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Abstract: Cisplatin (CISP) is one of the most widely used anti-cancer chemotherapeutic agents
with remarkable efficacy against various types of cancers. However, it has been associated with
nephrotoxicity amongst other undesirable side effects. Pomegranate (PE) is a potent antioxidant and
anti-inflammatory agent effective against cancer, with a superior benefit of not being associated with
the common toxicities related to the use of conventional chemotherapeutic agents. However, the
application of PE is limited by its reduced solubility and decreased bioavailability. We investigated
the potential of a novel nanoparticle (NP) enclosing PE to enhance its solubility and improve its
bioavailability, and efficacy to prevent CISP-associated nephrotoxicity in a mice model of Ehrlich solid
carcinoma (ESC). All mice were grouped into four cohorts: (I) control, (II) tumor, (III) CISP, and (IV)
CISP + PE-NPs. The data obtained demonstrated that PE-NPs was beneficial in potently ameliorating
CISP-induced nephrotoxicity in ESC mice. PE-NPs significantly attenuated CISP-induced oxidative
stress and lipid peroxidation in the kidney via improving activities of antioxidants (SOD, GSH, and
CAT). Additionally, PE-NPs considerably decreased CISP-induced inflammation in the kidney by
decreasing the levels of NF-kB, IL-1β, and TNF-α. Notably, PE-NPs did not assuage the antitumor
efficacy of CISP as revealed by histological assessment and tumor weight data. In summary, PE-NPs
may be a potent alternative anticancer therapy devoid of nephrotoxicity.

Keywords: cisplatin; antioxidant; pomegranate; nephrotoxicity; nano-formulation

1. Introduction

The global population-based disease incidence data has reported a geometric rise
in the occurrence of cancer, ranking among the leading causes of mortality and giving
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the global rise in risk factors especially in developing economies, it is expected to reach
28.4 million cases in 2040 [1]. Projections by the American Cancer Society estimates the
numbers of new cancer cases be reach about 1,918,030 in 2022 [2]. Several ongoing studies
investigating the use of different chemotherapeutic agents on several drug targets critical
for the prevention and control of cancer. Owing to its DNA binding affinity and ability to
induce the destruction of cytotoxic DNA, Cisplatin (CISP) remains a potent chemotherapeu-
tic agent widely administered in the management of solid tumors [3]. Alongside impairing
the innate cellular ability to induce apoptosis and repair [4], it also causes nephrotoxic-
ity [5], myelosuppression, vomiting and nausea among other notable undesirable adverse
effects [6]. Owing to its effect on the proximal tubule in rodents, nephrotoxicity has been
implicated as the major side effect related to CISP administration [7,8]. Correspondingly,
massive necrosis has been identified as the key histopathological feature observed in CISP-
induced nephrotoxicity [9]. However, the mechanism of action by which CISP induces
nephrotoxicity remain unclear.

Prominent among the suggested mechanisms include the generation free radicals,
inflammation, apoptosis, and hypoxia. The application of complementary treatment along-
side conventional therapy yields improved results and minimal resistance and undesirable
effects. Consequently, in recent years, more studies have centered on the identification of
cisplatin adjuvant candidates to mitigate the associated adverse effects. Although many
herbal and synthetic antioxidants have been investigated for this purpose there is a paucity
of information on a definite supplement that can effectively prevent CISP-induced nephro-
toxicity [5]. Pomegranate (Punica granatum L.) belongs to the family Punicaceae, a common
fruit derived from the deciduous tree of Punica L. genus [10,11].

Pomegranates originated from the Middle East but are now widely produced in
mild-to-moderate climates including the United States of America, South Asia, and the
Mediterranean. The pomegranate season is at its peak in late autumn and early winter
(usually between September and November) [12,13]. Many studies on the various compo-
nents obtained from pomegranate have shown no harmful effects of the dosages tested.
Pomegranate’s non-toxic properties were validated in histopathological examinations on
OF-1 mice. Furthermore, no side effects or unfavorable changes in urine or blood were
detected in a trial of 86 overweight humans who received 1420 mg/day of pomegranate
fruit extract in tablet form for 28 days [12,14]. Indeed, pomegranate has several therapeutic
and pharmacological properties, which may be ascribed to the presence of numerous phyto-
chemicals including phenolic acids, flavonoids, alkaloids phytocompounds, organic acids,
gallotannins, anthocyanidins, ellagitannins, flavonones, flavonols, anthocyanins, fatty acids
and lipids, and lignans have been isolated from pomegranate [10,15–18]. Anthocyanins,
tannins, and catechins in pomegranate juice and peel also have a significant antioxidant
activity [10,11,19,20]. Pomegranate has been used to mitigate cancer, memory impairment,
and arteriosclerosis and lowering high cholesterol levels [19,20]. The efficacy of ethno-
therapeutic agents in the treatment of cancer has been greatly enhanced by the recent
incorporation of nanotechnology via the use of natural nanoparticle (NP) remedies which
boost both bioavailability and effectiveness of potential therapeutic candidates [21–23].
Consequently, we sought to investigate the potential role of PE-NPs and their possible
protective mechanism against CISP-induced nephrotoxicity in an Ehrlich solid carcinoma
mice model.

2. Materials and Methods
2.1. Synthesis of Pomegranate-Nanoparticles (PE-NPs)

The NP-PE used in this study was prepared by double emulsion technique of en-
capsulating pomegranate (fruit extract) in Pluronic 127 non anionic surfactant and PVA
and PLGA organic polymers. PE (40 mg), stearic acid (100 mg), lecithin (150 mg), and
cholesterol (80 mg) were combined in ethanol (10 mL) and heated at 70 ◦C for 10 min as
previously described [24,25].
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2.2. Characterization of PE-NPs

The size distribution and zeta potential of PE-NPs in aqueous diffusion was identified
via Electrophoretic Light Scattering (ELS) and Dynamic Light Scattering (DLS) methods as
previously described in our previous publication on the testing of the same compound in a
different biological system [26,27].

2.3. Assessment of the Loading Ratio (LR) and Efficiency of Encapsulation (EE)

As previously described, the EE of PE-NPs was ascertained by evaluating the ratio of
the quantity of pomegranate encapsulated in the nanoparticle in comparison to the initial
quantity fed, as described in Equation (1):

EE =
Quantity of pomegranate encapsulated × 100

Initial quantity of pomegranate
(1)

The LR was ascertained by evaluating the ratio of the quantity of pomegranate encap-
sulated to the total weight of entire nanoparticle formulation, as described in Equation (2):

LR =
Quantity of pomegranate encapsulated × 100

Entire weight of formulation
(2)

2.4. Animals and Treatment

Twenty-eight (28) ten-week-old adult Wistar albino male mice weighing approximately
22–30 g were used as subjects in this study. All animals were housed in the animal breeding
facility of King Fahd Medical Research Centre, King Abdulaziz University (KAU), Jeddah,
Saudi Arabia. All effort to minimize stress due to the handling of animals was employed
and the experiment was conducted in line with the approved stipulations of the committee
for ethical use and care of animals at KAU university (Number: 02-CEGMR-BIOETH-
2022). All mice were acclimatized to the new environment and feeding for 2 weeks prior
commencing the experimental procedure. All animals were allowed access to water and fed
commercially purchased rat chow ad libitum. The CISP administered to mice was obtained
from Mylan Institutional LLC, Rockford, IL, USA.

2.5. ESC Induction

Viable Ehrlich ascites carcinoma cells was acquired from the National Cancer Insti-
tute, Cairo, Egypt, and administered via intramuscular injection (2.6 × 106 cells; 0.2 mL
PBS/mouse) to induce ESC [24]. Following 10 days post implant, a palpable tumor growth
was observed in all the treated mice. Thereafter, the ESC animals were grouped into
3 cohorts (n = 7), aside from the untreated group of control mice bearing no tumor. Oral
administering of PE-NPs was carried out daily for 14 days following a single intraperitoneal
dose of CISP. Phosphate buffered saline (PBS) solution with normal pH was administered
orally to all the control animals. The dosage of CISP administered was in line with previous
studies [25]. PE-NPs was administered at a dose of 1.47 mg/kg as previously described [26].
An outline of the experimental groups and the dosage of the different agents administered
is outlined in Table 1.

Table 1. Experimental groups and the agents administered.

Groups (n = 7 Each) Treatment

Group I (control) PBS (0.2 mL)/mouse
Group II (negative control) Tumour (2.6 × 106 cells in PBS)

Group III Tumour + CISP (3.5 mg/kg)
Group IV Tumour + CISP + PE-NPs (1.47 mg/kg)
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2.6. Samples Collection and Storage

Fourteen days following the treatment, all mice were anesthetized using ether, and
blood samples were collected by cardiac puncture. Thereafter, serum samples were sepa-
rated by centrifuging the blood at 5000× g for 5 min at 4 ◦C. The samples were then stored
at −80 ◦C for further processing. All the animals were then sacrificed, and tissue samples
were collected and for estimation of inflammation, oxidative stress, and histopathology.

2.7. Assessment of Kidney Function

Serum concentrations of uric acid, creatinine, urea, C-reactive protein, and cystatin C
were estimated by the aid of an ELISA kit (MyBioSource, San Diego, CA, USA, catalogue
No. MBS9719084, MBS9719085, MBS2903804, MBS2600001, and MBS763996 respectively),
following the manufacturers guidelines.

2.8. Determination of Oxidative Stress Indicators

The activities of endogenous antioxidants, superoxide dismutase (SOD), catalase
(CAT), and reduced glutathione (GSH), alongside oxidative stress indicators malondi-
aldehyde (MDA) in kidney tissues which were estimated with the aid of an ELISA kit
(MyBioSource; USA, catalogue No. MBS726781, MBS268427, MBS036924, and MBS265966
respectively following the manufacturers guidelines.

2.9. Determination of Indicators of Inflammation

The concentrations of indicators of inflammation in kidney tissues including IL-1β,
TNF-α, and NF-kB were determined using ELISA kits of MyBioSource (San Diego, CA,
USA) catalogue No. MBS2507393, MBS825017, and MBS268833, correspondingly, following
the guide of the manufacturer’s.

2.10. Histopathological Investigation

As previously described, kidney and tumor sample sections were stained using haema-
toxylin and eosin (H & E) and observed for histopathological variations under the micro-
scope [27].

2.11. Data Analysis

Data obtained from each group was expressed as mean ± standard error of the
mean (SEM; n = 7) and compared with other groups using one-way ANOVA followed by
Tukey’s post hoc test, using GraphPad Prism version 7. Values of p ≤ 0.05 were considered
statistically significant.

3. Results
3.1. Nutritional Composition of Pomegranate Fruit

The nutritional composition of pomegranate fruit was analyzed and represented in
Table 2.

Table 2. Nutritional composition of pomegranate fruit.

Nutrients Value Per 100 g Units

Potassium 236 mg
Sodium 3 mg

Ascorbic acid, total 10.2 mg
Choline, total 7.6 mg

Calcium 10 mg
Iron 0.3 mg

Magnesium 12 mg
Phosphorus 36 mg

Ash 0.53 g
Carbohydrates 18.7 g

Fiber 4 g
Sugars, total 13.67 g

Water 77.93 g
Energy 83 Kcal
Protein 1.67 g

Total lipid (fat) 1.17 g
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3.2. Preparation and Physicochemical Characterization

The nanoparticles of PE were prepared following a previously described procedure by
Almuhayawi et al., 2020. The zeta potential, Z-average particle size, entrapment efficiency,
and drug loading capacity were evaluated using HPLC-UV to validate the efficiency of the
preparation technique to preclude loss of the active drug.

3.3. Effect of PE-NPs on Oxidative Stress, Antioxidant, and Inflammatory Markers in
Kidney Tissues

The administration of CISP to the mice groups bearing ESC considerably decreased
the activities of endogenous antioxidants in kidney tissues (SOD, GSH, and CAT) when
compared to the mice in the Ehrlich tumor groups and the control group. Similarly, treat-
ment of Ehrlich solid tumor mice with CISP significantly increased the lipid peroxidation
(an index of oxidative stress) as indicated by the higher concentration of MDA in kidney
tissues in comparison to the ESC and control mice. The group of mice treated with PE-
NPs + CISP exhibited a significantly reduced concentration of MDA in comparison to the
levels observed in the CISP group mice (Table 3). Notably, the mice group administered
PE-NPs + CISP exhibited a significantly improved SOD, GSH, and CAT activities when
compared those in the CISP group (Table 3, Figure 1).

Table 3. Effect of pomegranate nanoparticles (PE-NPs), on activity of antioxidant enzymes, oxidative
stress (MDA), and inflammatory markers in kidney tissues measured during treatment with cisplatin
(CISP) in Ehrlich solid carcinoma mice model.

GSH (ng/mL) SOD (u/mL) CAT (Mu/L) MDA
(nmol/mL)

TNF-α
(pg/mL) IL10 (pg/mL) NFKβ

(ng/mL)

Control 12.86 ± 0.51 158 ± 2.68 111.2 ± 4.2 0.316 ± 0.036 11.34 ± 0.32 6.18 ± 0.17 14.04 ± 0.61
Tumour 17.1 ± 0.84 176.6 ± 4.12 117.8 ± 1.91 0.438 ± 0.06 12.22 ± 0.372 5.82 ± 0.27 16.18 ± 0.79

CISP 3.6 ± 0.36 ab 82.2 ± 2.44 ab 55 ± 4.21 ab 1.482 ± 0.12 ab 23.28 ± 1.44 ab 13.68 ± 0.36 ab 64.06 ± 4.05 ab

CISP + PE-NPs 17.84 ± 1.25 ac 183 ± 7.2 ac 119.6 ± 1.12 c 0.732 ± 0.12 ac 12.9 ± 0.46 c 6.2 ± 0.35 c 14.46 ± 0.71 c

p value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Data are expressed as mean ± SEM (n = 5). a = significantly different from the value in the control group (p < 0.05).
b = significantly different from the value in the tumour group (p < 0.05). c = significantly different from the value
in the CISP group (p < 0.05).
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3.4. Effect of PE-NPs on Inflammatory Markers in Serum

Administration of CISP significantly increased inflammatory markers of IL-10, TNF-
α, and NF-kB in kidney tissues of mice induced with ESC in comparison to the control
animals and ESC mice groups. The group of animals treated with PE-NPs + CISP showed
significantly improved levels of IL-10, TNF-α, and NF-kB levels when compared with the
group of animals treated with CISP (Table 3).

3.5. Effect of PE-NPs on Indicators of Kidney Function in Serum

Serum concentrations of urea, uric acid, creatinine, C- reactive protein, and cystatin C.
The indicators of kidney function (serum levels of uric acid, urea, and creatinine) increased
significantly in ESC mice treated with CISP when compared to mice in either control or
ESC groups (Figure 2). All animals administered PE-NPs + CISP exhibited improved serum
kidney functions as significantly reduced serum creatinine, uric acid, cystatin C, and urea
was recorded when compared to the group of mice treated with CISP alone (Figure 2).
Besides, administration of PE-NPs improved the levels of serum inflammatory markers
including CRP, IL-10, and C-Cysteine estimated following cisplatin (CISP) treatment in
ESC mice (Figure 3).
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3.6. Effect PE-NPs on the Anticancer Activity of CISP in ESC Mice

The administration of CISP to mice bearing ESC considerably reduced the weight
of the tumor when compared to the ESC group of animals that were untreated. Notably,
the group of animals bearing ESC treated with PE-NPs + CISP also showed significantly
reduced tumor weight in comparison with the untreated ESC group of mice. However, no
significant variation in the weight of tumors was recorded between the ESC bearing mice
treated with CISP only and those administered a combination of PE-NPs + CISP (Figure 4).
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3.7. Effect of Combination of CISP with PE-NPs on Kidney Histopathology in ESC Mice

The administration of CISP to mice bearing ESC caused the permeated neoplastic
cells in the tissue sections to look degenerated and less viable. In addition, CISP induced
considerable distortion of the kidney parenchyma with deformation and atrophy of the
glomeruli and renal corpuscle. However, it caused marked degeneration of the epithelium
lining the kidney tubule (distortion of small nuclei stainless cytoplasm, and inflamed
cells). Conversely, the group of animals treated with the combination of PE-NPs + CISP
showed considerable preservation of structures in the parenchyma of the kidney with minor
distortion of the renal corpuscles. The epithelial lining of the kidney tubules appeared
healed such as that seen in the sections from control mice (Figure 5).
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with well-preserved renal histoarchitecture. 

 

Figure 5. Effect of the combination of CISP with PE-NPs on kidney tissue histopathology in ESC
mice model. Kidney sections were stained by H & E and photographed at low power × 40 &
high-power × 400 to show: Control (A,B): showing normal kidney parenchyma; renal corpuscle
and glomeruli (white arrow) and kidney tubules (black arrows). Tumor (C,D): showing massive
infiltration by neoplastic viable cells among the tubules with capillary congestion (dotted black
arrows) and unstained mild basal degeneration of tubule cells (black arrows). CISP (E,F): showing
marked vascular congestion (dotted arrows), dilatation of tubular lumen with cast formation (black
arrows) with decreasing degenerated neoplastic cells (dotted square and white star) tubules showed
dark nuclei (apoptosis) and luminal casts (black arrows). Tumor + CISP + PE – NPs (G,H): showing
preservation of kidney tubule structure and degeneration of neoplastic cells (dark nuclei; dotted
square and star). (I) The bar plot shows the scoring for the histopathological changes in the kidney
as observed in the different sections. Results are expressed as mean ± SEM (n = 5). a Significant
difference against the control group. b Significant difference against Ehrlich tumor group. c Significant
difference against CISP group. *** p ≤ 0.001 and ** p ≤ 0.01.

3.8. Evaluation of the Expression of Caspase-3 Immuno in Kidney Tissue Treated with the
Combination of CISP and PE-NPs in ESC Mice

Figure 6 showed a mild increase in the immuno-expression of caspase-3 in both
affected glomerular capillaries and medullary peritubular vessels of the kidney tissues of
the control mice. In contrast, kidney tissues from untreated ESC mice showed marked
elevation in the expression of caspase 3. Conversely, the ESC mice group treated with
CIS + NPs pomegranate showed marked reduction in the immuno-expression of caspase-3
with well-preserved renal histoarchitecture.

3.9. Effect of Combination of CISP with PE-NPs on Histopathological Features in ESC Mice

The administration of CISP to mice bearing ESC induced a considerable reduction in
the tumor weight when contrasted with the Ehrlich tumor mice group. The administering
of the combination of CISP with PE-NPs in ESC mice yielded a significant reduction in the
tumor weight compared to ESC mice group. No statistically significant variation in tumor
weight was noted between the mice treated with only CISP and those administered with
the combination of CISP + PE-NPs (Figure 7).
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with well-preserved renal histoarchitecture. 

 

Figure 6. Section from cortex and medulla of mice kidney immuno-stained for caspase-3 (marker of
apoptosis). (A,B), showing normal control with mild positive immuno-staining in renal corpuscle
glomerular capillaries (white arrow) and peritubular medullary vessels (black arrow). (C,D) showing
moderate increase in caspse-3 immunostaining in glomerular capillaries and peritubular cortical and
medullary vessels in tumor mice group (black arrows). (E,F) showing marked increase in caspas3-
immunostaining in glomerular capillaries and peritubular cortical and medullary vessels and basal
parts of dilated distal tubule cells of cisplatin treated mice (black arrows). (G,H), showing potential
decrease in caspse-3 immuno-expression in tumor group mice treated with cisplatin and nanoparticles
of pomegranate.

Figure 7 shows that, compared to marked tumor vascularity and high density of
viable neoplastic cells, large cells with pleomorphic nuclei with dominant abnormal mitotic
features (arrows) appear in Ehrlich solid tumor. Tumor tissue showed large acidophilic
regions that represent necrotic tissue while significant tumor regression was evidenced in
the group treated with combination of CISP + PE − NPs. The histopathological observation
of tumor sections from the different experimental animal groups stained with H & E further
confirms this finding. The section of the tumor showed a significant increased thickening
of the vascular bed alongside massive proliferating neoplastic cells, cell infiltration with
pleomorphic vesicular active nuclei and numerous mitotic figures. Treatment with CISP
caused a significant reduction in both tumor neoplastic cell density and vascularity. In
tissue sections from CISP treated ESC mice, there were wide regions of small degenerated
pyknotic and tumor necrosis. The combination of PE-NPs with CISP yielded a greater
reduction in the proliferation and cell density, degeneration of neoplastic cells, wider
regions of tumor necrosis, and uneven darkly stained nuclei (Figure 7).
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Figure 7. Effect of combination of CISP with PE-NPs on ESC histopathology. Sections are H &
E-stained low power (right side × 40) and high power (left side × 600). (A) Tumor sections showing
well-vascularized bed. Note the massively proliferating neoplastic cells infiltrating the muscles
which have pleomorphic vesicular active nuclei with numerous mitotic figures (arrows). (B) CISP
sections show reduced tumor vascularity (star). Neoplastic cells markedly reduced in density
with wide regions of tumor necrosis (pink stained area) and small degenerated pyknotic nuclei
(arrows). (C) CISP + PE-NPs sections showing reduced proliferation in cell density. Wider areas
of tumor necrosis and degeneration of neoplastic cells is evident with fragmented darkly stained
nuclei (arrows).

4. Discussion

Pomegranate is a derivative of Punica L., and possesses antioxidant properties; how-
ever, its low aqueous solubility and bioavailability limits its effectiveness [28]. The bioavail-
ability of therapeutic agents both in vivo and in vitro is vital for its optimum effective-
ness [29]. In this study, in a bid to enhance the solubility of PE, we formulated PE-NPs and
characterized its properties. Accordingly, a minimal dose of PE-NPs (3 mg/kg/day) was
administered orally to mice in this study. We aimed to imitate what typically ensues in can-
cer disease patients. Several studies have examined the potential of cancer chemotherapy
toxicity in healthy animals (i.e., without cancer). However, what happens is the devel-
opment of concomitant adverse effects of chemotherapy on cancer patients undergoing
treatment using these drugs. Consequently, in this study we explored the potential pro-
tective effect of PE-NPs on nephrotoxicity associated with CISP in mice bearing ESC. Our
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result demonstrated that PE-NPs were efficient in preventing CISP-induced nephrotoxicity
in ESC mice. This was corroborated by the improved kidney and liver function indicators
alongside a reduction in kidney histopathology noticed upon treatment with PE-NPs in the
present study. In kidney tissues, PE-NPs significantly attenuated CISP-induced oxidative
stress by improving the activities of endogenous antioxidant enzymes (CAT, SOD, and
GSH). PE-NPs also considerably lowered inflammation induced by CISP in kidney as
evidenced by a reduction in levels of NF-kB, TNF-α, and IL-1β. This is the first report
demonstrating the beneficial potential of PE-NP formulation against CISP in ESC mice
model. Additionally, this result demonstrated that the nanoparticles of PE did not assuage
the in vivo anticancer potential of CISP as indicated by the tumor weight and the histology
result. Comprehensive evidence also validates the vital role of increased oxidative stress as
the cause of nephrotoxicity induced by CISP [30,31]. Moreover, the extent of the severity
of the nephrotoxicity induced by CISP has been linked with significant rise in the levels
of IL-6 and TNF-α [32,33]. TNF-α is reported to be the most essential cytokine elevated
during CISP-induced toxicity and consequently, its inhibition protects against the toxic
activity of CISP [34]. Similarly, a study also recently showed the beneficial effect of PE
against tramadol-induced testicular toxicity via reducing oxidative stress and stimulating
antioxidants [35–37]. Several studies including that carried out by Al-olayan et al. also
demonstrated the in vivo beneficial effects of PE (Punica granatum) juice on male infertility
induced by carbon tetrachloride in a rodent model [20,38,39]. Benzer et al. (2011) also
showed that pomegranate seed extract mitigated free radical damage and enhanced the
antioxidant activity under cisplatin-induced oxidative stress conditions in rabbits [40,41].
In addition, pomegranate juice extract has been shown to decrease cisplatin toxicity on
peripheral blood mononuclear cells [37].

Although few studies have reported that PE protects against CISP-induced toxic-
ity [19,42], a number of other studies have shown that PE offers no protection against
CISP-induced nephrotoxicity [5,14,21,32], and this may be due to the poor solubility. Hence,
in this study, PE-NPs formulation was observed to improve its efficacy by enhancing the sol-
ubility. Consequently, the data from the present study suggest that the nano-formulation PE
may be a beneficial adjunct nano-nutraceutical in improving cisplatin anticancer potential
to mitigate the attendant nephro-pathology.

5. Conclusions

In summary, the data obtained from this study indicated that the combination of PE-
NPs and CISP prevented against CISP-induced nephrotoxicity by enhancing the activities of
endogenous antioxidants and improving the anti-inflammatory potential of PE. Therefore,
it is conceivable that PE-NPs may be a complimentary therapy to protect against CISP-
induced nephrotoxicity during the treatment of cancer.
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