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Abstract: Dual-specific tyrosine phosphorylation regulated kinase 1 (DYRK1A) has been regarded
as a potential therapeutic target of neurodegenerative diseases, and considerable progress has been
made in the discovery of DYRK1A inhibitors. Identification of pharmacophoric fragments provides
valuable information for structure- and fragment-based design of potent and selective DYRK1A
inhibitors. In this study, seven machine learning methods along with five molecular fingerprints
were employed to develop qualitative classification models of DYRK1A inhibitors, which were
evaluated by cross-validation, test set, and external validation set with four performance indicators
of predictive classification accuracy (CA), the area under receiver operating characteristic (AUC),
Matthews correlation coefficient (MCC), and balanced accuracy (BA). The PubChem fingerprint-
support vector machine model (CA = 0.909, AUC = 0.933, MCC = 0.717, BA = 0.855) and PubChem
fingerprint along with the artificial neural model (CA = 0.862, AUC = 0.911, MCC = 0.705, BA = 0.870)
were considered as the optimal modes for training set and test set, respectively. A hybrid data
balancing method SMOTETL, a combination of synthetic minority over-sampling technique (SMOTE)
and Tomek link (TL) algorithms, was applied to explore the impact of balanced learning on the
performance of models. Based on the frequency analysis and information gain, pharmacophoric
fragments related to DYRK1A inhibition were also identified. All the results will provide theoretical
supports and clues for the screening and design of novel DYRK1A inhibitors.

Keywords: DYRK1A; heterocyclic inhibitors; classification models; pharmacophoric fragments

1. Introduction

Protein kinases are implicated in cellular functions by transferring a chemical addition
of phosphate group to proteins [1]. Dual-specific tyrosine phosphorylation regulated ki-
nases (DYRKs), which include class I (DYRK1A and DYRK1B) and class II (DYRK2, DYRK3
and DYRK4) possess a dual specificity capability to phosphorylate tyrosine residue Y321
in its own activation loop as well as to phosphorylate its substrates at serine or threonine
residues [2]. Among the mammalian DYRKs, DYRK1A is involved in the proliferation and
differentiation of the central nervous system (CNS) ranging from early embryogenesis to
late aging. Consequently, DYRK1A has been considered as a potential therapeutic target
of neurodegenerative diseases such as Alzheimer’s disease (AD) and Down’s syndrome
(DS) [3]. Inhibition of DYRK1A attenuates cognitive dysfunctions in animal models for
both AD and DS disease [4].

Molecules 2022, 27, 1753. https://doi.org/10.3390/molecules27061753 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27061753
https://doi.org/10.3390/molecules27061753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-2259-5431
https://orcid.org/0000-0002-4876-323X
https://doi.org/10.3390/molecules27061753
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27061753?type=check_update&version=1


Molecules 2022, 27, 1753 2 of 14

At present, a diversity of DYRK1A inhibitors were identified as potential therapies for
neurodegenerative diseases including natural product harmine and synthetic compounds,
benzothiazoles, azaindoles, pyrazolo, pyridine, pyrimidine, and quinazolines [5,6]. How-
ever, due to the closely relationship of DYRK1A with CMGC family kinases, most reported
inhibitors are impeded from clinical trials because of lower selectivity and other pharma-
ceutics deficiencies [7,8]. Therefore, considerable attempts are focused on the discovery
of novel potent and selective DYRK1A inhibitors, which has been accelerated through
the method of structure and fragment-based drug design [9]. For example, imidazopyri-
dine [10] and pyrrolopyrimidine compounds [11] were identified as potent and selective
DYRK1A inhibitors using fragment-based hit discovery and structure-based optimization
strategy. Harmine derivatives were also optimized as potent GSK-3β/DYRK1A dual in-
hibitors for the treatment of Alzheimer’s disease [12]. Binding modes and pharmacophoric
features are regarded as two prerequisite conditions for structure and fragment-based
drug design. X-ray crystallography and molecular modeling studies provide the detailed
binding modes of DYRK1A-inhibtor complexes. DYRK1A has the conventional fold of a
protein kinase with N- and the C-terminal lobes, forming a hydrophobic deep cleft where
the co-substrate can bind. The proper orientations of ATP and catalytic residues are crucial
for catalysis. Specifically, the chemical scaffold of ATP is sandwiched into a hydrophobic
pocket (Val173, Phe238, Leu241, Leu294, Val306, and Phe308). Meanwhile the adenine
moiety and phosphates are anchored by two hydrophilic regions. In particular, a so-called
hinge region mainly including resides Glu239, Met240, and Leu241 forms a couple of
hydrogen bonds with the adenosine moiety. A segment known as positive electrostatic
area (positive area) involving Lys188, Glu203, and Asp307 contributes to the stabilization
of α- and β-phosphates of ATP [11,13]. As for the discovery of pharmacophoric fragments,
biophysical techniques are powerful tools of fragment screening, but necessitate expensive
detection equipment with time-consuming and low-hit rate. Meanwhile, computational
and chemical informatics chemistry methods including quantitative structure–activity
relationship (QSAR) and data mining tools can be used as complementary approaches to
identify structural features and properties of inhibitors that are strictly connected with their
biological activities [14]. Bharate et al. [15] developed a descriptor based QSAR model of
Meridian derivatives and identified crucial molecular descriptors for their biological activ-
ity. Hologram QSAR (2D fragment-based) models of 6-arylquinazolin-4-amine inhibitors
indicated the fragments that made positive contributions to their biological activity [16].
However, the above-mentioned QSAR studies were based on the compounds with one
certain scaffold, and thus only provided exclusive optimization clues for the specific scaf-
fold. Developing a QSAR model involving DYRK1A inhibitors with diverse chemical
scaffolds could provide general and comprehensive molecular information or privileged
substructures that are determinative factors to their inhibitory activity.

Recently, machine learning (ML) methods have been considered as powerful tools to
build robust and predictive classification models [17,18]. Without the limitation of data
samples in one certain chemical scaffold, classification studies of machine learning methods
along with molecular features [19,20] are applicable for DYRK1A inhibitors with diverse
heterocyclic scaffolds and broad-spectrum bioactivities. Here, classification models of
DYRK1A inhibitors were developed using seven machine learning methods combined with
five molecular fingerprints. Furthermore, a hybrid data balancing method SMOTETL, a
combination of the synthetic minority over-sampling technique (SMOTE) and Tomek link
(TL) algorithms, was applied to explore the prediction capacity of imbalanced learning to
unbalanced data. All models were further evaluated by five-fold cross validation method,
a test set, and external validation set. A combination of frequency analysis and information
gain was also performed to identify the pharmacophoric fragments related to DYRK1A
inhibition. All the results provide comprehensive structural clues for the discovery of
DYRK1A inhibitors.
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2. Results and Discussion
2.1. Dataset Analysis

As shown in Figure 1A, the experimental pIC50 values of the whole dataset ranged
from 4.5 to 8.5 and were mainly distributed around 6.0 and 7.0. As 6.0 is the approximate
average value of the pIC50 values for all datasets, pIC50 = 6.0 (IC50 = 1 µM) was considered
as a threshold to define the potent and non-potent inhibitors. Based on a cut-off value
IC50 = 1 µM, this dataset was split into 89 potent inhibitors (“P”) and 28 non-potent (“N”),
among which 88 training set compounds (69 potent inhibitors and 19 non-potent inhibitors
with of the ratio of 3.5:1) and 29 test set compounds (20 potent inhibitors and nine non-
potent inhibitors with the ratio of 2:1), respectively. Given the roughly balanced distribution
of “P” inhibitors (training set = 78.4%, test set = 68.9%), each group was suitable to evaluate
the predictive performance of the models.
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Figure 1. (A) Distributions of experimental pIC50 values for the dataset ( 117, grey bars), training set
(88, green bars), and test set (29, blue bars). (B) Heat map of the molecular similarity constructed
by Euclidian distance metrics for the entire dataset. (C) Chemical space of the training set (blue
dots) and test set (red dots) using top three principal components of dragon molecular descriptors
(51% variance explained). (D) Radar map of the dataset with the parameters of Lipinski’s rules of
five and the number of rotatable bonds.

Chemical diversity is an important index of similarity among molecules to build a
robust and predictable model. A heat map constructed by Euclidian distance metrics
(calculated by PubChem fingerprint) was used to characterize the chemical diversity of
molecules. As indicated from Figure 1B, red (1) and blue (0) illustrated the highest and
lowest diversity of molecules, respectively. Most plots were distributed in the green
area (around 0.4), which indicated that the dataset presented high diversity, and the
models trained based on such data can have strong generalization ability. Chemical spaces
of the whole dataset were investigated based on PCA analysis of featured molecular
descriptors, four descriptors of Lipinski rules, and the number of rotatable bonds. Since
51% featured descriptor variance of this dataset was explained by the top three most
principal components, the training set and test could be regarded as in the similar chemical
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spaces (Figure 1C). Additionally, there is no remarkable preference of four descriptors of
Lipinski’s rules of five and the number of rotatable bonds of the entire dataset (Figure 1D).
Consequently, in light of the chemical spaces and structural diversity of the whole dataset,
the basic requirements of a reliable classification model were qualified.

2.2. Five-Fold Cross Validation Results

A 5-fold cross-validation for the training set was performed to evaluate the perfor-
mance of all developed models. The top ten ranking modes were screened by taking
overall predictive classification accuracy (CA) and the area under the ROC curve (AUC)
as indicators. As shown in Figure 2A, all the models yielded CA and AUC values higher
than 0.6. Interestingly, regardless of which ML method was employed, Ext fingerprint
yielded the lowest CA and AUC values under 0.8, which were smaller than those of the
other models with CA and AUC values (ranging from 0.8 to 0.9). Meanwhile, in light of
the higher predictive accuracy of “P” class (sensitivity, SE) than “N” class (specificity, SP)
values shown in Figure 2B, it can be speculated that all modes exhibited a better predictive
ability for “P” inhibitors than “N” inhibitors. This may be due to the unbalancing “P”
inhibitors in the training set with a ratio of 0.78.
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Table 1 lists the detailed performances of ten models. Both PubChem and Sub fin-
gerprints generated the optimal results in general, especially five modes derived from
PubChem fingerprint combined with any ML algorithm. Taking the CA, AUC, BA (average
of SE and SP), and Matthews’s correlation coefficient (MCC) as indicators, PubChem-SVM
and PubChemFP-ANN were the top two models with high predictive ability.

2.3. Performance of the Test Set

The predictive ability of ten models was further evaluated by a test set. Similar to
those of the five-fold cross-validation results, AUC and CA values were in the range of
0.8 to 0.9 in ten models for the test set, whereas the SE and SP values exhibited different
behaviors such as the higher SE than SP in Sub-, MACCS-, and Estate-based and PubChem-
RF models, and similar values of SE and SP (0.800 or 0.850 and 0.899, respectively) in four
PubChem-based models. Consequently, in light of the higher CA, AUC, MCC, and BA
values, PubChem-SVM and PubChem-ANN yielded good performances for the test set.
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Table 1. Performance of top 10 models for the training set, test set, and external validation set.

Data Set Model AUC CA MCC TP * TN * FP * FN * SE SP BA

Training set

PubChemFP-SVM 0.933 0.909 0.717 67 13 6 2 0.971 0.684 0.828
SubFP-LR 0.914 0.864 0.583 64 12 7 5 0.928 0.632 0.780

PubChemFP-NB 0.908 0.807 0.508 57 14 5 12 0.826 0.737 0.782
PubChemFP-RF 0.908 0.920 0.753 68 13 6 1 0.986 0.684 0.835

SubFP-ANN 0.908 0.841 0.530 62 12 7 7 0.899 0.632 0.766
PubChemFP-LR 0.904 0.920 0.755 67 14 5 2 0.971 0.737 0.854
MACCSFP-RF 0.900 0.898 0.678 67 12 7 2 0.971 0.632 0.802

SubFP-Tree 0.896 0.875 0.638 63 14 5 6 0.913 0.737 0.825
EStateFP-ANN 0.893 0.852 0.556 63 12 7 6 0.913 0.632 0.773

PubChemFP-ANN 0.893 0.909 0.743 64 16 3 5 0.928 0.842 0.885

Test set

PubChemFP-SVM 0.911 0.862 0.705 17 8 1 3 0.850 0.889 0.870
SubFP-LR 0.903 0.793 0.493 18 5 4 2 0.900 0.556 0.728

PubChemFP-NB 0.881 0.828 0.647 16 8 1 4 0.800 0.889 0.845
PubChemFP-RF 0.917 0.897 0.761 20 6 3 0 1.000 0.667 0.834

SubFP-ANN 0.881 0.793 0.517 17 6 3 3 0.850 0.667 0.759
PubChemFP-LR 0.944 0.862 0.705 17 8 1 3 0.850 0.889 0.870
MACCSFP-RF 0.922 0.862 0.680 20 5 4 0 1.000 0.556 0.778

SubFP-Tree 0.825 0.862 0.517 17 6 3 3 0.850 0.667 0.759
EStateFP-ANN 0.858 0.793 0.517 17 6 3 3 0.850 0.667 0.759

PubChemFP-ANN 0.911 0.862 0.705 17 8 1 3 0.850 0.889 0.870

Validation
set

PubChemFP-SVM 0.660 0.667 0.213 8 2 3 2 0.800 0.400 0.600
SubFP-LR 0.780 0.667 0.139 9 1 4 1 0.900 0.200 0.550

PubChemFP-NB 0.660 0.667 0.378 6 4 1 4 0.600 0.400 0.500
PubChemFP-RF 0.430 0.600 −0.189 9 0 5 1 0.600 0.000 0.300

SubFP-ANN 0.760 0.733 0.354 9 2 3 1 0.900 0.400 0.650
PubChemFP-LR 0.760 0.667 0.139 9 1 4 1 0.600 0.100 0.350
MACCSFP-RF 0.820 0.667 - 10 0 5 0 1.000 0.000 0.500

SubFP-Tree 0.600 0.667 0.213 8 2 3 2 0.800 0.400 0.600
EStateFP-ANN 0.820 0.667 0.213 8 2 3 2 0.800 0.400 0.600

PubChemFP-ANN 0.660 0.733 0.354 9 2 3 1 0.900 0.400 0.650

* True positive (TP), true negative (TN), false positive (FP), and false negative (FN).

2.4. Predicted Results of External Validation Set

Although several models based on the PubChem and Sub fingerprint generated good
performance for the training and test set, these models were still needed to be further
evaluated by an external validation set. The external validation set contained different
types of compounds collected from the relevant literature including benzofuranyl, indole,
pyrrolidinyl, and carbazolyl derivatives, which were not included in the training and test
set. The predicted results of the external validation set are shown in Table 2. In light of the
AUC, CA, and MCC values as the performance indicators, the Sub-ANN and PubChem-
ANN models gave the top three predictive results for the external validation set in general.
It could also be found that all models obtained higher SE values than SP values, which
reflected that these models generated better predictive ability for “P” compounds of the
external validation set.

2.5. Improved Performance of Balanced Models

Given the high degree of imbalance of the datasets, a hybrid balancing method
SMOETL was applied to explore the impact of balanced learning on the performance
of models. Here, the comparisons between balanced and imbalanced modes are discussed.
As indicated in Table 2, the performances of balanced models were remarkably improved in
contrast to those of the imbalanced models for the training set, especially the similar values
of SE and SP and the approximate BA values of 0.95, which implied that these models have
predictive capacity for both “P” and “N” samples. For the test set, except for the higher
SE than SP occurring in all balanced modes (vs. the similar SE and SP of four imbalanced
models), there were no observable changes (AUC, CA, MCC, and BA values) between
the imbalanced and balanced models. All the balanced models were sensitive to predict
potent compounds for the test set. Regarding the external validation set, balanced models
such as MACCSFP-LR and Sub-LR were the most predictive models for the external vali-
dation set. Compared to the statistical parameters of the imbalanced models, the reduced
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gap between SE and SP values occurred in the balanced models, which meant that the
SMOTETL balancing method indeed enhanced the performances of models for the external
validation test. However, since four compounds (123, 125, 126, and 131) in the external
validation set possessed a unique chemical structure with four heterocyclic rings connected
by fusing or double bonds, which were different to the structural features of the training
set composed of three heterocyclic rings with a single bond topological connection, the
classifier developed based on the training set generated a weaker performance on the exter-
nal set. Meanwhile, due to the smaller sample in the external validation set (10 “P” and
5 “N”), balanced learning only generated a slight improvement in the prediction capacity.
Interestingly, in light of the high ratio of positive compounds in the external validation
set, which shared the similar chemical scaffolds with training set, both imbalanced and
balanced models were applicable to predict the “P” class.

Based on the performances of models for the training set, test set, and external test
set, thee PubChem fingerprint was involved in the best model for the entire dataset. ANN
and SVM were considered as optimal methods for establishing the classification prediction
model of DYRK1A heterocyclic inhibitors. As PubChem fingerprint (881 bits) is a well-
defined structural fragment dictionary with a variety of different substructures and features,
the chemical fragments responsible for DYRK1A inhibition will be analyzed based on the
PubChem fingerprint.

Table 2. Performance of top 10 balanced models for the training set, test set, and external valida-
tion set.

Data Set Model AUC CA MCC TP TN FP FN SE SP BA

Training set

PubChemFP-LR 0.993 0.948 0.896 63 64 3 4 0.940 0.955 0.948
PubChemFP-SVM 0.990 0.940 0.881 64 62 5 3 0.955 0.925 0.940
PubChemFP-ANN 0.989 0.955 0.910 64 64 3 3 0.955 0.955 0.955

MACCSFP-RF 0.984 0.954 0.908 62 62 3 3 0.954 0.954 0.954
PubChemFP-kNN 0.983 0.948 0.896 62 65 2 5 0.925 0.970 0.948
PubChemFP-RF 0.979 0.948 0.896 65 62 5 2 0.970 0.925 0.948
MACCSFP-LR 0.974 0.954 0.908 62 62 3 3 0.954 0.954 0.954

MACCSFP-kNN 0.972 0.954 0.908 61 63 2 4 0.938 0.969 0.954
SubFP-RF 0.971 0.888 0.777 61 58 9 6 0.910 0.866 0.888
SubFP-LR 0.971 0.881 0.761 59 59 8 8 0.881 0.881 0.881

Test set

PubChemFP-LR 0.808 0.863 0.577 19 5 4 1 0.950 0.556 0.753
PubChemFP-SVM 0.883 0.828 0.680 20 5 4 0 1.000 0.556 0.778
PubChemFP-ANN 0.836 0.828 0.493 18 5 4 2 0.900 0.556 0.728

MACCSFP-RF 0.933 0.862 0.667 19 6 3 1 0.950 0.667 0.808
PubChemFP-kNN 0.881 0.862 0.680 20 5 4 0 1.000 0.556 0.778
PubChemFP-RF 0.895 0.862 0.697 20 7 3 1 0.952 0.700 0.826
MACCSFP-LR 0.922 0.862 0.667 19 6 3 1 0.950 0.667 0.808

MACCSFP-kNN 0.811 0.862 0.680 20 5 4 0 1.000 0.556 0.778
SubFP-RF 0.872 0.862 0.680 20 5 4 0 1.000 0.556 0.778
SubFP-LR 0.806 0.759 0.393 18 4 5 2 0.900 0.444 0.672

Validation
set

PubChemFP-LR 0.500 0.600 0.100 7 2 3 3 0.700 0.400 0.550
PubChemFP-SVM 0.400 0.600 0.100 7 2 3 3 0.700 0.400 0.550
PubChemFP-ANN 0.560 0.533 0.000 6 2 3 4 0.600 0.400 0.500

MACCSFP-RF 0.640 0.667 0.139 9 1 4 1 0.900 0.200 0.550
PubChemFP-kNN 0.330 0.600 −0.189 9 0 5 1 0.900 0.000 0.450
PubChemFP-RF 0.300 0.600 −0.189 9 0 5 1 0.900 0.000 0.450
MACCSFP-LR 0.760 0.733 0.378 10 1 4 0 1.000 0.200 0.600

MACCSFP-kNN 0.590 0.533 −0.277 8 0 5 2 0.800 0.000 0.400
SubFP-RF 0.760 0.773 0.378 10 1 4 0 1.000 0.200 0.600
SubFP-LR 0.520 0.600 −0.189 9 0 5 1 0.900 0.000 0.450

2.6. Identification and Analysis of Feature Substructures

In order to identify chemical fragments responsible for DYRK1A inhibition, IG and fre-
quency analysis were performed to screen the feature substructures based on the PubChem
fingerprint. The higher the IG values, the greater contribution of the feature substruc-
tures to DYRK1A inhibition. Sixteen positive and 10 negative fingerprints that occur
more frequently in “P” inhibitors and “N” inhibitors responsible for DYR1KA modula-
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tion/inhibition are presented in Table S4. Since positive fingerprints could be used as the
structural signs to discover and screen novel potent DYRK1A inhibitors, representative sub-
structures (Table 3) presented in “P” class with high ratios were focused on and discussed
in detail.

Table 3. PubChem fingerprint-based privileged substructures responsible for DYR1KA inhibition.

Fingerprints Substructure General
Substructure

Representative
Substructure IG FP FN

PubchemFP187
≥2 saturated or aromatic
nitrogen-containing ring
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Substructure IG FP FN
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Fragment-based drug design including fragment-based growing and/or linking strat-
egies and fragment hybridization strategies has been widely used in drug discovery by 
assembling fragments into novel molecules. Here, the privileged substructures above-
mentioned provide structural elements for the discovery of DYRK1A inhibitors. AlNajjar 
et al. [21] reported that 6-hydroxybenzothiazole urea derivatives b27 displayed the high-
est potency against DYRK1A with an IC50 of 20 nM, which could be considered as an ac-
etamide group-based linking compound by connecting 6-hydroxybenzothiazole and a 
phenyl acetamide together. Docking results indicated that hydrogen bonds were formed 
between b27 and key residues Leu241, Glu239, and Lys188 and/or Asp307 in the active 
site of DYRK1A including acetamide groups with the hinge region backbone of Leu241 
and Glu239 as well as between the OH of 6-hydroxybenzothiazole and the conserved 
Lys188 and/or Asp307. Meanwhile, the above-mentioned substructures such as pyridine 
and hydroxyl-phenyl ring were also presented in 1H-pyrazolo [3,4-b]pyridine derivatives 
8 h (IC50 = 5 nM) [22]. Among them, the 1H-pyrazolo[3,4-b]pyridine scaffold were in-
volved in the interactions with the Glu239 backbone CO and Leu241 backbone NH in the 
hinge region and the phenol ring formed electrostatic interaction with Lys188. 

Besides the validation of classification modes by the reported inhibitors, a hybrid 
virtual screening of natural products including pharmacophore hypothesis, classification 
models, and molecular docking was also performed to identity DYRK1A inhibitors with 
new scaffolds [undergoing work]. As shown in Figure 4, five compounds (CP1, CP4, CP11, 
CP12, and CP23) were screened as the top five theoretical hits, which will be further eval-
uated and tested by the kinase assay. Interestingly, five hits possessed the privileged frag-
ments derived from classification models, which were predicted to produce polar interac-
tions with the hinge region and/or positive area as the above-mentioned inhibitors form 
(Figure 5). For instance, 2-benzyloxy of CP1 and CP12 may have polar interactions with a 
side chain NH2 group with a Lys188 and Leu241 backbone NH, respectively. It is possible 
for the acetamide group of CP4 to interact with Lys188. Imidazole (CP111) and isoxazole 
(CP23) are also expected to form hydrogen bonds with Leu241 and/or Ser242 of the hinge 
region. 
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Most DYRK1A inhibitors possessed a heterocyclic scaffold corresponding to the privi-
leged fragment of ≥3 hetero-aromatic rings (PubChemFP260), which was strongly asso-
ciated with the protein by hydrophobic interactions with Ile165, Val173, Ala186, Leu241,
Leu294, and Val306 side chains. Furthermore, the hetero-aromatic pyridine (PubchemFP187
and PubchemFP188) was also involved to produce a hydrogen bond with a backbone NH
of Leu241, and a pyridyl nitrogen of 6-azaindole (PubchemFP499, PubchemFP547, Pub-
chemFP569, and PubchemFP611) forms electrostatic interactions with the side chain NH2
group of Lys188 in the positive area. Therefore, it is reasonable to understand the potency
of 6-azaindole derivatives against DYRK1A with IC50 values ranging from 0.0062 to 0.315.
Another remarkable privileged substructure, 2-hydroxy or 2-alkoxyl benzothiazole (Pub-
chemFP691, PubchemFP702 and PubchemFP703, or PubchemFP720 and PubchemFP783)
was found in compounds 1 (IC50 = 0.056 µM) and 24 (IC50 = 0.0938 µM), in which the
hydoxyl (alkoxyl) group formed two hydrogen bonds (single H-bond) with Leu241 in the
hinge region. Additionally, an alternative binding mode was also found for 2-alkoxyl com-
pounds that flipped and switched the binding interaction from the hinge region (Leu241)
to the positive area (Lys188). By comparing the structures and activities of compounds 46
(IC50 = 28.1 µM) and 47 (IC50 = 0.8 µM), an alkoxyl at R2 generated a 35-fold increased
inhibitory activity in contrast to an alkoxyl at the R3 position. Acetamide groups (Pub-
ChemFP645 and PubChem646) were also identified as a pharmacophoric group since it
produced polar interactions either with the hinge region or the positive area, depending on
the chemical scaffolds substituted on. For example, compound 73 (IC50 = 0.301 µM) with
the acetamide amide made an additional hydrogen bond with backbone carbonyl oxygen
atoms of Leu241 (Figure 3A). However, the acetamide carbonyl substituted on pyridine
of compound 23 formed polar interactions with the side chain NH2 group of Lys188 or
the backbone NH of Leu241 in the positive area alternatively (Figure 3B). Furthermore,
the additional pyridine linked to benzothiazole might be helpful to form the π–interaction
with the phenyl of Phe238, which provides a structural basis for the improved potency of
compound 23 (IC50 = 0.15 µM) in contrast to compound 53 (IC50 = 3.9 µM) with acetamide.

Fragment-based drug design including fragment-based growing and/or linking strate-
gies and fragment hybridization strategies has been widely used in drug discovery by
assembling fragments into novel molecules. Here, the privileged substructures above-
mentioned provide structural elements for the discovery of DYRK1A inhibitors. AlNajjar
et al. [21] reported that 6-hydroxybenzothiazole urea derivatives b27 displayed the high-
est potency against DYRK1A with an IC50 of 20 nM, which could be considered as an
acetamide group-based linking compound by connecting 6-hydroxybenzothiazole and a
phenyl acetamide together. Docking results indicated that hydrogen bonds were formed
between b27 and key residues Leu241, Glu239, and Lys188 and/or Asp307 in the active site
of DYRK1A including acetamide groups with the hinge region backbone of Leu241 and
Glu239 as well as between the OH of 6-hydroxybenzothiazole and the conserved Lys188
and/or Asp307. Meanwhile, the above-mentioned substructures such as pyridine and
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hydroxyl-phenyl ring were also presented in 1H-pyrazolo [3,4-b]pyridine derivatives 8 h
(IC50 = 5 nM) [22]. Among them, the 1H-pyrazolo[3,4-b]pyridine scaffold were involved
in the interactions with the Glu239 backbone CO and Leu241 backbone NH in the hinge
region and the phenol ring formed electrostatic interaction with Lys188.
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Besides the validation of classification modes by the reported inhibitors, a hybrid
virtual screening of natural products including pharmacophore hypothesis, classification
models, and molecular docking was also performed to identity DYRK1A inhibitors with
new scaffolds [undergoing work]. As shown in Figure 4, five compounds (CP1, CP4,
CP11, CP12, and CP23) were screened as the top five theoretical hits, which will be further
evaluated and tested by the kinase assay. Interestingly, five hits possessed the privileged
fragments derived from classification models, which were predicted to produce polar
interactions with the hinge region and/or positive area as the above-mentioned inhibitors
form (Figure 5). For instance, 2-benzyloxy of CP1 and CP12 may have polar interactions
with a side chain NH2 group with a Lys188 and Leu241 backbone NH, respectively. It is
possible for the acetamide group of CP4 to interact with Lys188. Imidazole (CP111) and
isoxazole (CP23) are also expected to form hydrogen bonds with Leu241 and/or Ser242 of
the hinge region.
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3. Material and Methods
3.1. Data Collection and Chemical Diversity

By considering the diversity of the chemical scaffold and the distribution of inhibitory
activity, 117 DYRK1A heterocyclic inhibitors were used as the whole dataset [23–29], which
were divided into a training set and a test set with a ratio of 3:1 (Table S1). In addition,
an external validation set including 15 compounds (10 “P” and 5 “N”, Table S2) was also
used to further evaluate the robustness and reliability of classification models. The detailed
information of whole dataset was listed in Table 4.

Table 4. The statistics of molecules in the datasets.

Data Set Potent Inhibitors
(P)

Non-Potent Inhibitors
(N) Total

Train set 69 19 88
Test set 20 9 29

Validation set 10 5 15
Total 99 33 132

A heat map of the Euclidian distance metrics based on PubChem fingerprints was
employed as an indicator of molecular similarity of compounds. In order to evaluate
chemical space covered by the entire dataset, 825 2D molecular descriptor groups (e.g., con-
stitutional indices, charge descriptors, ring descriptors, topological indices, connectivity
indices, etc.) were calculated by DRAGON 7.0 [30]. In order to avoid the over-fitting
possibility of these descriptors, a preliminary screening was applied to exclude the constant
and nearly constant variance (>80% compounds sharing the same values with a descrip-
tor) and descriptors with high inter-correlation (pair-wise correlations among all pairs of
descriptors >95%). Then, 634 descriptors were further evaluated by principal component
analysis to identify the featured molecular descriptors. The descriptors of Lipinski’s rules
of five [31] were also plotted into a radar chart to observe the chemical space distribution
of the entire dataset.

3.2. Molecular Fingerprints and Machine Learning Methods

Molecular fingerprint belongs to a kind of chemical structure feature, which is widely
used in similarity search, clustering, or recursive partition [32]. The two-dimensional or
three-dimensional characteristics of molecules are compiled into binary values (0 for none,
1 for have) or counts, and the chemical structure is converted into a data format that can
be understood by a computer. In this study, five molecular fingerprints namely Molecular
ACCess System (MACCS, 166 bits), Extended (Ext, 79 bits), Estate (Est, 1024 bits), Pub-
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Chem (881 bits), and Substructure (Sub, 307 bits) were calculated using PaDEL-Descriptors
software [31].

In this study, the classification models were built using the support vector machine
(SVM), logistic regression (LR), k-nearest neighbor (KNN), artificial neural network (ANN),
naïve Bayes (NB), random forest (RF) (with a tree number of 20 and the maximum tree
depth of 15), and decision tree (DT). An in-depth description of the application of these
methods in drug discovery can be obtained from some excellent studies and research
papers [33,34]. All of these calculations were integrated with Orange Canvas 3.11 software
(freely available at https://orange.biolab.si/, accessed on 8 March 2018).

In order to explore the impact of balanced learning on the model’s performance,
SMOTETL was applied on the original training set to balance the number of potent and
non-potent samples. The test set and external validation set were kept unbalanced. This
hybrid technique combines oversampling and under sampling techniques. The Tomek
link consists of two samples that are the nearest neighbor but do not belong to the same
class. This under sampling technique eliminates the observations of the majority class. The
SMOTE technique oversamples the original dataset and then detects and removes those
samples that compose the Tomek link [35].

3.3. Model Performance Evaluation

In order to obtain a comprehensive evaluation of models, the five-fold cross validation
method, a test set and an external test set were employed to evaluate the developed
classification models based on statistical parameters including TP, TN, FP, FN, SE, SP, CA,
and balanced accuracy (average of SE and SP) [36]. MCC was also explored to measure the
correlation between the true class labels and the predicted labels.

SE =
TP

TP + FN
(1)

SP =
TN

TN + FP
(2)

CA =
TP + TN

TP + TN + FP + FN
(3)

MCC =
TP × TN − FP × FN√

(TN + FN)(TN + FP)(TP + FN)(TP + FP)
(4)

In addition, the receiver operating characteristic (ROC) curve was also plotted based
on the TP and FP rates. AUC ranging from 0.5 to 1.0 was also used to evaluate the accuracy
performance of the classification models. If the AUC value is 1.0, it is considered as a
perfect classifier. If the AUC is 0.5, it is considered as a classifier without discriminative
ability [37].

AUC =
∫ −∞

t=∞
y(t)dxt (5)

3.4. Identification of Privileged Substructures

Information gain value (IG) and substructure frequency contribution were explored to
identify privileged groups of DYRK1A inhibitors. If a fragment appears more frequently
in the “P” class, this fragment is regarded as a privileged substructure of the DYRK1A
inhibitor. The formula is defined as follows:

Frequency of a substructure =
N I

f ragment × Ntotal

N f ragment−total × NI
(6)

where N I
f ragment is the number of compounds in the “P” class containing a fragment; Ntotal

is the number of inhibitors in the entire dataset; N f ragment−total is the number of inhibitors in

https://orange.biolab.si/
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the entire dataset containing a certain fragment; and NI is the total number of “P” inhibitors
in the whole dataset.

3.5. Molecular Docking

In order to predict the binding modes of theoretical hits with DYRK1A, molecular
docking was performed by using AutoDock Vina v1.2.0 [38]. The active site of the receptor
was defined as a three-dimensional grid of (50 × 50 × 50) points with a grid spacing of
0.375Å at the center of mass of the ligand (PDB ID: 3ANR) [39]. The Lamarckian genetic
algorithm (LGA) was employed as the conformational search method to explore the binding
modes between DYRK1A and the inhibitors.

4. Conclusions

In this study, classification studies of 117 DYRK1A inhibitors were explored using
machine learning methods along with molecular fingerprints. Based on the performances
of models evaluated by 5-fold cross validation and the test set, the PubChem fingerprint
was involved in the best model for the training set and test set with an accuracy of 0.933
and 0.911 when combined with the SVM and ANN algorithm, respectively. Furthermore,
pharmacophoric substructures related to their inhibitory activity were also identified
using information gain and substructure frequency analysis. All these results provide the
theoretical basis to understand key groups responsible for DYRK1A inhibition as well as
the valuable hints for the discovery of novel DYRK1A inhibitors.

Recently, ML algorithms have widely been used in fragment-based drug discovery.
The statistical ML models are able to develop the categorical or continuous correlations
between molecular features and compound activity/property and make predictions for
new chemical entities. In particular, the categorical correlation derived from classifica-
tion models offers an attractive approach for exploring the pharmacophoric fragments
to bind a target protein. Continuous correlations of QSAR models can be used to filter
the fragment-based optimization compounds with the desired activities and properties in
silicon. In light of the limited learning capability of ML algorithms, the developed models
may be insufficient to generalize well across different structures and identify the exclusive
functional groups with over-dependence on the training set. However, the developed mod-
els exhibited excellent prediction ability to the compounds that shared similar molecular
information to the training set, and also used to identify the novel DYRK1A inhibitors from
the natural product dataset. In the future, with the increase in storage capacity and the size
of the dataset available, a subfield of ML called deep learning (DL)-based models will be
applicable in drug discovery by means of not only learning from a dataset but also generat-
ing new data in a multidimensional way. Therefore, DL-derived models generalize well
across compounds with more diverse chemical scaffolds and produce an entire prediction
in more broad application domains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27061753/s1, Table S1: Structure and inhibitory activity
of DYRK1A inhibitors of the training and test set; Table S2: Structure and inhibitory activity of
DYRK1A inhibitors of the external validation set; Table S3: Performance of 35 classification models
for the training set and test set; Table S4 PubChem fingerprints of inhibitors (16) and non-inhibitors
(10) responsible for DYR1KA modulation/inhibition.
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