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A. Experimental Section 

1. Materials and Methods 
Analytically pure Zn(NO3)2·6H2O, 4, 4’- bibenzoic acid-2, 2’-sulfone (L1), 4,4’-azopyridine (L2) 

and Na2S, Na2SO3, Na2SO4 were purchased from drug companies and used without further purification 

process. In addition, the Infrared spectra (IR) were performed on the Nicolet 170SX spectrometer in the 

4000–400 cm–1. Meanwhile, the Elemental analyses tests of C, H, N were performed carefully on an 

instrument of the model 2400 Perkin-Elmer analyser. A series of PXRD experiments were carried out on 

a Bruker D8-ADVANCE X-ray diffractometer with Cu Kα radiation (λ = 1.5418 Å). Measurements were 

made in a 2θ range of 5−50° at room temperature with a step of 0.02° (2θ) and a counting time of 0.2 s/ 

step, and the operating power was 40 KV, 40 mA. Thermogravimetric analysis (TGA) experiments were 

executed utilizing SII EXSTAR6000 TG/DTA6300 thermal analyzer from 25 to 800 oC under a nitrogen 

atmosphere as well as a heating rate of 10 oC min-1. Photoelectric measurements were acquired with a 

CHI 660E electrochemical workstation, the working area of working electrode is 1.0 cm2, and the MOF 

modified by ITO. Moreover, the Ag/AgCl was used as a reference electrode and platinum wire electrode 

as a counter electrode. All electrochemical tests were performed at room temperature in 0.5 M Na2SO4 

solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



B. Supporting Figures  

 
Figure S1. PXRD patterns of simulated (Red) and after photocatalytic test in H2O (Black) of 1. 

 

 

 

 
Figure S2. PXRD patterns of simulated (yellow) and after being immersed samples under H2O solvent 

or different mixed solutions of H2O and DMF of 1. 

 

 

 



 

Figure S3. PXRD patterns of simulated (Black) and after photocatalytic test in a ratio 6:4 of H2O and 

DMF (Blue) of 1. 

 

 

 

 

 

Figure S4. The fluorescence emission spectra before and after the photocatalytic reaction of 1 in 

aqueous solution. 

 

 

 

 



  
(a) (b) 

Figure S5. XPS results of 1 (as synthesized), including (a) complete and (b) Zn 2p spectra. 

 

 

 

  
(a) (b) 

Figure S6. XPS results of 1 (after photocatalytic reaction), including (a) complete and (b) Zn 2p 
spectra. 

 

 



 
Figure S7. The Tauc’s plot (αhv)1/2 vs (hv), where α is absorbance based on solid-state UV-Vis absorption 

in Figure 4a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



C. Supporting Tables 

Table S1. Photocatalytic activity of some typical MOF-based photocatalysts for the 

hydrogen evolution reaction. 

Photocatalyst Sacrificial reagent Production rate (µmol h−1 g−1) Ref. 

Ti-MOF Triethanolamine (TEOA) 0 [1] 

Ti-MOF-NH2 Triethanolamine (TEOA) ≈170 [1] 

0.5 wt.% Pt/Ti-MOF-NH2 Triethanolamine (TEOA) ≈330 [1] 

1.5wt.%Pt/Ti-MOF-NH2 Triethanolamine (TEOA) ≈500 [1] 

2 wt.% Pt/Ti-MOF-NH2 Triethanolamine (TEOA) ≈460 [1] 

Small-sized Ni NPs anchored 

in MOF-5 
Triethanolamine (TEOA) 3,022 [2] 

Ni@MOF-5 Triethanolamine (TEOA) 30220 [2] 

Pt complex immobilized 

MOF-253 
CH3CN ≈58,000 [3] 

UiO-66 Na2S, Na2SO3 0 [4] 

UiO-66/CdS Na2S, Na2SO3 1,700 [4] 

ErB dye-sensitized Pt/UiO-

66 octahedrons 
Methanol 460 [5] 

Ti-MOF-Ru(tpy)2 Triethanolamine (TEOA) ≈200 [6] 

Pt@UiO-66 Triethanolamine (TEOA) 3.9 [7] 

Co-MOF Triethanolamine (TEOA) 1102 [8] 

Cu2I2-based MOF Triethanolamine (TEA) 7090 [9] 

NiS/Zn0.5Cd0.5S Na2S, Na2SO3 16780 [10] 

Pt@NH2-UiO-66 Triethanolamine (TEOA) 257.38 [11] 

UCNPs-Pt@MOF/Au Triethanolamine (TEOA) 280 [12] 

Al-TCPP-Pt Triethanolamine (TEOA) 129 [13] 

MIL-101(Cr)@Co Triethanolamine (TEOA) 1500 [14] 

Ru-TBP-Zn Triethanolamine (TEOA) 240 [15] 

PCN-415-NH2 Triethanolamine (TEOA) 594 [16] 

[Cu2I2(BPEA)](DMF)4 Triethanolamine (TEA) 4220 [17] 

Zn-MOF Na2S, Na2SO3 743 This work 

 

 

 



Table S2.  Crystal data and structure refinement for complex 1 

Empirical formula  C24H14N4O6SZn 

Formula weight  551.82 

Temperature  275.57 K 

Wavelength  1.34138 Å 

Crystal system  Monoclinic 

Space group  Cc 

Unit cell dimensions a = 14.7101(6) Å α= 90°. 

 b = 21.8583(9) Å β= 111.9830(10)°. 

 c = 7.4882(3) Å γ = 90°. 

Volume 2232.68(16) Å3 

Z 4 

Density (calculated) 1.642 Mg/m3 

Absorption coefficient 1.799 mm-1 

F(000) 1120.0 

Crystal size 0.15 × 0.12 × 0.11 mm3 

Radiation GaKα (λ = 1.34138) 

Theta range for data collection 6.646 to 146.656°. 

Index ranges -21<=h<=21, -31<=k<=31, -10<=l<=8 

Reflections collected 16215 

Independent reflections 5719 [R(int) = 0.0437] 

Max. and min. transmission 0.751 and 0.421 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5719/2/325 

Goodness-of-fit on F2 1.088 

Final R indices [I>2sigma(I)] R1 = 0.0423, wR2 = 0.1131 

R indices (all data) R1 = 0.0436, wR2 = 0.1190 

Largest diff. peak and hole 1.01 and -0.50 e.Å-3 
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