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Abstract: Butvar B-98 and PDMS-OH both have a demonstrable ability as consolidants for archaeo-
logical wood. This makes them both potential treatment options for the Oseberg collection, which is
one of the most important archaeological finds from the Viking era. Both Butvar B-98 and PDMS-OH
are soluble in organic solvents, offering a useful alternative to aqueous-based consolidants. Exten-
sive characterisation studies were carried out on both of these polymers, with the use of analytical
ultracentrifugation and viscometry, for the benefit of conservators wanting to know more about
the physical properties of these materials. Short column sedimentation equilibrium analysis using
SEDFIT-MSTAR revealed a weight-average molar mass (weight-average molecular weight) Mw of
(54.0 ± 1.5) kDa (kg · mol−1) for Butvar B-98, while four samples of PDMS-OH siloxanes (each
with a different molar mass) had an Mw of (52.5 ± 3.0) kDa, (38.8 ± 1.5) kDa, (6.2 ± 0.7) kDa and
(1.6 ± 0.1) kDa. Sedimentation velocity confirmed that all polymers were heterogeneous, with a
wide range of molar masses. All molecular species showed considerable conformational asymmetry
from measurements of intrinsic viscosity, which would facilitate networking interactions as consoli-
dants. It is anticipated that the accumulated data on these two consolidants will enable conservators
to make a more informed decision when it comes to choosing which treatment to administer to
archaeological artefacts.

Keywords: analytical ultracentrifugation; Butvar B-98; PDMS-OH; Oseberg artefacts

1. Introduction

Archaeological artefacts are unique time-travelling devices, transporting information
from the past to the present. These artefacts not only provide us with a historical record
but also with a source of cultural identity. It is therefore important that they are preserved
for future generations. The Oseberg collection, discovered and excavated in 1903 and
1904 respectively [1], is comprised of highly valuable wooden artefacts and there is currently
a race against time to develop new methodologies to reduce their active degradation and
increase their strength. This unique assembly of archaeological artefacts was treated with
hot alum salt solutions (KAl(SO4)2·12H2O and NH4Al(SO4)2·12H2O) between 1905 and ca.
1912 [2,3].

While this successfully provided support for the weakened structure of the water-
logged wood, it also inadvertently led to the formation of a very acidic environment in
the wood (pH ca. 1–2.5) and the highly degraded state that the artefacts are presently
in [4,5]. The severe decay of the Oseberg artefacts is such that many are only held together
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by the alum present in their wooden structure. Additionally, many objects have been
reconstructed in ways that are not possible to undo without causing further damage. The
objects with the highest degree of degradation and those which have been highly recon-
structed cannot be re-treated with polymers in aqueous solutions. This is because the alum
remaining in the artefacts may dissolve in water and consequently diffuse from the wooden
structure, leading to total disintegration. As a result, it is deemed preferable to treat the
most deteriorated and highly reconstructed artefacts with non-aqueous methods.

In this study, we carried out the extensive characterisation of two commercially
available polymers representing such non-aqueous treatments, Butvar B-98 and hydroxy-
terminated polydimethylsiloxane (PDMS-OH). These are currently being considered as
candidates for the retreatment of part of the Oseberg wooden collection of artefacts. The
performance of a wood consolidant depends not only on its chemical composition but also
on its physical properties, notably molecular weight and molecular weight distribution and
conformation, both of which affect the property to penetrate through the wood and interact/
form stable networks with wood components. In so doing, we will extend/reinforce the
information already available for these materials, thereby assisting an archaeological wood
conservator in his/her choice of the appropriate material.

This level of characterisation, in terms of size distribution, molar mass, and conforma-
tion of these two consolidants have never been carried out according to our knowledge,
and we are anticipating that it will prove to be very useful when it comes to deciding which
consolidants to choose for retreatment. Moreover, it will also be helpful to other future
conservation projects.

Butvar B-98 is a polyvinyl butyral-based resin produced by the reaction of polyvinyl
alcohol with butyraldehyde [6,7] (Figure 1a). It has already been used as a conservation
treatment for archaeological artefacts, such as wooden objects excavated from tombs
dating back to the 8th century BCE in Gordion, Turkey [6]: samples from these artefacts
were consolidated with Butvar B-98 diluted in a solution of toluene and ethanol. After
drying, it was shown that the wood had little or no shrinkage and minimal colour change.
Spirydowicz et al. [6] reported that treating samples with 10% Butvar B-98 resulted in
stabilisation without any significant micromorphological changes to the structure of the
wood. Using scanning electron microscopy, it was confirmed that while the Butvar B-
98 filled some of the cell lumina, it commonly coated their surfaces/cell walls.

Silicone-based polymers such as PDMS-OH (Figure 1b) possess a number of desir-
able properties such as hydrophobicity, high chemical, and temperature resistance, and
minimal flammability [8]. These polymers form a macromolecular network in the wood
via crosslinking, achieved by condensing the silanol groups to form siloxane bonds [8].
Kavvouras et al. [8] investigated the use of PDMS-OH together with a catalyst and a
crosslinker, for conserving archaeological waterlogged wood from the Neolithic period in
Greece. The process resulted in the formation of a three-dimensional polysiloxane network
which effectively protected against the shrinking of the wood cells, whilst retaining the
appearance of natural wood.
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The characterisation described in the present study was primarily carried out by
analytical ultracentrifugation, an absolute and matrix-free technique commonly used in
the study of macromolecules [9]. This method has been recently described for the study
of potential wood consolidants [10–14]. It is particularly attractive when compared to
the more classical method of gel-permeation chromatography (GPC) since apart from the
determination of particle sizes and shapes, it can also be used for the quantitative analysis
of their interactions in solutions [9]. Moreover, unlike GPC, it can directly give molecular
weights without the use of calibration standards of known molecular weight and a shape
identical to that of the polymer being characterised. This eliminates the uncertainty that
a method such as GPC generates when the polymer being tested does not have the same
conformation as the standards employed.

There are two principle techniques that are carried out by analytical ultracentrifugation:
a sedimentation velocity study and a sedimentation equilibrium experiment. Sedimentation
velocity is a powerful matrix-free method that is used to gain information about the size
distribution in terms of the sedimentation coefficient s (in Svedberg units, S), where s
is the sedimentation rate per unit centrifugal field. It can also provide information on
the shape of the macromolecule, as well as its interactions in solution. Since it generally
works at relatively high rotor speeds, a high centrifugal force is developed which tend to
dominate back diffusion effects. Although it is highly resolving, the s depends not only on
the size but also on the shape of the molecule since extended molecules sediment slower.
In contrast, sedimentation equilibrium is run at lower speeds; during such an experiment,
the sedimentation and diffusion forces come to an equilibrium, and this provides direct
information on the molar mass of the macromolecule, as there are no shape or friction effects,
and without the need for standards. It also requires much shorter columns, minimising the
effects of solvent compressibility issues. We also investigated the viscosity/conformational
(shape) using a rolling ball viscometer [14] (with data analysed using the programme
ELLIPS1) [15,16]. The primary solvent we used was isopropanol because the studied
polymers are soluble in this; there is a sufficient density and viscosity difference between
polymer and solvent, and it also has lower compressibility compared to many other organic
solvents [17,18].

We also investigated the viscosity and shape behaviour of the siloxanes in turpentine as
a second solvent. Turpentine (Figure 2) was chosen as an additional solvent for investigation
as siloxanes are soluble in it and it is also a natural or “green” solvent consisting of terpenes
obtained from the wood of pine trees by steam distillation. This was not possible for the
ultracentrifuge studies due to the insufficient density difference of the siloxanes with the
solvent, nor for Butvar B-98 due to its insolubility in turpentine.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 17 
 

 

The characterisation described in the present study was primarily carried out by an-

alytical ultracentrifugation, an absolute and matrix-free technique commonly used in the 

study of macromolecules [9]. This method has been recently described for the study of 

potential wood consolidants [10–14]. It is particularly attractive when compared to the 

more classical method of gel-permeation chromatography (GPC) since apart from the de-

termination of particle sizes and shapes, it can also be used for the quantitative analysis 

of their interactions in solutions [9]. Moreover, unlike GPC, it can directly give molecular 

weights without the use of calibration standards of known molecular weight and a shape 

identical to that of the polymer being characterised. This eliminates the uncertainty that a 

method such as GPC generates when the polymer being tested does not have the same 

conformation as the standards employed. 

There are two principle techniques that are carried out by analytical ultracentrifuga-

tion: a sedimentation velocity study and a sedimentation equilibrium experiment. Sedi-

mentation velocity is a powerful matrix-free method that is used to gain information about 

the size distribution in terms of the sedimentation coefficient s (in Svedberg units, S), 

where s is the sedimentation rate per unit centrifugal field. It can also provide information 

on the shape of the macromolecule, as well as its interactions in solution. Since it generally 

works at relatively high rotor speeds, a high centrifugal force is developed which tend to 

dominate back diffusion effects. Although it is highly resolving, the s depends not only 

on the size but also on the shape of the molecule since extended molecules sediment 

slower. In contrast, sedimentation equilibrium is run at lower speeds; during such an ex-

periment, the sedimentation and diffusion forces come to an equilibrium, and this pro-

vides direct information on the molar mass of the macromolecule, as there are no shape 

or friction effects, and without the need for standards. It also requires much shorter col-

umns, minimising the effects of solvent compressibility issues. We also investigated the 

viscosity/conformational (shape) using a rolling ball viscometer [14] (with data analysed 

using the programme ELLIPS1) [15,16]. The primary solvent we used was isopropanol 

because the studied polymers are soluble in this; there is a sufficient density and viscosity 

difference between polymer and solvent, and it also has lower compressibility compared 

to many other organic solvents [17,18].  

We also investigated the viscosity and shape behaviour of the siloxanes in turpentine 

as a second solvent. Turpentine (Figure 2) was chosen as an additional solvent for inves-

tigation as siloxanes are soluble in it and it is also a natural or “green” solvent consisting 

of terpenes obtained from the wood of pine trees by steam distillation. This was not pos-

sible for the ultracentrifuge studies due to the insufficient density difference of the silox-

anes with the solvent, nor for Butvar B-98 due to its insolubility in turpentine. 

 

Figure 2. Wood fragment from the Oseberg collection before and after retreatment by injection with 

siloxane PS36000 in turpentine at a concentration of ~5% (50 g/L). The fragment had been originally 

treated with alum and linseed oil shortly after excavation in 1904. 

Figure 2. Wood fragment from the Oseberg collection before and after retreatment by injection with
siloxane PS36000 in turpentine at a concentration of ~5% (50 g/L). The fragment had been originally
treated with alum and linseed oil shortly after excavation in 1904.
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2. Results
2.1. Butvar B-98
2.1.1. Sedimentation Velocity in the Analytical Ultracentrifuge

Figure 3 shows the sedimentation coefficient distribution c(s) [19] vs. s of Butvar
B-98 in isopropanol, analysed using the algorithm SEDFIT [20]. The analysis revealed
material of a low sedimentation coefficient (<1 S) and close to the lowest limit of the
technique (~0.4 S). No evidence of aggregation products was seen at higher sedimentation
coefficient values. Low sedimentation coefficients are a feature of either low molar masses,
extended conformations, or a combination of both. Two peaks are distinguishable at
~0.4–0.5 S and ~0.7–0.8 S. SEDFIT also enables the normalisation of the sedimentation
coefficient to standard conditions (density and viscosity of water at 20.0 ◦C) for comparative
purposes [21]. The normalised sedimentation coefficients (s20,w) for the two peaks were
then plotted against concentration (Figure 4). It has to be stressed that these are on the
lowest limit of sedimentation coefficient measurement.

2.1.2. Sedimentation Equilibrium in the Analytical Ultracentrifuge

Sedimentation equilibrium experiments were then performed in order to determine
weight-average molar masses. The algorithm SEDFIT-MSTAR [22] was used to evaluate
the apparent weight-average molar mass Mw,app at cell loading concentrations ranging
from 0.5 mg/mL (the minimum concentration required to give an adequate concentration
distribution at sedimentation equilibrium) to 5.0 mg/mL (Supplementary Table S1).

Values are apparent at finite concentration because of the effects of thermodynamic
non-ideality through molecular excluded volume effects [21], which leads to an underesti-
mate of the true molar mass value. Depending on the size of the molecule, at sufficiently
low concentrations Mw,app can be considered to be approximately equal to Mw, the thermo-
dynamically ideal value. Alternatively, measurements of Mw,app can be made at a series of
concentrations, c, and extrapolated back to c = 0 where non-ideality effects are eliminated
and hence, Mw,app = Mw. The Mw,app values themselves are obtained from SEDFIT-MSTAR
using either (i) the M* function, or (ii) the hinge method (see Schuck et al. [22]).
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Figure 4. Dependence of s20,w on sedimenting concentration (corrected for radial dilution) for Butvar
B-98. (a) Slower component so

20,w = (0.40 ± 0.02) S; (b) Faster component so
20,w (0.65 ± 0.02) S.

Figure 5a shows an extrapolation to zero concentration to eliminate non-ideality effects
to yield an “ideal” weight-average molar mass Mw = (54.0 ± 1.5) kDa for Butvar B-98.
SEDFIT-MSTAR also provides an estimate for the (apparent) z-average molar mass, Mz,app,
and hence the apparent polydispersity Ð = Mz,app/Mw,app.

The sedimentation equilibrium data for the 4.0 mg/mL loading concentration were ad-
ditionally analysed with the MULTISIG algorithm. This programme utilises a 17-component
system with 20 iterations to provide a distribution of the (apparent) molar masses in a
polymer system [23]. Figure 5b reveals a broad distribution ranging from 17.5 to 163.4 kDa,
with components peaking at 17.5 and 61.4 kDa for Butvar B-98. Both the weighted average
whole distribution value Mw = (54.0 ± 1.5) kDa and the f(M) vs. Mapp distribution are
consistent with values previously quoted for Butvar B-98, namely 40–70 kDa [24].
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Figure 5. Sedimentation equilibrium of Butvar B-98 in isopropanol. Rotor speed 22,000 rpm. Temper-
ature = 20.0 ◦C. (a) Dependence of the apparent Mw,app on concentration, with an extrapolation to
obtain the thermodynamically ideal Mw of Butvar B-98 = (54.0 ± 1.5) kDa. The data was analysed
with SEDFIT-MSTAR using the M* method. (b) Estimation using MULTISIG of the molar mass
distribution f(M) vs. Mapp at a loading concentration of 4.0 mg/mL. A broad distribution is seen
consistent with sedimentation velocity (see Figure 3).

2.2. Siloxanes: PDMS-OH

Four different preparations of PDMS-OH were studied across a range of molar masses
assigned by the manufacturer based on size exclusion chromatography as 36,000 Da and
18,000 Da (both relative to polystyrene standards), and 4200 Da and ~550 Da: these samples
are hitherto named as PS36000, PS18000, PS4200, and PS550.

2.2.1. Sedimentation Velocity in the Analytical Ultracentrifuge

The PDMS-OH series was solubilised in isopropanol. A rotational speed of 49,000 rpm
at a temperature of 20.0 ◦C was used for all samples: Figure 6a–d compares the sedimenta-
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tion coefficient distributions obtained from these experiments for the four samples across
the range of concentrations. No evidence of high molar mass aggregation products was
evident across the range. PS36000 (Figure 6a) had a single peak with a sedimentation
coefficient value s of ~0.7 S. In contrast, PS18000 (Figure 6b) revealed two components. As
the concentration increased, these two peaks showed a tendency to merge, possibly due to
the Johnston—Ogston [25] effect where the faster moving component was slowed down by
having to move through a solution of the slower moving component. PS4200 (Figure 6c)
had very similar results to PS18000, especially at higher concentrations, where two primary
components were observed. For PS550 (Figure 6d) the sedimentation coefficient was too
small to be reliably detected, but the distribution plot did not show the presence of higher
molar mass aggregates. When an attempt was made to calculate the s20,w of the PDMS-OH
samples, that is, the sedimentation coefficient normalised to the standard solvent conditions
of the density and viscosity of water at 20.0 ◦C, it was discovered that all values came
out negative. This would indicate that, had these molecules been soluble in water they
would have moved in the opposite direction to the ultracentrifugal field—i.e., flotation
velocity—somewhat similar to what we had previously observed for another polymer,
‘CoPo9′, a block copolymer made of poly(ethylene oxide), poly(isoprene) and poly(ethylene
oxide)—which is soluble as unimers in chloroform but forms micelles in water [26].
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2.2.2. Sedimentation Equilibrium in the Analytical Ultracentrifuge

Sedimentation equilibrium experiments were performed on all samples, using appro-
priate rotational speeds according to their approximate sizes. (Supplementary Tables S2–S5).
The thermodynamically ideal whole distribution weight average Mw values were obtained,
as with Butvar B-98, by plotting the apparent Mw,app values against concentration and
extrapolating to zero concentration (Figure 7). These weight-average molar mass values
proved to be a little higher than the relative molar mass estimates Mr (relative to polystyrene
standards) provided by the manufacturer (Table 1): this may be due to the different con-
formations of the siloxanes to the polystyrene standards in the solvent used. Because of
the small size of PS550, measurable fringe increments were only possible at the higher
concentrations, therefore Mw is obtained by taking the average of the 3.0 mg/mL and 4.0
mg/mL measurements (Table S5). Approximating Mw ~ Mw,app is justified because its
exclusion volume/ non-ideality effects will be minimal [21].
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Figure 7. Dependence of apparent Mw,app from sedimentation equilibrum using SEDFIT-MSTAR on
concentration, with an extrapolation to obtain the thermodynamically ideal Mw,app of the PDMS-OH
siloxanes in isopropanol. (a) PS36000, rotor speed = 22,000 rpm, temperature = 20.0 ◦C. The value
extrapolated to zero concentration was calculated to be Mw = (52.5 ± 3.0) kDa. (b) PS18000 in
isopropanol, rotor speed = 30,000 rpm. Mw = (37.4 ± 2.3) kDa. (c) PS4200 in isopropanol, ro-
tor speed = 49,500 rpm. Mw = (6.2 ± 0.7) kDa.
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Table 1. Molar mass values for PDMS-OH siloxanes in isopropanol Mw: weight-average molar mass
values in isopropanol from sedimentation equilibrium in the analytical ultracentrifuge. Mr: relative
molar mass values relative to polystyrene standards.

Polymer Mr (Da) Mw (Da)

PS36000 36,000 52,500 ± 3000
PS18000 18,000 38,800 ± 1500
PS4200 4200 6200 ± 700
PS550 ~550 1550 ± 50

Figure 8a–c shows the corresponding molar masses at a loading concentration of
4.0 mg/mL from the MULTISIG [23] analyses of the equilibrium data (the PS550 was not
possible for this type of analysis due to its small size). The polymers appear to be fairly
heterogeneous, with each having a wide range of molar mass.
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2.3. Intrinsic Viscosity [η]

Intrinsic viscosity [21,27] measurements on Butvar B-98 and PDMS-OH were carried
out with a rolling ball viscometer at 10.0 ◦C in isopropanol. The PDMS-OH samples were
additionally measured in turpentine. The concentration of the polymer solutions that were
used for these experiments was 6.0 mg/mL to give a sufficient flow time difference to that
of the solvent. The [η] values (Table 2) were evaluated using the Solomon–Ciuta equation:

[η] =
1
c
(
2
(
ηsp

)
− 2ln(ηr)

) 1
2 (1)

where ηr is the relative viscosity (ratio of the viscosity of the solution to that of the solvent)
and ηsp, the specific viscosity = ηr − 1.

Table 2. A comparison of the [η] values obtained for all the tested polymers.

[η] in Isopropanol (mL/g) [η] in Turpentine (mL/g)

Butvar B-98 57± 3 N/A
Siloxane PS36000 6.0 ± 0.3 22.4 ± 1.1
Siloxane PS18000 7.5 ± 0.4 15.8 ± 0.8
Siloxane PS4200 4.1 ± 0.2 5.5 ± 0.3
Siloxane PS550 3.7 ± 0.2 *

* flow time increment too small to record.

2.4. Conformation Analyses

The programme ELLIPS1 [15,16] was used to provide an estimate of polymer confor-
mation or asymmetry in terms of the axial ratio of the equivalent hydrodynamic ellipsoid
(prolate) of the polymers using the viscosity increment (ν) shape factor. These models do
not take into account flexibility effects, but nonetheless provide a useful relative comparison
of asymmetry. A similar exercise has been reported recently for a potential consolidant
derived from terpenes [14]. ν is related to [η] by the relation [28–30]:

ν = [η]/vs (2)

where vs is the swollen specific volume. Tables 3 and 4 show these shape functions in terms
of their aspect (axial) ratios (a/b) for ellipsoids of revolution [16] using a plausible range of
solvent associations. Figure 9 (and Supplementary Materials) gives some examples.

Table 3. Viscosity increment ν for different degrees of solvent association (dynamic binding) and
corresponding axial ratios (a/b) for Butvar B-98 and PDMS-OH polymers in isopropanol.

Degree of Solvent Association (vs/
¯
v)

1 1.2 1.4

Butvar B-98
ν 64 ± 3 53 ± 3 45 ± 3

(a/b) 27 24 22

PS36000
ν 5.9 ± 2.0 4.9 ± 2.0 4.2 ± 2.0

(a/b) 5 4 4

PS18000
ν 7.2 ± 2.3 6.0 ± 2.3 5.2 ± 2.3

(a/b) 6 5 5

PS4200
ν 4.0 ± 0.7 3.3 ± 0.7 2.8 ± 0.7

(a/b) 3 3 3

PS550
ν 3.6 ± 0.2 3.0 ± 0.2 2.5 ± 0.2

(a/b) 3 2 1
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Table 4. Viscosity increment ν for PDMS-OH polymers in turpentine.

Degree of Solvent Association (vs/
¯
v)

1 1.2 1.4

PS36000 ν 22.0 18.3 15.7
(a/b) 14 12 11

PS18000
ν 15 13 11

(a/b) 11 10 9

PS4200
ν 5.4 4.5 3.8

(a/b) 5 4 3
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Figure 9. Conformation in isopropanol (equivalent hydrodynamic ellipsoids) for ν at (vs/v) = 1.2 us-
ing the programme ELLIPS1 of (a) Butvar B-98 in isopropanol; (b) PS36000 siloxane in isopropanol.
ELLIPS1 representations of PS18000, PS4200, and PS550, as well as polymers in turpentine, are shown
in Supplementary Figure S1.

Mark–Houwink–Kuhn–Sakurada (MHKS) Plots

From Tables 1 and 2 it is possible to construct Mark–Houwink–Kuhn–Saurada plots of
log [η] vs. log Mw (Figure 10) for the siloxanes to yield the MHKS ‘a’ coefficient from the
slope where

[η] = KηMw
a (3)

and Kη is a constant. MHKS a values range from ~0 for a spherical/globular particle,
0.5–0.8 for a flexible-extended coil, and >1.2 for a rod (see for example Harding [27]). In
isopropanol, the slope “a”~(0.15 ± 0.07) is consistent with a spherical/globular approxima-
tion so the application of the ellipsoid models is justified. In turpentine “a” = ~(0.66 ± 0.05),
which is approaching an extended coil, again consistent with the aspect ratios shown
in Table 4.
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3. Discussion

In this study, the characterisation of the consolidants Butvar B-98 and four different
PDMS-OH series were successfully carried out, primarily with the use of analytical ultra-
centrifugation. The sedimentation equilibrium studies revealed that Butvar B-98 had a Mw
of ~54.0 kDa, while the different samples of PDMS-OH had an Mw of ~52.5 kDa, 38.8 kDa,
6.2 kDa, and 1.6 kDa. The experimental Mw value of Butvar B-98 was shown to be consis-
tent with the data provided by the manufacturer based on size exclusion chromatography
coupled to a low angle light scattering detector, which like sedimentation equilibrium, is
an absolute method not requiring assumptions concerning polymer conformation. Our
absolute values for the weight-average molar masses for the siloxanes may provide a more
accurate measure of molar mass to the previously available relative molar mass values,
which were relative to polystyrene standards. The differences are probably due to the dif-
ferent conformations of the siloxanes and the standards. Sedimentation velocity, reinforced
by the MULTISIG analysis of sedimentation equilibrium solute distributions, demonstrated
that all polymers were heterogeneous with a broad range of molar masses. This may affect
how efficiently these polymers can penetrate and consolidate archaeological wood.

Conformational analyses in isopropanol confirmed that the polymers, in general,
possessed an elongated shape. This was especially true for Butvar B-98, with the viscosity
increment ν indicating an axial ratio of ~25 (allowing for a plausible solvation range). The
different samples of PDMS-OH had much less extended conformations, with aspect ratios
in the range from 2–5. In turpentine the two largest samples appeared to be more extended,
which is also reflected in their increase in intrinsic viscosity (Table 2). This difference may
relate to observations on the use of PS36000 in both turpentine and isopropanol to treat
degraded archaeological wood [31]. Figure 11a shows separation between the PS36000 and
solvent almost immediately after mixing it with isopropanol. In contrast, such a separation
is absent in the mix of the polymer with turpentine, even after one month (Figure 11b).
The more extended conformation of PS36000 in turpentine is most likely due to a greater
solvent interaction with turpentine.

Nonetheless, three different concentrations of the polymer in the two solvents, 30%,
50%, and 70%, were used to immerse a number of archaeological wood test specimens
for a period of two weeks during experimental work in the framework of the Saving
Oseberg project [31]. Due to the experimental set-up, test specimens were layered in
the immersion bath. When the weight percentage gain of the wood test specimens was
calculated for all concentrations and solution types, for those stacked at the top of the
isopropanol/polymer bath, all had consistently gained the least weight. This was in
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contrast to the test specimens immersed in the turpentine/polymer bath. In this case, there
was no relationship observed between the weight percentage gain and the positioning of a
test specimen in the immersion bath. Essentially, the wood test specimens sitting on the top
part of the polymer/isopropanol bath were exposed to a lower polymer concentration than
aimed for, due to the separation of the two components.

The practical meaning of this for a conservator is that, for instances involving ap-
plication of the large molar mass siloxanes such as PDMS-OH PS36000 as a consolidant
in wood via immersion, and considering the prolonged periods of immersion time, the
preferable solvent to work with would be turpentine to ensure the desired amount of con-
solidant uptake by the wood—and this choice is reinforced by it’s natural or “green” origins
from pinewood. However, solutions of PS36000 in isopropanol could be recommended
for applications on wood via injection—as long as the mixture is gently shaken before
injection—since short application times are involved. Moreover, since a consolidant appli-
cation via injection brings conservators in close contact with a wooden object, the choice of
a solvent that is less harmful to human health, isopropanol, is better than turpentine in this
case. Lengthy evaporation rates (months to years) of turpentine may also be considered
problematic.
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Figure 11. (a) PS36000 in isopropanol, showing phase separation of components as indicated by
the red arrow. (b) = A comparison of PS36000 in isopropanol (left) and turpentine (right) after
one month.

4. Concluding Remarks

Butvar B-98 and PDMS-OH both possess the common advantage of being soluble
in organic solvents. This is particularly important for the Oseberg artefacts, as avoiding
aqueous treatment will help in preventing further possible damage during reconservation.
The work described here has successfully expanded the knowledge base of these two
polymers, which will hopefully result in a higher confidence level when it comes to deciding
which consolidants to use in the retreatment of the Oseberg finds, as it will certainly do for
other archaeological artefacts.

5. Materials and Methods
5.1. Materials

All reagents and solvents were purchased from a chemical supplier (Acros Organics
Ltd., Geel, Belgium; Alfa Aesar Ltd., Haverhill, MA, USA; Merck Ltd., Darmstadt, Germany;
or Fisher Scientific Ltd., Loughborough, UK) and used without further purification. Butvar
B-98 and PDMS-OH 36,000 and 18,000 were obtained from Acros Organics www.acros.com

www.acros.com
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(accessed on 10 November 2021) (part of Thermo Fisher Ltd., Scientific) Geel, Belgium,
and Fluorochem, Glossop, UK, respectively. PDMS-OH 4200 and ~550 were obtained from
VWR International, Lutterworth, UK, and Merck Ltd., Darmstadt, Germany.

5.2. Analytical Ultracentrifugation

A Beckman Optima XL-I analytical ultracentrifuge with Rayleigh interference optics
was used at 20.0 ◦C. Furthermore, 12 mm optical path length double sector cells with
titanium centrepieces were employed. A description of the sedimentation velocity and
sedimentation equilibrium techniques are given in Harding et al. [32], Dam and Schuck, [20]
Schuck et al. [22], and Harding et al. [33].

5.2.1. Sedimentation Velocity

An amount of 405 µL of the previous loading concentrations (0.5 to 4.0 mg/mL) of
polymer (Butvar B-98 or PDMS-OH) in isopropanol were added to each of the cells. A
rotational speed of 49,000 rpm was used, and the samples were centrifuged overnight.
The weighted average sedimentation coefficient and the distributions of sedimentation
coefficient c(s) vs. s were obtained by analysis with the SEDFIT procedure [20].

5.2.2. Sedimentation Equilibrium

Loading concentrations of 0.5 to 4.0 mg/mL of polymer in isopropanol were used. An
amount of 100 µL of each concentration was injected into the sample solution channel of
the cell. Isopropanol was used as the reference solvent. For Butvar B-98, the experiment
was carried out at a rotational speed of 22,000 rpm over 2 days. For PS36000 and PS18000,
the experiments were carried out over 2 days using rotational speeds of 22,000 rpm and
30,000 rpm, respectively. The experiments for PS4200 and PS550 were both carried out
at a speed of 49,000 rpm and left overnight. The results were analysed with SEDFIT-
MSTAR [22] in order to obtain the apparent weight-average molar mass Mw,app, making use
of the M* extrapolation [34] and the hinge point method [21]. No significant concentration
dependence was observed, suggesting that non-ideality was not significant. The data
obtained from the highest concentration (4.0 mg/mL) was additionally analysed with the
MULTISIG algorithm [23] to evaluate the molar mass distribution.

5.3. Viscosity Measurements

An Anton Paar AMVn (Graz, Austria) rolling ball viscometer was used at a temper-
ature of 10.0 ◦C. Its closed capillary system is more suitable for working with volatile
solvent systems compared to conventional Ostwald viscometers. The intrinsic viscosity
measurements were carried out using a 6.0 mg/mL concentration of Butvar B-98 and
PDMS-OH in isopropanol and turpentine. The intrinsic viscosity was then calculated with
the Solomon–Ciuta Equation (1).

5.4. Infusion Experiment

The sample of Oseberg wood (Figure 2 was injected with a concentrated suspension
(~5% or 50 g/L) of PS36000 solution in siloxane in turpentine. The fragment was injected
for a period of 11 days and then left to dry for 34 days. The retreatment was conducted in a
fume hood at room temperature.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules27072133/s1, Table S1. Apparent weight-average molar masses Mw,app and poly-
dispersity Ð values obtained from sedimentation equilibrium of Butvar B-98; Table S2. Apparent
weight-average molar masses Mw,app and polydispersity Ð values for PS36000 in isopropanol at
different concentrations; Table S3. Apparent weight-average molar masses Mw,app and polydispersity
Ð values for PS18000 in isopropanol at different concentrations; Table S4. Apparent weight-average
molar masses Mw,app and polydispersity Ð values for PS4200 in isopropanol at different concen-
trations; Table S5. Apparent weight-average molar masses Mw,app and polydispersity Ð values for
PS550 in isopropanol at different concentrations; Figure S1. Conformations (equivalent hydrodynamic
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ellipsoids) for ν at (vs/v) = 1.2 of the polymers, using the programme ELLIPS1. (a) = PS18000 in
isopropanol; (b) = PS4200 in isopropanol; (c) = PS550 in isopropanol; (d) P36000 in turpentine;
(e) = PS18000 in turpentine; (f) = P4200 in turpentine.
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Abbreviations

GPC gel-permeation chromatography; Mn, Mw, Mz number, weight, z-average molar
masses or molecular weights; Mapp weight-average molar mass; PDMS-OH hydroxy-
terminated polydimethylsiloxane; S Svedberg units; s sedimentation coefficient; s20,w
sedimentation coefficient normalised to standard solvent conditions (density & viscosity
of water at 20.0 ◦C); v partial specific volume; vs swollen specific volume; [η] intrinsic
viscosity; ν viscosity increment.
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