exterior dQ(3)

s /dt by the newly formed solid phase of unknown
thickness ξ2(ta) is equal to the energy released by the liquid phase dQ(2)

` /dt in contact with
the new phase, as shown in Figure 3. The time instant ta when the new solid phase is stable,
corresponds to any time value when the temperature on the exterior surface is equal or just
below the melting temperature of the PCM. The thermal flux within the new solid phase
and close to x = ξ2(ta) is small enough and equal to the thermal flux in the liquid layer
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close to ξ2(ta), so that the new solid phase is thermodynamically stable at temperature
values close to Tm. Then, the thickness of the new phase can be found as follows

ks
∂ T(s)

3 (x, ta)

∂ x

∣∣∣∣
x=ξ2(ta)

= k`
∂ T(`)

2 (x, ta)

∂ x

∣∣∣∣
x=ξ2(ta)

. (23)

The left hand side of the last equation represents the rate of energy released to the
environment. We assume a linear temperature distribution within the new solid phase, and
the last equation is reduced to the following:

ks
Tm − (T0 + δ sin (ω ta + φ))

ξ2(ta)
= k`

∂ T(`)
2 (x, ta)

∂ x

∣∣∣∣
x=ξ2(ta)

, (24)

where the temperature on the exterior surface is T0 + δ sin (ω ta + φ) as shown in Figure 3b.
The volume of the PCM layer changes due to the formation of this phase, and the thickness
of the PCM layer changes to avoid mass creation during the formation of the solid phase.
The temperature at x = 0, when t = ta −∆ t is just above Tm, and the total mass of the PCM
layer is given by

m(ta − ∆ t) = ρ` ξ1(ta − ∆ t) + ρs (L(ta − ∆ t)− ξ1(ta − ∆ t)). (25)

Figure 3. Solid phase formation close to the exterior surface produced by the change of the ambient
temperature from Tamb(ta − ∆ t) > Tm to Tamb(ta) < Tm during a small time interval ∆ t. (a) Thin
liquid layer that will change to its solid phase. The layer is still in its liquid form at t = ta − ∆ t, when
the temperature on the exterior surface is just above the melting temperature of the PCM. (b) Volume
shrinkage ∆ L = L(ta − ∆ t)− L(ta) produced by the shift of the interior surface, after the liquid layer
in contact with the exterior surface is transformed into its solid phase.

The total mass of the system m(ta − ∆ t) at t = ta − ∆ t should be equal to m(ta);
therefore, imposing total mass conservation during the creation of the new solid phase, an
equation for the thickness of the PCM layer is obtained as follows:
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ρ` ξ1(ta − ∆ t) + ρs (L(ta − ∆ t)− ξ1(ta − ∆ t)) = ρs ξ2(ta) + ρ` (ξ1(ta)− ξ2(ta)) + ρs (L(ta)− ξ1(ta)) (26)

where the interface at x = ξ1(ta) = ξ(ta − ∆ t)− (L(ta − ∆ t)− L(ta)) is shifted to the left
due to the volume shrinkage of the system during the formation of the solid phase as
illustrated in Figure 3b. Substituting x = ξ1(ta) = ξ(ta − ∆ t)− (L(ta − ∆ t)− L(ta)) in the
last equation, total mass conservation of the system between ta − ∆ t and ta is reduced to
the following

ρs ξ2(ta)(1− ρ`/ρs)− ρ` (L(ta − ∆ t)− L(ta)) = 0. (27)

Finally, Equations (24) and (27) can be solved for the thickness of the new phase ξ2(ta)
and PCM layer L(ta).

Additionally, a thin layer of liquid phase will form when the ambient temperature
reaches Tm, and increases towards the daily maximum temperature T0 + δ. During the
formation of the liquid layer, volume displacements are considered to avoid loss of total
mass. The process is illustrated in Figure 4a,b, where at some time t = ta − ∆ t, the
temperature on the exterior surface is just below Tm and a thin layer of solid will transform
into liquid phase when the temperature shifts to some value just above Tm at some time ta.
We do not consider overheating of solid phase during the transformation, and assume that
a new liquid phase of unknown thickness ξ1(ta) is at thermodynamic equilibrium with the
adjacent solid close to the new interface. The rate of energy absorbed by the newly formed
liquid layer dQ2

`/dt is equal to the rate of energy released to the solid phase dQ(1)
s /dt at

x = ξ1(ta), as follows

− k`
∂ T(`)

2 (x, ta)

∂ x

∣∣∣∣
x=ξ1(ta)

= −ks
∂ T(s)

1 (x, ta)

∂ x

∣∣∣∣
x=ξ1(ta)

. (28)

The temperature field within the new liquid phase is close to the melting temperature
of the PCM, and a linear profile is assumed; then, last equation is simplified as follows

k`
T0 + δ sin (ω ta + φ)− Tm

ξ1(ta)
= −ks

∂ T(s)
1 (x, ta)

∂ x

∣∣∣∣
x=ξ1(ta)

. (29)

Approximating the temperature distribution in the solid phase (region 1) to a linear
function at t = ta, as illustrated in Figure 4b, the last equation can be reduced as follows:

k`
T0 + δ sin (ω ta + φ)− Tm

ξ1(ta)
= ks

Tm − TC
L(ta)− ξ1(ta)

, (30)

where TC is the temperature at the interior surface x = L(ta). The corresponding expansion
of the system produced by the formation of the new liquid phase can be obtained through
total mass conservation. The expansion of the PCM layer is then, given by

ρs L(ta − ∆ t) = ρ` ξ1(ta) + ρs (L(ta)− ξ1(ta)). (31)

Solving the last two equations for the thickness of the new liquid phase ξ1(ta) and the
thickness of the PCM layer L(ta), the following approximate expressions are obtained:

ξ1(ta) =
ρs k`(Tamb(ta)− Tm)

ρ` k`(Tamb(ta)− Tm) + ρs ks(Tm − TC)
L(ta − ∆ t) and (32)

L(ta) =
ρs k`(Tamb(ta)− Tm) + ρs ks(Tm − TC)

ρ` k`(Tamb(ta)− Tm) + ρs ks(Tm − TC)
L(ta − ∆ t), (33)

where Tamb(ta) = T0 + δ sin (ω ta + φ) is the temperature on the exterior surface x = 0 as
shown in Figure 4b.
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Figure 4. Liquid phase formation close to the exterior surface produced by the change of the
ambient temperature from Tamb(ta − ∆ t) < Tm to Tamb(ta) > Tm during a small time interval ∆ t.
(a) Thin solid layer that will melt close to the exterior surface. The layer is still in its solid form at
t = ta − ∆ t, when the temperature on the exterior surface is just below Tm. (b) Volume expansion
∆ L = L(ta) − L(ta − ∆ t) after the formation of the liquid layer. The exterior surface is pushed
rightwards, due to the expansion of the solid layer after the transition to its liquid state.

Finally, the collision between ξ1 and ξ2 will take place at some time ta during the daily
lows, when the temperature on the exterior surface is below Tm as illustrated in Figure 5.
The two fronts will meet at some time t = ta, when a thin layer of liquid with thickness
∆ξ(ta) � L(ta) remains as saturated liquid. The temperature distribution in the liquid
layer of thickness ∆ξ(ta) = ξ1(ta) − ξ2(ta) is practically equal to Tm during the phase
transition. The saturated liquid is assumed to be at thermodynamic equilibrium when the
phase change starts. The transformation takes place at some time ta, when the thermal
energy released by the liquid layer is exactly equal to the amount of latent heat that must
be released to transform the mass of the remaining liquid. The total amount of thermal
energy released by the liquid layer is given by

ρ`L f ∆ξ(ta) = ks
∂ T(s)

3 (x, ta)

∂ x

∣∣∣∣
x=ξ2(ta)

− ks
∂ T(s)

1 (x, ta)

∂ x

∣∣∣∣
x=ξ1(ta)

. (34)

The thickness of liquid layer ∆ξ(ta), when the phase change takes place can be found
from the last equation as follows

∆ξ(ta) =
ks

ρ`L f

(
∂ T(s)

3 (x, ta)

∂ x

∣∣∣∣
x=ξ2(ta)

−
∂ T(s)

1 (x, ta)

∂ x

∣∣∣∣
x=ξ1(ta)

)
(35)
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The thickness of the PCM layer must decrease to avoid mass creation during the
transformation to its solid state. Mass conservation can be used to find the thickness of the
system once the liquid layer is transformed into its solid form as follows:

L
′
(ta) = L(ta)− ∆ξ(ta)(1− ρ`/ρs), (36)

where L
′
(ta) represents the thickness of the system, once the liquid layer changes to its

solid state.

Figure 5. Solid phase formation during the collision of ξ1(t) and ξ2(t). (a) Saturated liquid layer
before the phase transition at some time t = ta. (b) PCM layer contraction ∆ L = L(ta)− L

′
(ta) after

the phase transition. The exterior surface is pulled to the left due to volume changes produced by the
difference between solid and liquid densities.

3. Thermal Energy Released (Absorbed): Transient and Steady Periodic Regimes

The energy released (absorbed) by the PCM layer, when the exterior surface is sub-
jected to temperature oscillations about Tm will be discussed. First, we describe the energy
released during the formation of a solid front ξ2 and in the presence of two liquid–solid
interfaces. Later, the energy released during the collision of two fronts and the energy
released (absorbed) by the PCM layer in its solid state will be described. Finally, the energy
absorbed during the formation of a liquid phase and the thermal energy absorbed (released)
in the presence of a one interface will be discussed.

In this work, the sensible and latent heat released (absorbed) by the PCM layer are
obtained independently. The thermal energy released (absorbed) by the system is estimated
as the sum of the sensible and latent heat. The sensible heat released (absorbed) corresponds
to internal energy differences in the PCM, produced by temperature changes from an initial
state at t = ta to a final state at t = tb. Sensible heat estimations are performed through
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the integral of the entire temperature profiles in the PCM layer and provides complete
information on the temperature distribution within the system. The FEM will be used
to solve the proposed model and will be compared with the solutions estimated with
the HBIM. The sensible heat released (absorbed) will be used as an indirect comparison
between the temperature fields according to each method, and verify the consistency of
the numerical and semi-analytical solutions. Additionally, it is observed that most of the
contributions to the thermal oscillations come from the latent heat released (absorbed) by
the PCM layer. The authors of Ref. [25] estimate the thermal energy released(absorbed) by
the PCM layer through the time integral of the thermal flux that enters and exits the system.
The net thermal flux through the layer only provides information on the behavior of the
spatial derivative of the temperature at the exterior and interior surface.

3.1. Thermal Energy Released: Two-Front Configuration

The three phase configuration with two liquid–solid interfaces is present when the
exterior temperature is below Tm. A thin solid slab will form when the ambient temperature
reaches Tm and evolves towards the daily lowest temperature values. The system releases
thermal energy as latent heat during the formation of a thin solid layer of thickness ξ2(ta).
The formation of the solid layer takes place at some time ta when the ambient temperature
is just below Tm (supercooling of liquid is not considered). The thickness of the thin solid
layer ξ2(ta) can be found by solving Equations (24) and (27). Consequently, the latent heat
released during the formation of this solid layer is given by

∆ Q f = ρs L f ξ2(ta) (37)

Figure 6, shows the two-front configuration of the PCM layer at two different time
instants ta and tb. The sensible heat released between ta and tb can be conceived through
differences between the internal energy of the solid, the internal energy of the liquid mass
that will be transformed into solid phase and the internal energy changes of the liquid that
will not transform during this time interval ∆ t = tb − ta.

In Figure 6, ∆ ξ
(s)
1 = L(ta)− ξ1(ta) represents the thickness of the solid phase in region

1 at time t = ta. After the phase transition, a fraction of the mass in the liquid layer between
ξ2(ta) and ξ1(ta) will transform to its solid phase. The interior surface will shift to the
left a distance equal to ∆ L = L(ta)− L(tb) as shown in Figure 6. The shift represents the
volume displacement produced by the transformation of liquid into solid phase at constant
pressure. The original solid in region 1, will be shifted to the left a distance ξ1(ta)− ξ

′
1(tb)

as illustrated in Figure 6b. The shift can be found by applying mass conservation to the
mass of solid in region 1, and solve for ξ

′
1(tb) as follows

ξ
′
1(tb) = ξ1(ta) + (L(tb)− L(ta)). (38)

The internal energy change of the solid phase ∆ U1 between ta and tb can now be
obtained, and is given by:

∆ U1 = ρs Cs

∫ ξ2(ta)

0

(
T(s)

3 (x, tb)− T(s)
3 (x, ta)

)
dx +

ρs Cs

[∫ L(tb)

ξ
′
1(tb)

T(s)
1 (x, tb)dx−

∫ L(ta)

ξ1(ta)
T(s)

1 (x, ta)dx
]

, (39)

where the value of ξ
′
1(tb) is given by Equation (38).
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Figure 6. Schematic illustration of liquid layers ξ2(tpt) − ξ2(ta) and ξ1(ta) − ξ1(tpt), before and
after the phase transition. (a) Saturated liquid layers before the transformation at some time t = ta.
The thickness of each liquid layer ξ2(tpt) − ξ2(ta) and ξ1(ta) − ξ1(tpt) is obtained by applying
mass conservation. (b) Transformed liquid layers after the phase transition at some time t = tb.
The thickness of each solid layer ξ2(tb) − ξ2(ta) and ξ

′
1(tb) − ξ1(tb) is determined through mass

conservation.

The internal energy change of the liquid mass that is not transformed into solid
between ta and tb is given by

∆ U2 = ρ` C`

∫ ξ1(tb)

ξ2(tb)

(
T(`)

2 (x, tb)− T(`)
2 (x, ta)

)
dx (40)

The total thickness in the liquid layer that will be transformed into solid during the
time interval ∆ t = tb − ta is shown in Figure 6a. The temperature of the liquid mass that
belongs to the regions in direct contact with ξ1(ta) and ξ2(ta) shown in Figure 6a will change
from an initial value at t = ta to the melting temperature Tm, just before the phase transition
at some time t = tpt, between ta and tb. The total thickness of this fraction of liquid is:

∆ ξ` = ∆ ξ
(`)
2 + ∆ ξ

(`)
1 , where ∆ ξ

(`)
2 = ξ2(tpt)− ξ2(ta) and ∆ ξ

(`)
1 = ξ1(ta)− ξ1(ttp). Mass

conservation can be applied to the fraction of liquid close to ξ2(ta) as follows:

ρ`
(
ξ2(tpt)− ξ2(ta)

)
= ρs(ξ2(tb)− ξ2(ta)), (41)
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where the right hand side represents the mass of this fraction of liquid in its solid state. The
expression for ξ2(tpt) can be found in terms of the known variables ξ2(ta) and ξ2(tb), as
follows

ξ2(tpt) = ξ2(ta) +
ρs

ρ`
(ξ2(tb)− ξ2(ta)). (42)

Additionally, mass conservation can be applied to the fraction of liquid close to ξ1(ta)
in the following manner:

ρ`
(
ξ1(ta)− ξ1(tpt)

)
= ρs

(
ξ
′
1(tb)− ξ1(tb)

)
, (43)

where ξ
′
1(tb) is given by Equation (38). Consequently, according to the last equation ξ1(tpt)

is given by

ξ1(tpt) = ξ1(ta)−
ρs

ρ`
(ξ1(ta)− ξ1(tb) + L(tb)− L(ta)). (44)

The internal energy change of the liquid mass that will transform to its solid phase,
from an initial state with temperature T(`)

2 (x, ta) to a state at the melting temperature of the
PCM (saturated liquid), is given by:

∆ U3 = ρ` C`

[(
ξ2(tpt)− ξ2(ta)

)
Tm −

∫ ξ2(tpt)

ξ2(ta)
T(`)

2 (x, ta)dx
]
+

ρ` C`

[(
ξ1(ta)− ξ1(tpt)

)
Tm −

∫ ξ1(ta)

ξ1(tpt)
T(`)

2 (x, ta)dx
]

, (45)

where ξ2(tpt) and ξ1(tpt) are given by Equations (42) and (44), respectively. Finally, when
this fraction of liquid is transformed into solid, it will release sensible heat from an initial
state at t = ttp as saturated solid to its final state with a temperature distribution T(s)

3 (x, tb)

between x = ξ2(ta) and x = ξ2(tb), and T(s)
1 (x, tb) between x = ξ1(tb) and ξ

′
1(tb). The

internal energy change of this fraction of transformed liquid and now in its solid state, is
given by:

∆ U4 = ρs Cs

[∫ ξ
′
1(tb)

ξ1(tb)
T(s)

1 (x, tb)dx−
(

ξ
′
1(tb)− ξ1(tb)

)
Tm

]
+

ρs Cs

[∫ ξ2(tb)

ξ2(ta)
T(s)

3 (x, tb)dx− (ξ2(tb)− ξ2(ta)) Tm

]
, (46)

where ξ
′
1(tb) is given by Equation (38).

The latent heat released between ta and tb can be obtained by estimating the fraction
of liquid that is transformed into solid. The liquid mass ∆ m` that experiences the phase
transition may be obtained by subtracting the liquid mass at t = tb from the liquid mass at
t = ta, as follows:

∆ m` = ρ`(ξ1(ta)− ξ2(ta))− ρ`(ξ1(tb)− ξ2(tb)); (47)

therefore, the latent heat released during this time interval is given by

∆ Q f = ρ` L f ((ξ1(tb)− ξ1(ta)) + (ξ2(ta)− ξ2(tb))). (48)

According to the initial and final positions of ξ1 and ξ2 shown in Figure 6a,b, the latent
heat ∆ Q f given by Equation (48) will be negative.

3.2. Thermal Energy Released (Absorbed): Single Solid Phase

The collision of the two fronts ξ1 and ξ2 takes place at some time t = ta, as described
in the previous section. The collision, implies the release of thermal energy through
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latent heat, that results from the transformation of the remaining liquid layer of thickness
∆ ξ = ξ1(ta)− ξ2(ta), into its solid state. The latent heat released during the transformation
of a thin liquid layer of thickness ∆ ξ is given by

∆ Q f = ρ` L f (ξ2(ta)− ξ1(ta)). (49)

Here, ∆ Q f is also negative, since liquid is transformed into solid phase. The thickness of
the remaining liquid layer is: ∆ξ(ta)� L(ta), and we assume that the phase transition to
its solid state is almost instantaneous. The thickness of this layer in its solid form can be
obtained through mass conservation as follows:

ρ`(ξ1(ta)− ξ2(ta)) = ρs

(
ξ
′
1(ta)− ξ2(ta)

)
, (50)

where ξ
′
1(ta) is shown in Figure 5b and represents the position of the shifted interface after

solidification of the liquid layer. The last equation can be solved to obtain an expression for
ξ
′
1(ta), which is given by

ξ
′
1(ta) = ξ2(ta) +

ρ`
ρs
(ξ1(ta)− ξ2(ta)). (51)

The solid at region 1 and illustrated in Figure 5a is shifted by an amount ∆ L =

ξ1(ta)− ξ
′
1(ta) as shown in Figure 5b, and the thickness L

′
(ta) of the PCM layer after the

phase change is given by Equation (36). The PCM layer only releases/absorbs thermal
energy as sensible heat between t = ta and t = tb during the cooling stage of the cycle.
Then, the internal energy change of the solid phase is given by:

∆ Us = ρs Cs

[∫ ξ2(ta)

0

(
T(s)

3 (x, tb)− T(s)
3 (x, ta)

)
dx +

∫ ξ
′
1(ta)

ξ2(ta)

(
T(s)

2 (x, tb)− T(s)
2 (x, ta)

)
dx

]
+

ρs Cs

∫ L
′
(ta)

ξ
′
1(ta)

(
T(s)

1 (x, tb)− T(s)
1 (x, ta)

)
dx, (52)

where ξ
′
1(ta) is given by Equation (51) and shown in Figure 5b. The thickness of the PCM

layer in its solid state L
′
(ta) and the positions x = ξ

′
1(ta) and x = ξ2(ta) only represent

coordinates or reference positions when the PCM is releasing/absorbing sensible heat
during the cooling stage. The values of ξ

′
1(ta) and ξ2(ta) are constant in time and represent

the location of the interfaces at the time of the collision and after the transition of the liquid
layer, as shown in Figure 5.

3.3. Thermal Energy Absorbed (Released): One-Front Configuration

The two phase configuration in the presence of one liquid-solid interface is observed
when the exterior temperature is above Tm. A thin liquid slab will form when the ambient
temperature reaches the melting temperature Tm of the PCM, and evolves towards the
maximum temperature values of the cycle. The system absorbs latent heat during the
formation of a thin liquid layer of thickness ξ1(ta), given by Equation (32). The latent heat
absorbed during the formation of the liquid layer can be obtained as follows:

∆ Q f = ρ` L f ξ1(ta), (53)

where ta is the time value when the liquid layer is already formed. In the presence of one
moving front, the PCM will absorb (release) energy through sensible and latent heat. The
PCM layer will experience melting (solidification) with approximately the same frequency
as the temperature oscillations.
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3.3.1. Thermal Energy Absorbed: Melting

The PCM layer will absorb thermal energy from the environment, when the liquid-
solid interface ξ1(t) moves towards the interior surface, as illustrated in Figure 7a,b. The sen-
sible heat absorbed by the initial liquid mass at t = ta, during the time interval ∆ t = tb − ta
is given by:

∆ U(m)
1 = ρ` C`

[∫ ξ1(ta)

0

(
T(`)

2 (x, tb)− T(`)
2 (x, ta)

)
dx
]

, (54)

where the super index (m) in ∆ U(m) is used to specify internal energy changes during
the melting stage, when ξ1(tb) > ξ1(ta). Next, we must estimate the internal energy
change of the solid layer, that will not be melted during the time interval ∆ t = tb − ta.
In order to obtain ∆ U(m)

2 , mass conservation is used to determine the thickness of solid
∆ξ1(ta) = ξ

′′
1 (ta)− ξ1(ta) at time ta and shown in Figure 7a, that will change to its liquid

state. Applying mass conservation, the thickness of this fraction of solid can be obtained
as follows:

ρs

(
ξ
′′
1 (ta)− ξ1(ta)

)
= ρ` (ξ1(tb)− ξ1(ta)), (55)

where ξ
′′
1 (ta) is shown in Figure 7a, and solving for ξ

′′
1 (ta) from the last equation; then,

ξ
′′
1 (ta) = ξ1(ta) +

ρ`
ρs
(ξ1(tb)− ξ1(ta)). (56)

The internal energy change of the unmelted mass of solid is given by:

∆ U(m)
2 = ρs Cs

[∫ L(tb)

ξ1(tb)
T(s)

1 (x, tb)dx−
∫ L(ta)

ξ
′′
1 (ta)

T(s)
1 (x, ta)dx

]
, (57)

where ξ
′′
1 (ta) is given by Equation (56).

The mass of solid that will melt during this time interval, will absorb sensible heat
from an initial state at ta, where the temperature distribution is T(s)

1 (x, ta) to a final state at
some time tpt between ta and tb, when the solid is at the melting temperature (saturated
solid). The sensible heat absorbed by the fraction of melted solid between ta and tpt is
given by

∆ U(m)
3 = ρs Cs

(
ξ
′′
1 (ta)− ξ1(ta)

)
Tm − ρs Cs

∫ ξ
′′
1 (ta)

ξ1(ta)
T(s)

1 (x, ta)dx. (58)

Finally, this mass of solid will absorb thermal energy from an initial state after the
phase transition at some time between tpt as saturated liquid, to a final state at tb with a

temperature distribution T(`)
2 (x, tb). Then, the sensible heat absorbed by this fraction of

melted solid in its liquid phase, is given by

∆ U(m)
4 = ρ` C`

∫ ξ1(tb)

ξ1(ta)
T(`)

2 (x, tb)dx− ρ` C`(ξ1(tb)− ξ1(ta)) Tm. (59)

The latent heat absorbed can be easily found by using the mass of melted solid (newly
formed liquid), as follows

∆ Q f = ρ` L f (ξ1(tb)− ξ1(ta)). (60)

Equations (54) and (57)–(60), can only be applied during the melting stage, and in the
presence of one interface.
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Figure 7. Volume changes during melting and solidification in a PCM layer with a two phase
configuration (one-front). (a) Saturated solid layer in direct contact with ξ1(ta) that will transform
into its liquid phase. (b) Transformed solid layer during the melting process between ta and tb.
(c) Liquid layer at some time t = ta that will change to its solid phase. (d) Transformed liquid layer in
contact with ξ1(tb) after the phase transition.

3.3.2. Thermal Energy Released: Solidification

The solidification process presents a different scenario since the volume of the PCM
layer is reduced during this part of the cycle. First, we consider the internal energy change
experienced by the layer of liquid phase that will not transform into its solid phase between
an initial state at ta and a final state at tb. The thickness of this fraction of liquid is equal to
ξ1(tb) as illustrated in Figure 7c. The internal energy change experienced by this mass of
liquid is given by:

∆ U(s)
1 = ρ` C`

∫ ξ1(tb)

0

(
T(`)

2 (x, tb)− T(`)
2 (x, ta)

)
dx, (61)

where the superindex (s) represents the solidification stage and ∆ U(s)
1 is the internal energy

change experienced by this fraction of liquid phase. The thickness L(ta)− ξ1(ta) of the
solid phase at t = ta and illustrated in Figure 7c, remains constant during the phase change
process. This fraction of solid is shifted to the left a distance equal to ∆ L = L(ta)− L(tb),
due to the shrinkage of the liquid layer in contact with ξ1(ta), as shown in Figure 7c,d. The
contraction of the PCM layer ∆ L can be used to determine the thickness of the liquid layer
after the phase change as illustrated in Figure 7d, as follows:

ξ1(ta)− ξ
′′′
1 (tb) = L(ta)− L(tb). (62)
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Consequently, ξ
′′′
1 (tb) is given by

ξ
′′′
1 (tb) = ξ1(ta) + L(tb)− L(ta). (63)

The internal energy change experienced by the initial mass of solid can be obtained as
follows:

∆ U(s)
2 = ρs Cs

[∫ L(tb)

ξ
′′′
1 (tb)

T(s)
1 (x, tb)dx−

∫ L(ta)

ξ1(ta)
T(s)

1 (x, ta)dx
]

, (64)

where ξ
′′′
1 (tb) is shown in Figure 7d and given by Equation (63). The fraction of liquid

that will be transformed to its solid phase, will release sensible heat by changing from
an initial state at t = ta to a saturated liquid state at some time t = tpt between ta and tb.
The thickness of this fraction of liquid is ξ1(ta)− ξ1(tb) and is illustrated in Figure 7c. The
sensible heat released during this process can be obtained as follows

∆ U(s)
3 = ρ` C`(ξ1(ta)− ξ1(tb)) Tm − ρ` C`

∫ ξ1(ta)

ξ1(tb)
T(`)

2 (x, ta)dx. (65)

Additionally, when this mass of liquid changes to its solid phase, it will release sensible
heat from an initial state as saturated solid at t = tpt, to a final state at t = tb, where its

temperature distribution is T(s)
1 (x, tb). The sensible heat released by the newly formed solid

phase is given by:

∆ U(s)
4 = ρs Cs

∫ ξ
′′′
1 (tb)

ξ1(tb)
T(s)

1 (x, tb)dx− ρs Cs

(
ξ
′′′
1 (tb)− ξ1(tb)

)
Tm, (66)

where ξ
′′′
1 (tb) is given by Equation (63).

Finally, the latent heat released during the phase transition is given by

∆ Q f = ρ` L f (ξ1(tb)− ξ1(ta)) (67)

4. Numerical and Semi-Analytical Methods

Front tracking methods are applied to solve the model described in Section 2 with the
volume corrections proposed in this work. The HBIM is used to find approximate semi-
analytical solutions, and a FEM with first order Lagrange interpolating functions is used to
verify the consistency of the semi-analytical solutions. The HBIM demands continuity and
smoothness of the temperature profile in each phase. The isothermal boundary condition at
the liquid-solid front, introduces a discontinuity in the spacial derivative of the temperature
when two fronts collide and the entire PCM layer is in its solid phase. In this work,
the HBIM is modified by introducing a local energy balance at the collision site and the
solutions are verified through comparison with the FEM.

4.1. Heat Balance Integral Method

The HBIM is adapted to find approximate analytical solutions to the model described
in Section 2. Continuous and smooth temperature profiles at each phase are required to
apply the HBIM used in Refs. [14,30,31]. The HBIM consists on proposing a polynomial
function for the temperature at each phase. The space integral of Equation (4) is performed
at each phase, to obtain a set of ordinary differential equations (ODE) in time. Quadratic
functions of x that satisfy the boundary conditions, are proposed in this work. The following
temperature profiles are proposed to solve the two-front configuration scenario illustrated
in Figure 2, as follows:
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T(s)
1 (x, t) = a1(t)(x− ξ1(t)) + b1(t)(x− ξ1(t))

2 + Tm, for ξ1(t) ≤ x ≤ L(t),

T(`)
2 (x, t) = a2(t)(x− ξ1(t)) + b2(t)(x− ξ1(t))

2 + Tm, for ξ2(t) ≤ x ≤ ξ1(t), (68)

T(s)
3 (x, t) = a3(t)(x− ξ2(t)) + b3(t)(x− ξ2(t))

2 + Tm, for 0 ≤ x ≤ ξ2(t).

Here, the time dependent coefficients ai(t) at each region i = 1, 2, 3 can be expressed in
terms of bi(t) through the boundary conditions given by:

T(s)
1 (L(t), t) = TC,

T(`)
2 (ξ2(t), t) = Tm, and (69)

T(s)
3 (0, t) = T0 + δ sin (ω t + φ).

The boundary condition at x = ξ1(t) is satisfied by the proposed temperature profiles.
Applying the boundary conditions shown in the last equation the following time dependent
coefficients are found:

a1(t) = b1(t)(L(t)− ξ1(t)) +
Tm − TC

ξ1(t)− L(t)
,

a2(t) = b2(t)(ξ1(t)− ξ2(t)), and (70)

a3(t) = b3(t)ξ2(t) +
Tm − T0 − δ sin (ω t + φ)

ξ2(t)

The temperature profiles are substituted into Equation (4) and the result is integrated
over the domain of each phase to obtain a set of three ODEs in time for the coefficients
bi(t). The two-front configuration of the PCM layer becomes a dynamic problem for the
time dependent variables ξ1(t), ξ2(t), L(t) and bi(t) with i = 1, 2, 3. The three ODEs in
time for the coefficients bi(t), along with Equations (13), (16) and (18), constitute a set of six
ODEs that is solved through an explicit finite difference method with a forward first order
approximation to the time derivatives.

The one-front configuration problem illustrated in Figure 1 is solved similarly. The
space integral of Equation (4) is performed at each region shown in Figure 1. Two ODEs in
time for the coefficients bi(t) with i = 1, 2 is obtained through the spacial integrals. The
PCM layer in the presence of one-front, becomes a dynamic problem for the time dependent
variables ξ1(t), L(t) and bi(t) with i = 1, 2 [14].

The HBIM just described, requires continuity and smoothness of each temperature
profile within its domain. The method must be slightly adapted to scenarios where the
temperature distribution is not smooth as illustrated in Figure 5b. The situation depicted
in Figure 5b results from the collision of two fronts and just after the saturated liquid is
transformed into its solid phase. The two-front collision scenario shown in Figure 5b takes
place at some time ta, when the temperature is approaching the daily minimum, and the
entire PCM layer is in its solid state. The isothermal boundary condition at ξ1 and ξ2 is no
longer required. The liquid-solid interfaces disappear and the thickness of the PCM layer
becomes a constant of the motion in the absence of a phase change process. The problem
consists of solving Equation (4) with the initial temperature profile illustrated in Figure 5b.
A single polynomial function with the initial temperature field shown in Figure 5b is not
possible, and instead a piecewise function that is consistent with the initial conditions is
proposed as follows:
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T(s)
1 (x, t) = a1(t)(x− ξ1) + b1(t)(x− ξ1)

2 + Tu(t), for ξ1 ≤ x ≤ L,

T(s)
2 (x, t) = Tu(t), for ξ2 ≤ x ≤ ξ1, and (71)

T(s)
3 (x, t) = a3(t)(x− ξ2) + b3(t)(x− ξ2)

2 + Tu(t), for 0 ≤ x ≤ ξ2,

where Tu(t) is the temperature at the collision site of thickness ∆ξ = ξ1 − ξ2 and initially,
equal to the melting temperature of the PCM. Initially, the region of thickness ∆ξ represents
a saturated solid. The HBIM can be applied to regions 1 and 3 through the space integral of
Equation (4), as previously described. The coordinates x = ξ1 and x = ξ2 now represent
locations in space within the solid, and define a thin solid layer of thickness ∆ξ � L. In this
work, instead of solving the heat equation in region 2, we assume a uniform temperature
profile Tu(t) in this thin layer that will change in time according to a local energy balance
principle. Following the basic idea of energy balance, the thin solid layer of thickness
∆ξ, will release(absorb) thermal energy that comes from the net heat flux at x = ξ1 and
x = ξ2, as illustrated in Figure 5b. The thin solid layer ∆ξ, releases thermal energy when
the temperature is distributed through the PCM layer, as illustrated in Figure 5b. The rate
of energy released by the solid layer ∆ξ during a small time interval ∆ t, is equal to the
internal energy change ∆ Us experienced by this layer, as follows

∆ Us

∆ t
= Csρs

Tu(t)− Tu(t + ∆ t)
∆ t

. (72)

The internal energy change shown through the last equation, results from the energy
released to the solid in regions 1 and 3 as depicted in Figure 5b. The net rate of thermal
energy transferred can be obtained as follows

dQ(1)
s

dt
+

dQ(3)
s

dt
= −ks

∂ T(s)
1 (x, t)
∂ x

∣∣∣∣
x=ξ1

+ ks
∂ T(s)

3 (x, t)
∂ x

∣∣∣∣
x=ξ2

. (73)

According to the last two equations, the local energy balance at region 2 in the limit
∆ t→ 0, is given by

Csρs
dTu(t)

dt
= ks

∂ T(s)
1 (x, t)
∂ x

∣∣∣∣
x=ξ1

− ks
∂ T(s)

3 (x, t)
∂ x

∣∣∣∣
x=ξ2

, (74)

which constitutes a differential equation for the temperature Tu(t) in the thin solid layer
between x = ξ2 and x = ξ1. Additionally, the energy balance given by Equation (74) may
also be applied when the thin solid layer absorbs thermal energy. Finally, the time evolution
of Tu(t) is determined through the solution of Equation (74), which is used to estimate the
coefficients bi(t) with i = 1, 3 through the classical HBIM, previously described.

4.2. Finite Element Method

The FEM was applied to find the spacial dependence of the temperature field in each
phase [32]. Equation (4) was solved through the methodology described in Ref. [32], but
using the linear Lagrange shape functions at each element as follows:

N1(x) =
x− x2

x1 − x2
, and

N2(x) =
x− x1

x2 − x1
. (75)
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Here x1 and x2 represent the nodal coordinates of any given element. The temperature
field within each element is given by:

T̃(x, t) = N1(x) T̂1(t) + N2(x) T̂2(t), (76)

where, T̂1(t) and T̂2(t) is the time dependent part of the temperature at each node. The time
evolution of the temperature at each node was obtained through a first order approximation
to the time derivative of Equation (4). The implicit finite difference scheme was applied to
estimate the nodal temperatures at the next time level.

Equations (13), (16), and (18) were solved for the dynamical variables ξ1(t), ξ2(t),
and L(t) by using an explicit finite difference scheme with a first order approximation to
the time derivatives. The position of each interface and the thickness of the PCM layer
in the next time level were used to solve the heat equation through the FEM previously
mentioned [32].

5. Results and Discussion

The PCM used as an insulating material is octadecane. The thermal performance of a
PCM layer of octadecane is determined by estimating the time evolution of the dynamical
variables, the thermal energy released (absorbed) and the thermal energy released by the
interior surface. The thermodynamic properties of octadecane are assumed to be constant
in the temperature range considered in this work, and equal to their values close to the
saturation temperature of the PCM [27]. For the liquid(solid) phase k` = 0.152(ks =
0.334)W/m · K, C` = 1.921(Cs = 2.230) kJ/kg · K and ρ` = 776.860(ρs = 867.914) kg/m3.
The liquid-solid saturation properties are: L f = 236.98 kJ/kg and Tm = 301.13 K [27].

5.1. One-Front Dynamics: Transient and Steady Periodic Regimes

The one-front dynamics scenario is present when the ambient temperature oscillates
above the melting temperature of Octadecane during the complete cycle. In this case, the
parameters for the ambient ambient temperature are: T0 = 308.15 K, δ = 5.0 K and φ =
0.73779 rad. The phase angle φ represents a shift of the sine function, and the temperature
at the inner surface is fixed at TC = 295.15 K.

Equations (2)–(4) were solved through the FEM and the HBIM described in the previ-
ous section. Solutions were found for different values of the Stefan number defined as:

SteNo =
L f

C`(Tmax − Tm)
, (77)

where Tmax = T0 + δ is the maximum temperature on the exterior surface in this example.
Figure 8, shows the transient and steady periodic parts of the solution for the interface
position ξ1(t) and the thickness of the PCM layer L(t). Approximate HBIM solutions are
validated through FEM solutions in the one-front dynamics problem as shown in Figure 8.
We have predicted lower and upper bounds with volume corrections, for the interface
position and thickness of the PCM layer, as shown through Equations (5)–(8). Figure 8
shows solutions in the steady periodic regime for several values of SteNo. According to
Equations (5)–(8), the interface position and thickness of the PCM layer are bounded in the
steady periodic regime. The solutions are observed to oscillate within the predicted bounds
for several values of SteNo.
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Figure 8. Transient and steady periodic behavior of ξ1(t) and L(t), and for several values of the
Stefan number. Solid and dashed lines represent HBIM and FEM solutions, respectively for: (a) ξ1(t)
and (b) layer thickness L(t). The amplitude of the oscillations in ξ1(t) and L(t) are tuned through
the Stefan number by changing the value of L f . Corresponding values of the Stefan number are
indicated through black arrows. Lower and upper bounds in the steady periodic regime given by
Equations (5)–(8) are shown through horizontal dotted lines.

The maxima and minima in the oscillations of ξ1(t) and L(t) close to the steady
periodic regime, are tested by probing the solutions in the range SteNo = [008841− 88.4120].
The Stefan number is modified by changing the magnitude of the latent heat. According to
Equations (5)–(8), upper and lower bounds for ξ1 and L close to the steady periodic regime,
should not depend on L f when the system is subjected to non-homogeneous isothermal
boundary conditions. The steady periodic solutions must approach asymptotically to the
lower and upper bounds predicted through Equations (5)–(8) for low values of L f . The
asymptotic behavior close to the steady periodic regime according to Equations (5)–(8),
was captured by the HBIM and the FEM solutions. Maxima and minima in the oscillations
of ξ1(t) and L(t), were registered for several values of the Stefan number as shown in
Figure 9. Melting (solidification) rates are expected to increase for low values of the latent
heat as observed in Figure 9; therefore, for small Stefan numbers, the amplitude of the
oscillations in the steady periodic regime is exactly bounded by the values predicted
through Equations (5)–(8).
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Figure 9. (a) HBIM and FEM steady periodic solutions as a function of the natural logarithm

of the inverse Stefan number ln
(

SteNo−1
)

for ln
(

ξ
(max)
1 (t)/L0

)
and ln

(
ξ
(min)
1 (t)/L0

)
, and (b)

ln
(

L(max)(t)/L0

)
and ln

(
L(min)(t)/L0

)
. Maxima and minima in ξ1(t) and L(t) were registered

close to the steady periodic regime at t = 9 days.

5.2. Two-Front Dynamics: Transient and Steady Periodic Regimes

The temperature on the exterior surface was extracted from weather data of 10 August
2021 at the city of Villahermosa, Tabasco in Mexico [28]. The temperature data was fitted
to the periodic function shown in Equation (1), with the following fitting parameters:
T0 = 302.884 K, δ = −5.24632 K and φ = 0.73779 rad. The melting temperature of the PCM
selected for the numerical and semi-analytical examples, and the ambient temperature of
the selected region can give rise to the formation of several fronts. The ambient temperature
oscillates around the melting temperature of octadecane, which is chosen as the PCM for
the numerical and semi-analytical examples. The initial thickness of the PCM layer is
L0 = 3.0 cm, and a two-front configuration is observed during part of the cooling stage
of the cycle. The temperature at the inner surface is TC = 295.15. The inner temperature
of TC = 295.15 has been chosen to observe the two-front configuration scenario with the
longest possible duration, but with inner temperatures that produce some thermal comfort.
Lowest values of TC are possible; however, volumetric effects would be less evident.
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The model described through Equations (4), (13), (16), and (18) will be solved with the
FEM and HBIM discussed in the previous section. The model is equivalent to Equations (4),
(16), (18), and (22), where Equation (22) results from applying total mass conservation to
Equation (13). Figure 10 shows the FEM and HBIM solutions for ξ1(t), ξ2(t), and L(t) in a
Octadecane layer with an initial thickness of L0 = 3.0 cm. Initially, the system is almost in
its liquid phase, with a thin solid layer of thickness ξ2(0) = 1.0 mm close to the exterior
surface. Additionally, a solid layer of L(0)− ξ1(0) = 1.0 mm of thickness lies close to the
interior surface. The system is close to a steady periodic regime after being exposed to the
ambient temperature for 4–5 days.

Figure 10. Time evolution of: (a) ξ1(t), ξ2(t), and (b) L(t), according to the HBIM and FEM solutions
to Equations (4), (13), (16), and (18). Solid and dotted lines represent the FEM and HBIM solutions,
respectively.

Figure 10 contains the information on the front configuration during a complete cycle:
two-front, one-front and single solid phase configurations. The transient part of the solution
is observed for t� 1 day, where the layer thickness is significantly reduced. Initially, the
ambient temperature is decreasing towards the daily lows and a significant amount of
thermal energy is released by the PCM layer.

Internal energy and latent heat changes were estimated during the transient and
steady periodic regimes. The model described through Equations (4), (13), (16), and (18) is
solved, and thermal energy changes during small time intervals of ∆ t = 0.1 s are estimated.
Figure 11 shows the sensible heat, latent heat, and total energy released (absorbed) by
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the PCM during the transient and steady periodic regimes. The thermal energy released
(absorbed) can also be found by performing the time integral of the net thermal flux through
the PCM layer [25]. The net rate of thermal energy change in the PCM can be obtained
through the difference between the thermal flux on the exterior and inner surface as follows

dQPCM

dt
=

dQext

dt
− dQin

dt
. (78)

The energy released (absorbed) by the PCM layer between t = 0 and t = ta is then,
given by:

∆ QPCM =
∫ ta

0

ki
∂ T(i)

j (x, t)

∂ x

∣∣∣∣
x=0

+ ks
∂ T(s)

1 (x, t)
∂ x

∣∣∣∣
x=L(t)

dt, (79)

where ki represents the thermal conductivity of phase i = `, s and T(i)
j (x, t) is the tempera-

ture distribution of phase i within region j = 2, 3. The last equation may be used instead
of estimating the thermal energy released (absorbed) through the process described in
Section 3. On the one hand, Equation (79) contains global information related with the
volumetric effects on the sensible and latent heat released (absorbed) by the PCM, and only
provides information on the total energy released (absorbed). On the other hand, the pro-
cess described in Section 3 includes detailed information related with the manner in which
sensible and latent heats are being released or absorbed. Additionally, Equation (79) only
depends on the behavior of the temperature on the exterior and inner surfaces, and does
not provide information related with the entire temperature field in the PCM. The process
described in Section 3 is also preferred, since the time evolution of the temperature profiles
integrated over the PCM domain, can be used to perform a more consistent comparison
between the numerical and semi-analytical solutions used in this work.

Thermal energy is released during the solidification stages, which are observed when
the ambient temperature is below Tm (night hours) and during the cooling part of the
day. The amount of sensible heat released by the PCM in the presence of two liquid–solid
interfaces is obtained by substituting the solutions at two different time values ta and tb in
Equations (39), (40), (45), and (46). The sensible heat released when the system is in its pure
solid state and during the intervals with lowest ambient temperatures is estimated through
Equation (52). Additionally, during the solidification process, and in the presence of one-
front, the sensible heat released is obtained through Equations (61) and (64)–(66). Latent
heat is released during the solidification processes, during the formation of a solid layer
and at the instant of collision between ξ1 and ξ2. The latent heat released in the presence
of two fronts and one-front, was estimated through Equation (48) and (67), respectively.
Latent heat released during the formation of a solid layer close to the exterior surface
and at the time of collision was obtained through Equation (37) and (49), respectively.
Similarly, the sensible heat absorbed during the melting process was estimated through
Equations (54) and (57)–(59). Sensible heat is also absorbed when the PCM layer is in its
solid state and during the intervals when the ambient temperature is increasing from its
daily minimum and towards the melting temperature of the PCM. Finally, the latent heat
absorbed during the formation of a liquid layer and during the melting process, is obtained
through Equations (53) and (60), respectively.
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Figure 11. Time evolution of (a) internal energy change ∆ U, (b) latent heat released (absorbed) ∆ Q f ,
and (c) total energy changes ∆ Q per unit area in kWh/m2 according to the model proposed in this
work (ρs 6= ρ`) and the constant volume method used by other authors (ρs = ρ` or ρ` = ρs) [21,23–25].
(d) Time evolution of total mass is registered to verify that mass is not created or destroyed during the
transient and steady periodic regimes. The effects of volume changes on the thermal energy released
(absorbed) during solidification, melting, front formation and collision are discussed in Section 3.

Table 1 shows the highest relative percent difference (RPD) between the model dis-
cussed in this work and constant volume models commonly by other authors. The RPD
was obtained for the sensible heat, latent heat and thermal energy released (absorbed)
through each method used in this work. The RPD was estimated as follows:

RPD(max,i)
∆ E =

|
(
∆ Ep − ∆ Eo

)
|

|∆ Ep|
× 100%, (80)

where ∆ Ep and ∆ Eo represents the sensible heat, latent heat or thermal energy
released(absorbed) by the PCM layer according to the proposed model in this work and
the constant volume methods used by other authors, respectively. The maximum RPD
with i = 1 and i = 2 corresponds to the RPD between the proposed model (ρs 6= ρ`) and a
constant volume model with ρs = ρ` , and the RPD between the proposed model (ρs 6= ρ`)
and a constant volume model with ρs = ρ`, respectively. The maximum RPD is found
when the system is close to the steady periodic regime and is shown in Table 1.
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Table 1. Maximum RPD for the sensible heat, latent heat and thermal energy released(absorbed)
between the model discussed in this work and the constant volume methods used by other au-
thors [21,23–25].

RPD(max,1)
∆ U RPD(max,1)

∆ Q f
RPD(max,1)

∆ Q RPD(max,2)
∆ U RPD(max,2)

∆ Q f
RPD(max,2)

∆ Q

FEM 3.73% 2.50% 2.50% 13.01% 11.72% 11.78%
HBIM 4.01% 2.51% 2.52% 12.84% 11.72% 11.77%

Numerical and semi-analytical solutions to models that do not incorporate volumetric
effects are also shown in Figure 11. Two scenarios are considered by assuming an octadecane
sample of L = 3.0 cm with phases of equal densities. On the one hand, the density of the
liquid and solid phase are equal to ρs = 867.914 kg/m3. On the other hand, the density
of both phases is equal to the liquid density ρ` = 776.860 kg/m3. The solutions for ∆U,
∆Q f , ∆Q, and total mass are labeled as ρ` = ρs and ρs = ρ` in Figure 11. Volume changes
expansion or shrinkage disappear by assuming a PCM with no density change during
the phase transition. In absence of volume changes, total mass is implicitly conserved
and an additional equation of motion for the thickness L of the PCM layer is not required.
Thickness and total mass are constants of the motion when equal densities are assumed.
Sensible and latent heats can be obtained by taking the corresponding limit of equal
densities on each of the equations discussed in Section 3.

The effects of PCM expansion and shrinkage can be observed in Figure 11 and depend
on the initial conditions of the problem. Initially, the system is practically in its liquid form,
since ξ2(0) = 1.0 mm and ξ1(0) = 2.9 cm. Additionally, the temperature on the exterior
surface is below Tm and evolving towards the daily minimum. The initial conditions
chosen on this example produce solidification of the liquid layer with an initial thickness of
∆ξliq(0) = ξ1(0)− ξ2(0) = 2.8 cm. The shrinkage of the system from its initial state to its
pure solid form can be obtained through a simple mass balance where ρ`∆ξliq(0) = ρs∆ξsol.
Here, ∆ξsol is the thickness of the initial mass of liquid, but in its solid form. Consequently,
after solidification of the initial liquid layer, the system must shrink an amount equal
to: ∆ξliq(0) − ∆ξsol = 2.938 mm; therefore, the thickness of the PCM layer should be
L(ta) = 2.706 cm at the time ta of the first collision, as observed in Figure 10b. Assuming
for example, a PCM where the liquid phase has the same density as the PCM in its solid
form ρ` = ρs, the mass of the PCM layer is higher, as shown in Figure 11d. The liquid phase
has a larger mass in this case, and consequently the latent heat released is significantly
higher as illustrated in Figure 11b. The latent heat initially released, is shifted along the
energy axis as a consequence of the extra mass that results by assuming ρ` = ρs. The other
scenario, when ρs = ρ`, does not produce the observed shift on the latent heat, since total
mass does not change significantly.

Finally, Figure 12 shows the energy released by the solid in region 1 and to the interior
of the room. The energy released by the interior surface, represents the amount of thermal
energy that must be removed from the room to keep a constant temperature at the inner
surface of the PCM layer. The energy released by the solid phase at region 1 can be obtained
through the time integral of the thermal flux on the inner surface as follows

∆ Qin = −ks

∫ ta

0

∂ T(s)
1 (x, t)
∂ x

∣∣∣∣
x=L(t)

dt. (81)

The energy released by the inner surface represents another way to evaluate the
thermal efficiency of the PCM layer as a thermal barrier. The result is compared with the
models of other authors, where volumetric effects are not considered.
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Figure 12. Energy transferred to the interior of the room according to the numerical and semi-
analytical solutions used in this work. Constant volume methods of Refs. [21,23–25] are compared
with the result obtained through the proposed model in this work. According to the initial state of
the system and the result shown in this figure, the thermal performance of the PCM layer is enhanced
by assuming equal densities.

The enhanced thermal performance of the PCM when equal densities are assumed, can
be understood in terms of the initial state of the system and the thickness of the solid phase
in region 1. On the one hand, the thickness of the PCM layer remains constant in this case,
while it is reduced initially by almost 3.0 mm when ρ` 6= ρs, as previously discussed. Close
to the steady periodic regime, the thickness of the PCM layer will oscillate between 2.7 cm
and 2.8 cm as a consequence of this initial shrinkage. On the other hand, the thickness of
the PCM layer will remain constant and equal to its initial value of L = 3.0 cm when equal
densities are assumed. The oscillations of the interface at x = ξ1(t) are very similar in both
cases (equal and different densities); therefore, the effective thickness of the solid phase in
region 1 and close to the steady periodic regime, will be smaller when volumetric effects
are incorporated into the problem. Consequently, since the temperature gradient in region
1 is ∆ T = Tm − TC in both cases, higher energy transfer rates at x = L(t) will be expected
when ρ` 6= ρs.

6. Conclusions

The main goal of this work consisted in estimating the effects of volume changes
in the thermal performance of a PCM layer, when the external surface is exposed to
temperature oscillations about the fusion point of the PCM. Despite the relatively small
density variations in this material, the volumetric effects on the energy transferred by
the PCM layer were significant. The initial conditions of the system produced an overall
maximum volume shrinkage of 10% during the transient regime, which is observed when
the two fronts collide for the first time. The latent heat, sensible heat, and thermal energy
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released in the transient regime are shifted along the energy axis as a result of the initial
shrinkage of the PCM layer. The shift of the thermal energy initially released produces a
significant relative percent difference between the model proposed in this work and the
constant volume methods used by other authors. The largest relative percent difference
is observed when the liquid density is equal to the solid density. The result is expected
since assuming phases with densities equal to ρs, the total mass of the system is increased.
Additionally, it is found that the system does not recover its initial thickness when the PCM
layer oscillates in the steady periodic regime. The thickness of the PCM layer is significantly
reduced and oscillates around a smaller value in the steady periodic regime, constituting a
less effective thermal barrier as a result of the initial system shrinkage. The results indicate
that the initial state of the system has a significant impact on the thermal performance of
the PCM, which is overestimated when neglecting volume changes. The situation may be
reversed, and thermal performance could be enhanced by using an initial state with two
liquid fronts that produce a system expansion from which the PCM layer may not recover.
The result will depend on the thermodynamic properties of the PCM and the temperature
oscillations on the exterior surface. The volumetric effects produced by a combination of
different transient states has yet to be determined. Different transient states may appear
in systems with non-sinusoidal temperature oscillations. The system is unable to reach a
steady periodic regime in this case, and the volumetric effects predicted in this work may
be more profound.

Additional contributions to volume changes produced by considering the temperature
dependence of liquid and solid densities must be addressed as well. Thermal expansion
effects on the problem of several front formation will depend on the type of PCM. Ambient
temperature variations may also give rise to a different phase configuration than discussed
in this work when considering the thermal expansion of each phase. Finally, to the authors’
knowledge, there is little experimental evidence in the literature concerning the problem of
several front formation. The present work is still limited by the experimental validations
that will allow estimation of the effects predicted through the proposed model.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

PCM Phase change material
FEM Finite element method
HBIM Heat balance integral method
SteNo Stefan number
k` Thermal conductivity of the liquid
ks Thermal conductivity of the solid
C` Specific heat capacity of the liquid
Cs Specific heat capacity of the solid
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ρ` Liquid density
ρs Solid density
Tm Melting temperature
L f Latent heat of fusion
L Thickness of PCM layer

ξ
(u)
sp Upper bound for interface position in the steady periodic regime

ξ
(`)
sp Lower bound for interface position in the steady periodic regime

L(u)
sp Upper bound for the layer thickness in the steady periodic regime

L(`)
sp Lower bound the layer thickness in the steady periodic regime

ξi Position of the ith liquid-solid interface

T(i)
j (x, t) Temperature profile of phase i in region j

T(i)
j (0, t) Temperature of the exterior surface

Tamb(t) Ambient temperature
TC Temperature of the inner surface
T0 Daily average temperature
δ Amplitude of temperature oscillations
ω Angular frequency of temperature oscillations
∆ Q Thermal energy that penetrates the PCM layer
L f Latent heat of fusion
Tm Melting temperature
∆ U Internal energy change
∆ Q f released(absorbed) latent heat
∆ Q released(absorbed) thermal energy
∆ Qin Thermal energy released by the interior surface
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