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Abstract: In an attempt to explore the bioactive metabolites of the soft coral Sarcophyton cinereum,
three new cembranolides, cinerenolides A–C (1–3), and 16 known compounds were isolated and
identified from the EtOAc extract. The structures of the new cembranolides were elucidated on
the basis of spectroscopic analysis, and the NOE analysis of cinerenolide A (1) was performed
with the assistance of the calculated lowest-energy molecular model. The relative configuration of
cinerenolide C (3) was determined by the quantum chemical NMR calculation, followed by applying
DP4+ analysis. In addition, the cytotoxic assays disclosed that some compounds exhibited moderate
to potent activities in the proliferation of P388, DLD-1, HuCCT-1, and CCD966SK cell lines.

Keywords: Sarcophyton cinereum; cinerenolides A–D; cytotoxity; α,β-unsaturated ε-lactone

1. Introduction

Soft corals of the genus Sarcophyton are a dominant species in many coral reef ar-
eas [1–3]. This species is well known to be a prolific producer of structurally unique
diterpenes, especially cembranoids. Some of the cembranoid-type compounds have been
found to be associated with coral reproduction [4,5]. Previous investigation of the Sarco-
phyton species has produced metabolites with diverse bioactivities, including anti-viral [6],
anti-inflammatory [7–11], and cytotoxic activities [8–10,12]. As marine soft corals are a
prolific source of bioactive cembranoids, investigations of promising structures with potent
bioactivities have been persistently conducted in our laboratory. As part of our continuing
search for bioactive structures from marine soft corals [7–12], the chemical constituents
from the soft coral Sarcophyton cinereum are investigated in this study. Herein, we report the
isolation and structural elucidation of three new cembranolides with an α,β-unsaturated
ε-lactone (1–3), as well as 16 related cembranoids (4–19). Additionally, their cytotoxicities
against a limited panel of cancer cell lines are reported.

2. Results

The EtOAc extract from S. cinereum was separated repeatedly by column chromatogra-
phy and HPLC to afford three new diterpenoids (1–3) and 16 known compounds, which
were identified as sarcophytonoxide E (4) [13], sarcomililatins A and B (5 and 6) [14], 2-
[(E,E,E)-7′,8′-epoxy-4′,8′,12′-trimethylcyclotetradeca-1′,3′,11′-trienyl]propan-2-ol (7) [15],
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sarcophytonolide F (8) [16], cherbonolide L (9) [17], (+)-(2S)-isosarcophine (10) [18], (–)-(2R)-
isosarcophine (11) [19], sarcophytonoxide A (12) [13], sartrolide C (13) [20], ketoemblide
(14) [21], isosarcophytonolide D (15) [22], glaucumolides A and B (16 and 17) [23,24], and
bistrochelides A and B (18 and 19) [24].

The molecular formula of compound 1 was established as C20H30O4 by the analysis of
its NMR data and HRESIMS. Its NMR data indicated that it is quite similar to the reduction
products of sarcophytolide [21,25] (Tables 1 and 2); however, a secondary hydroxyl group
is observed at δC 73.0 (CH) and δH 4.19 (1H, ddd, J = 11.0, 8.0, 4.0 Hz, H-5) for 1, revealing
that one of the CH2 group in the cembranolide scaffold should be replaced by a hydroxy-
containing methine. The HMBC correlations from H3-18 to C-3, C-4, and C-5 and from
H2-6 to C-4, C-5, and C-7 indicated that the hydroxyl group was attached at C-5, as shown
in Figure 1. Furthermore, two hydroxyl protons at δH 1.38 (1H, d, J = 8.0 Hz) and 1.24
(1H, d, J = 8.4 Hz) also supported the presence of two hydroxyl groups. The E geometry
for the ∆1 and ∆3 double bonds was determined by the observation of NOE correlations
(NOEs) of H-2 with both H3-18 and H3-16, and H-14a with H-3. The 7S*, 8R*-configuration
was deduced from the NOEs of H3-19/H2-9, H3-19/H2-6, and H-7/H-10a (Figure 2). H-3
showed NOEs with both H-7 and H-6a, and H-5 had NOEs with both H3-18 and H-6,
revealing a 5R*,7S*-configuration for C-5 and C-7 stereogenic centers (Supplementary
Materials, Figures S1–S9).

Table 1. 1H NMR spectroscopic data of compounds 1–3.

1 a 2 b 2 c 3 b

No. δH (J in Hz) δH (J in Hz) δH (J in Hz) δH (J in Hz)

2 6.13 d (11.6) 5.40 d (16.4) 5.37 d (16.4) 5.44 d (16.0)
3 5.82 d (11.6) 5.53 d (16.4) 5.52 d (16.4) 5.43 d (16.0)
5 4.19 (11.0, 8.0, 4.0) 1.84 m 1.98 m 1.74 m

1.73 m 1.82 m
6 2.30 m 1.66 m 1.66 m 1.82 m

1.89 m 1.46 m 1.66 m 1.37 m
7 4.11 dd (9.2, 8.4) 3.92 d (10.8) 3.75 d (10.0) 3.79 d
9 2.21 m 2.24 m 2.23 m 2.20 m

2.06 m 1.95 m 2.00 m 1.89 m
10 2.58 m 2.69 m 2.53 m 2.67 m

2.40 m 2.52 m 2.50 m 2.45 m
11 6.08 t (3.6) 6.55 t (3.9) 6.51 t (5.0) 6.49 s
13 3.17 t (12.2) 2.90 td (12.0, 4.0) 3.09 m 2.72 m

1.84 m 2.22 m 2.50 m 2.38 m
14 2.57 td (12.2, 8.0) 1.92 m 1.90 m 2.27 m

2.13 m 1.79 m 1.81 m 1.67 m
15 2.33 m 1.70 m 1.80 m 1.60 m
16 1.10 d (6.8) 0.89 d (6.8) 0.85 d (6.8) 0.87 d (6.4)
17 1.06 d (6.8) 0.81 d (6.8) 0.80 d (6.8) 0.83 d (6.4)
18 1.92 s 1.26 s 1.30 s 1.25 s
19 1.41 s 1.29 s 1.31 s 1.26 s

5-OH 1.38 d (8.0)
7-OH 1.24 d (8.4)

a Spectra recorded at 400 MHz in CDCl3; b spectra recorded at 400 MHz in CD3OD; c spectra recorded at 500 MHz
in CDCl3.
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Table 2. 13C NMR spectroscopic data of compounds 1–3.

1 a 2 b 2 c 3 b

No. δC (mult.) δC (mult.) δC (mult.) δC (mult.)

1 149.9 (C) 77.0 (C) 74.5 (C) 77.1 (C)
2 118.5 (CH) 135.1(CH) 134.8 (CH) 132.4 (CH)
3 123.0 (CH) 135.1(CH) 133.4 (CH) 135.1(CH)
4 133.3 (C) 74.9 (C) 73.8 (C) 74.0 (C)
5 73.0 (CH) 37.5 (CH2) 34.0 (CH2) 36.9 (CH2)
6 36.0 (CH2) 25.6 (CH2) 25.6 (CH2) 25.2 (CH2)
7 67.5 (CH) 71.7 (CH) 72.2 (CH) 70.2 (CH)
8 83.0 (C) 86.1 (C) 83.9 (C) 85.7 (C)
9 34.1 (CH2) 35.3 (CH2) 36.6 (CH2) 35.8 (CH2)
10 27.3 (CH2) 28.4 (CH2) 27.9 (CH2) 28.3 (CH2)
11 140.5 (CH) 144.8 (CH) 144.0 (CH) 145.2 (CH)
12 133.2 (C) 134.8 (C) 134.2 (C) 132.6 (C)
13 37.4 (CH2) 32.9 (CH2) 32.0 (CH2) 35.6 (CH2)
14 27.2 (CH2) 39.0 (CH2) 38.0 (CH2) 36.8 (CH2)
15 35.7 (CH) 38.4 (CH) 40.1 (CH) 43.4 (CH)
16 22.1 (CH3) 16.8 (CH3) 16.7 (CH3) 17.1 (CH3)
17 22.8 (CH3) 17.4 (CH3) 16.9 (CH3) 18.0 (CH3)
18 17.2 (CH3) 31.9 (CH3) 32.0 (CH3) 32.5 (CH3)
19 22.0 (CH3) 22.5 (CH3) 21.7 (CH3) 22.7 (CH3)
20 166.5 (C) 170.4 (C) 168.7 (C) 169.3 (C)

a Spectra recorded at 100 MHz in CDCl3; b spectra recorded at 100 MHz in CD3OD; c spectra recorded at 125 MHz
in CDCl3.
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As the known synthetic analogues possessing 7S, 8R and 7R, 8R configurations, which
are derived from ketoemblide and sarcophytolide, have similar coupling patterns at H-7
(br d, J = 9.5–10.0 Hz for 7S*, 8R* and dd, J = 11.0, 2.5 Hz for 7R*, 8R*) [21], a detailed
comparison between two computational models of 1 (7S*, 8R*-1 and 7R*, 8R*-1) derived
from DFT calculations was performed. A conformational search for both diastereomers of 1
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was performed using the Merk Molecular Force Field (MMFF) calculation in Spartan’16
software. The resulting conformers within 5 kcal/mol were further subjected for geometry
optimization and frequency calculation at the CAM-B3LYP/6-31+G(d,p) level with the
integral equation formalism polarizable continuum model (IEFPCM)/CHCl3 in Gaussian
09 software [26], which generated seven conformers for 7S*, 8R*-1 (Figure 3) and four for
7R*, 8R*-1 (Figure 4) with Boltzmann populations over 1%. The conformers 1a–1g of 7S*,
8R*-1 (Figure 3) have almost the same conformation in the 14-membering carbon fragment,
and differences were observed at the rotations of hydroxyl and isopropyl groups, which
were quite similar to the model generated by the analysis of NOEs (Figure 2). On the
other hand, four lower-energy conformers (epi-1a–1d) were obtained for another possible
diastereomer, 7R*, 8R*-1 (epi-1) (Figure 4). It is interesting that epi-1a–1c, accounting for
95.37% of the overall population, also possess an almost identical conformation for the 14-
membering-ring skeleton. Although 7S*, 8R*-1 and 7R*, 8R*-1 have different arrangement
neighboring the C-7 stereogenic center, the dihedral angles (Φ) of H-7 to H2-6 in the two
possible diastereomers (7R*, 8R*-1 and 7S*, 8R*-1) were quite similar, which could be the
reason that the aforementioned 7S, 8R and 7R, 8R analogues derived from ketoemblide
and sarcophytolide possess similar coupling patterns [21]. Similar to that of 7S*, 8R*-1,
the distance of H-7/H-10 in epi-1a–1c (7R*, 8R*-1, Figure 4) is lower than 3Å, revealing
that H-7 should have NOE enhancement with H-10 in both 7S*, 8R*-1 and 7R*, 8R*-1; thus,
this correlation could not be used as crucial NOEs to determine the C-7 configuration. In
addition, the distances of H-6/H-9, H-6/H-10, and H-7/H-14 in 7R*, 8R*-1 are also lower
than 3 Å (Figure 4), implying that these protons are expected to have NOEs; however,
these correlations were not found in compound 1, which further supports the 7S*, 8R*
configuration for 1. A comparison of the proton chemical shift of H3-19 (δH 1.41 s) in
1 to the literature data (1.38–1.41 ppm for 7S, 8R analogues; 1.13–1.16 ppm for 7R, 8R
analogues) [21] also confirmed the relative configurations of C-7 and C-8 to be 7S* and 8R*,
respectively. Accordingly, the structure of 1 was determined as shown (Scheme 1).
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Compound 2 was obtained as a white powder and suggested a molecular formula of
C20H32O5 based on the molecular ion peak [M + H]+ at m/z 375.2141 in the (+)-HR-ESI-MS
(calculated for C20H32O5Na, 375.2142). Inspection of the overall 1H and 13C NMR data
revealed signals characteristic of an α,β-conjugated carboxylate system (δC 144.8 (CH,
C-11), 134.8 (C, C-12), and 170.4 (C, C-20); δH 6.55 t (J = 3.9 Hz, H-11)), and a disubstituted
double bond (δC 135.1 (CH × 2, C-2); δH 5.40 and 5.53 (both 1H, d, J = 16.4 Hz, H-2 and
H-3)). The former was evidenced by the IR absorption band at 1653 cm–1. Additionally,
two hydroxy-containing quaternary carbons (δC 77.0 (C, C-1); 74.9 (C, C-4)), one hydroxy-
containing methine (δC 71.7 (CH, C-7); δH 3.92 (1H, d, J = 10.8 Hz, H-7)), and a down-field
shifted quaternary carbon (δC 86.1 (C, C-8)) were evidenced. Considering the molecular
formula and the above functionality, the structure of 2 should be bicyclic.

In an extensive analysis of 1H-1H COSY, HSQC, and HMBC spectra (Figure 1),
the planar structure of 2 was established and found to be quite similar to sartrolide D
(Supplementary Materials, Table S1) [20]. A large coupling constant of 16.4 Hz indicated
the E geometry for the ∆1 double bond. The same 7S*, 8R*-configuration as 1 was as-
signed for 2, as they showed similar NOEs neighboring the C-7 and C-8 stereogenic centers
(Figure 2). Furthermore, the NOEs of H-7/H3-18 and H-11/H-15 indicated that H3-18 and
the isopropyl group were cofacial (Supplementary Materials, Figures S10–S17). Accordingly,
the structure of 2 was determined as shown (Scheme 1).

Compound 3 was also obtained as a white powder with the same molecular formula,
determined to be C20H32O5 from HRESIMS, as that of 2. Their NMR data were quite
similar; however, differences were observed for the chemical shifts around C-1 and C-4.
Its planar structure was confirmed by an analysis of the 1D and 2D NMR data (Figure 1).
Compound 3 has the same 7S*, 8R* configuration based on similar NOEs neighboring
C-7 and C-8; however, the relative configurations of C-1 and C-4 remained unclear in an
analysis of the NOEs (Figure 2) (Supplementary Materials, Figures S18–S25). Thus, the
computational NMR data with DP4+ analysis [27,28] was applied for the establishment
of the relative configuration of 3. The four possible isomers with two hydroxyl groups at
C-1 and C-4, respectively, 1α4β, 1β4α, 1α4α, and 1β4β, were subjected for chemical shift
calculations at the MPW1PW91/6-31+G(d,p)//B3LYP/6-31G(d) level with the polarizable
continuum model (PCM). Then, the calculated NMR chemical shifts for the four possible
isomers were compared with the experimental data of 3 and statistically analyzed using
the DP4+ method, as shown in the Supplementary Materials. As a result, the conformer
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1α4β was found to have a probability of 100% (Table 3) (Supplementary Materials, Tables
S2–S6), suggesting a 1S*, 4R* configuration for 3.
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Table 3. DP4+ probabilities for possible isomers of compound 3.

DP4+ (%)

1α4β-3 1β4α-3 1α4α-3 1β4β-3

H 100.00% 0% 0% 0%
C 100.00% 0% 0% 0%

All data 100.00% 0% 0% 0%

As marine cembranoids have been proven to show a broad spectrum of biological activ-
ities, including anti-inflammatory [29], anti-oxidant [30], and cytotoxicity activities [30,31],
compounds 2–19 were evaluated for their proliferation activities toward the P388, DLD-1,
HuCCT-1, and CCD966SK cell lines (Table 4). Among the tested compounds, 18 exhibited
the most potent activity to inhibit the proliferation of the HuCCT-1 cell with an IC50 value of
2.0 µM, which is comparable to the positive control, doxorubicin (HuCCT-1, IC50 = 1.9 µM),
whereas compound 18 showed moderate anti-proliferation activity to P388 and DLD-1,
with IC50s of 10.6 and 9.9 µM, respectively. In addition, compounds 5 and 6 were also found
to show moderate activities toward P388 cells with IC50s of 15.2 and 11.8 µM, respectively.
The other compounds, as shown in Table 4, were found to possess weak activities toward
the above four cancer cell lines. In a comparison of the biological data between biscem-
branolids (16–19), we found that the ∆22 double bond with a Z geometry in compound
18 dramatically and selectively increased the anti-proliferation activity toward HuCCT-1
cell line.

Table 4. Anti-proliferation activities (IC50, µM) of 2–19.

Compound P388 a DLD-1 b HuCCT-1 c CCD966SK d

2 >30 >30 >30 >30
3 >30 >30 >30 >30
4 >30 >30 >30 >30
5 15.2 ± 3.2 >30 >30 >30
6 11.8 ± 4.6 >30 >30 >30
7 >30 >30 >30 >30
8 >30 >30 >30 >30
9 >30 >30 >30 >30

10 >30 >30 >30 >30
11 >30 >30 >30 >30
12 >30 >30 >30 >30
13 >30 >30 >30 >30
14 >30 >30 >30 >30
15 >30 >30 >30 27.6 ± 7.8
16 16.7 ± 5.8 >30 19.1 ± 6.4 21.3 ± 5.8
17 22.8 ± 9.7 >30 >30 26.1 ± 10.3
18 10.6 ± 1.9 9.9 ± 1.0 2.0 ± 0.1 18.8 ± 6.9
19 >30 >30 >30 18.8 ± 6.8

Doxorubicin 0.69 ± 0.01 4.1 ± 0.7 1.9 ± 0.1 2.9 ± 0.4
a mouse lymphoma. b human colorectal adenocarcinoma. c human intrahepatic cholangiocarcinoma. d human
skin fibroblast.

3. Materials and Methods
3.1. General Experimental Procedures

Optical rotations were determined with a JASCO P1020 digital polarimeter. IR spectra
were taken on a JASCO FT/IR-4100 spectrometer. The NMR spectra were recorded on a
Varian 400MR FT-NMR instrument at 400 MHz for 1H and 100 MHz for 13C, and on a Varian
Unity INOVA 500 FT-NMR spectrometer at 500 MHz for 1H and 125 MHz for 13C in CDCl3.
LR- and HR-ESIMS were measured with a Bruker APEX II mass spectrometer. Silica gel 60
(230–400 mesh, Merck, Darmstadt, Germany) and SiliaBond C18 silica gel (40–63 µm, 60 Å,
17% carbon loading, SiliCycle, Québec, QC, Canada) were used for column chromatography.
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Precoated silica gel plates (Kieselgel 60 F254, Merck, Darmstadt, Germany) and precoated
silica gel RP-18 plates (Kieselgel 60 F254S, Merck, Darmstadt, Germany) were used for TLC
analysis.

3.2. Animal Material

The animal material, S. cinereum, was collected from the coral reef of Xiaoliuqiu island
of Taiwan in 2012. The specimen was identified by Prof. C.-F. Dai. A voucher specimen
(specimen no. sheuCYJ-001) was deposited in the Department of Marine Biotechnology
and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.

3.3. Extraction and Isolation

The animal tissues (107.4 g) were freeze-dried, minced, and extracted exhaustively
with 700 mL of EtOAc for 2 h at room temperature, and the extraction was repeated
12 times. The concentrated EtOAc layer (14.6 g) was fractionated using silica gel column
chromatography (CC) with a gradient system, comprising mixtures of hexane–EtOAc
(100:1 to 1:100) and EtOAc–MeOH (100:1 to 80:20), to yield 22 fractions. Fraction 8 was
fractionated by silica gel CC (eluent, hexane–acetone, 4:1) and semipreparative RP-18
HPLC (eluent, MeOH–H2O, 4:1) to give 4 (1.5 mg) and 7 (5.1 mg). Compounds 5 (2.3 mg),
6 (1.4 mg), 12 (0.8 mg), and 15 (2.5 mg) were yielded from fraction 10 by silica gel CC
(eluent, hexane–acetone, 5:1), and by semipreparative RP-18 HPLC (eluent, ACN–H2O,
1:1). Fraction 11 was purified by semipreparative RP-18 HPLC (eluent, ACN–H2O, 1.25:1)
to yield compounds 9 (1.0 mg), 10 (67.1 mg), and 11 (0.7 mg). Fraction 13 was subjected
to silica gel CC (hexane–acetone, 4.5:1), followed by RP-18 HPLC (eluent, MeOH–H2O,
2.5:1), to obtain 8 (1.0 mg) and 14 (2.0 mg). Fraction 15 was separated with silica gel CC
(eluent, hexane–acetone, 5:1) to yield two subfractions (F15-1 and F15-2). The F15-1 fraction
was subjected for semipreparative RP-18 HPLC (eluent, MeOH–H2O, 5.5:1) to obtain 16
(2.0 mg), 17 (57.0 mg), 18 (1.0 mg), and 19 (15.0 mg). Two subfractions (F17-1 and F17-2)
were obtained using silica gel CC (hexane–acetone, 2.5:1), and fraction 17-1 was separated
by semipreparative RP-18 HPLC (eluent, MeOH–H2O, 1:1) to yield 2 (3.4 mg) and 3 (2.1 mg).
In addition, compound 1 (1.0 mg) was purified by semipreparative RP-18 HPLC (eluent,
MeOH–H2O, 2:1) from subfraction F17-2.

Cinerenolide A (1): white powder; [α]25
D +4.4 (c 0.97, CHCl3); IR (KBr) vmax 3416,

2960, 2926, 1653, 1452, 1236, 1070 cm−1; 13C and 1H NMR data, see Table 1; ESIMS m/z 375
[M + Na]+; HRESIMS m/z 375.2141 [M + Na]+ (calcd for C20H32O5Na, 375.2142).

Cinerenolide B (2): white powder; [α]25
D +24.3 (c 0.60, CHCl3); IR (KBr) vmax 3434,

2917, 2859, 1660, 1376, 1018 cm−1; 13C and 1H NMR data, see Table 1; ESIMS m/z 375 [M +
Na]+; HRESIMS m/z 375.2139 [M + Na]+ (calcd for C20H32O5Na, 375.2142).

Cinerenolide C (3): colorless oil; [α]25
D +71.4 (c 0.37, CHCl3); IR (KBr) vmax 3416, 2960,

2926, 1653, 1452, 1235, 1070 cm−1; 13C and 1H NMR data, see Table 1; ESIMS m/z 357 [M +
Na]+; HRESIMS m/z 357.2034 [M + Na]+ (calcd for C20H30O4Na, 357.2036).

3.4. Computational Method

The conformers found at the MMFF force field using Spartan’16 were selected within
a 5 kcal/mol energy window. Twelve conformers were selected for 1 and subjected for
geometry optimizations and frequency calculations at the CAM-B3LYP/6-31+G(d,p) level
of theory with IEFPCM in CHCl3. The populations were calculated based on the Gibbs
free energy obtained in the aforementioned frequency calculation. For DP4+ analysis,
systematic conformational searches were performed for the possible isomers 1α4β, 1β4α,
1α4α, and 1β4β of 3, using the MMFF force field in gas phase. All conformers within
a 5 kcal/mol energy window were subjected for geometry optimizations and frequency
calculations at the B3LYP/6-31+G(d) level in gas phase. The conformers within 2 kcal/mol
from the global minimum were subjected to chemical shift calculations using the gauge-
independent atomic orbital (GIAO) method at the mPW1PW91/6-31G+(d,p)//B3LYP/6-
31G(d) level with PCM/MeOH. The Boltzmann-weighted NMR data of the four isomers
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and the experimental data of 3 were used for DP4+ probability analysis using the Excel
sheet provided by Grimblat et al. [27,28].

3.5. Cytotoxicity Assay

The assay was implemented according to the published protocols [32,33]. In brief,
the Alamar Blue assay was performed for compounds 2–19 by treating them with P388,
DLD-1, HuCC-T1, and CCD966SK cancer cells, which were commercially available from
the American Type Culture Collection (ATCC). The test was performed in triplicate, and
doxorubicin was used as a positive control.

4. Conclusions

In total, 3 new and 16 known compounds were isolated from the soft coral S. cinereum.
In the cytotoxicity assay, compound 18 was found to show potent and selective activity
toward HuCCT-1 cell line, which is close to the control group, doxorubicin. The relative
configuration of 1 was determined by an analysis of NOEs and by comparing the com-
putational conformers with those of its possible epimer. The assignment of the relative
configurations of 3, with the lack of crucial NOEs, was successfully attained by the as-
sistance of quantum chemical NMR calculation and the DP4+ method. In this work, it
was also found that some cembranolides were not so flexible, and they could be readily
assigned the relative configurations by a careful analysis of NOEs based on a computational
model. In contrast to the flexible molecules, the assignment of relative configuration was
hindered by a lack of useful NOE data neighboring the stereogenic center. For this case, the
computational NMR data coupled with the DP4+ approach could provide an alternative to
elucidate the relative configurations of stereogenic centers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules27061760/s1, Figures S1–S25: NMR (1D and 2D) and MS spectra of compounds 1–3,
Table S1: Comparison of NMR data between 2 and sartrolide D, Table S2: DP4+ analysis table for
compound 3, Tables S3–S6: Conformers and Boltzmann populations of isomers of 3.
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