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Abstract: Two-dimensional metal-organic frameworks (2D MOFs) inherently consisting of metal
entities and ligands are promising single-atom catalysts (SACs) for electrocatalytic chemical reactions.
Three 2D Fe-MOFs with NH, O, and S ligands were designed using density functional theory
calculations, and their feasibility as SACs for hydrogen evolution reaction (HER), oxygen evolution
reaction (OER), and oxygen reduction reaction (ORR) was investigated. The NH, O, and S ligands
can be used to control electronic structures and catalysis performance in 2D Fe-MOF monolayers by
tuning charge redistribution. The results confirm the Sabatier principle, which states that an ideal
catalyst should provide reasonable adsorption energies for all reaction species. The 2D Fe-MOF
nanomaterials may render highly-efficient HER, OER, and ORR by tuning the ligands. Therefore,
we believe that this study will serve as a guide for developing of 2D MOF-based SACs for water
splitting, fuel cells, and metal-air batteries.

Keywords: two-dimensional metal-organic framework; ligand; single-atom catalysts; hydrogen
evolution reaction; oxygen evolution reaction; oxygen reduction reaction

1. Introduction

The greenhouse effect, air pollution, ozone depletion, and fossil fuel depletion are
all major challenges for our society’s progress in the 21st century [1]. To address the envi-
ronmental deterioration and energy challenges, it has become a major priority to increase
the research and development of low-cost, efficient, and renewable energy storage and
conversion devices, such as fuel cells, metal-air cells, and water decomposition [2]. At the
United Nations Climate Summit 66 countries pledged to achieve net-zero carbon emissions
by 2050 [3]. A promising energy conversion technology is the unitized regenerative fuel cell.
It works like a fuel cell and inversely as a water electrolyzer to produce H2 and O2 to feed
the fuel cell. Hence, multifunctional electrocatalysts play key roles [4]. However, because
of the high overpotential, low activity, and poor selectivity, it is extremely desirable to
develop sustainable and low-cost functional electrode materials with high energy density,
excellent rate capability, and good cycling stability [5].

Since an isolated Pt single atom anchored in FeOx showed remarkable catalytic per-
formance for CO oxidation [6], single-atom catalysts (SACs) have been considered next-
generation electrode candidates. SACs contain isolated single-metal atoms dispersed on
a support surface, and represent the ultimate limit of atom use efficiency for catalysis [7].
Some experimental and computational studies show that SACs are promising for precise
control of catalytic reactions, such as the hydrogen evolution reaction (HER) [8,9], the
oxygen evolution reaction (OER) [10,11], the oxygen reduction reaction (ORR) [12], the

Molecules 2022, 27, 1528. https://doi.org/10.3390/molecules27051528 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27051528
https://doi.org/10.3390/molecules27051528
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-8029-7032
https://doi.org/10.3390/molecules27051528
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27051528?type=check_update&version=2


Molecules 2022, 27, 1528 2 of 10

nitrogen reduction reaction (NRR) [13], the carbon dioxide reduction reaction (CO2RR) [14],
and CO/NO oxidation [15].

Unlike typical SACs, two-dimensional metal-organic frameworks (2D MOF) contain
metal entities and organic ligands, indicating that they could be used as SACs [16]. MOF
monolayers have highly exposed metal atoms, uniformly dispersed against agglomera-
tion [16]. Similar to SACs, the metal entities in MOFs could effectively modify charge
redistribution and boost chemical reactions [17].

Recently, more and more 2D MOF sheets have been experimentally synthesized and
theoretically predicted for use as catalysts [18]. The Cu3(C6S6) MOF cathode enables a high
reversible capacity for lithium-ion batteries [19]. The Rh3C12S12 MOF exhibits a low limiting
potential of –0.43 V for CO2RR [20]. Mo3C12N12H12 MOF exhibits a low overpotential of
0.18 V for NRR [21]. Mo3(C2O)12 MOF could achieve a low limiting potential of –0.36 V
for NRR via the distal pathway [22]. These MOFs could also be used as electrocatalysts for
ORR [23], OER [24], and HER [25].

Due to the above results, the NH, O, and S ligands were adopted to design 2D Fe-
MOFs. The potential as SACs for the HER, OER, and ORR was systematically explored. The
Fe-MOF exhibits atomically thin like 2D graphene, and they display excellent structural
stability. The NH, O, and S ligands could tune charge redistribution in Fe-MOF and catalysis
performance. The Fe-O MOF displays ∆GH = 0.08 eV for HER, Fe-NH MOF exhibits
ηORR = 0.38 V for ORR, and they possess poor OER catalysis performance (ηOER > 0.92 V).
Our work highlights the effect of ligands, and could guide the development of highly
effective SACs based on 2D MOFs.

2. Results and Discussion
2.1. Geometry and Stability

The unit cells of the studied 2D Fe-MOF monolayers are depicted in Figure 1. There
are three types of ligating atoms between Fe atoms and graphene nanosheets (Figure S1).
Therefore, different symbols were denoted by different ligating atoms: Fe-NH-MOF for
NH ligating atoms, Fe-O-MOF for O ligating atoms, and Fe-S-MOF for S ligating atoms,
respectively. These 2D MOF sheets are also atomically thin like grapheme, but each unit
cell consists of 3 Fe atoms, 24 carbon atoms, and 12 ligating atoms.
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Figure 1. Optimized lattice parameters of (a) Fe-NH-MOF, (b) Fe-O-MOF, and (c) Fe-S-MOF
monolayers.

To optimize the atomic structures of these three Fe-MOFs, the variations of energies
vs. the lattice constants are also shown in Figure 1, their lattice constants are optimized to
be 12.61 Å for Fe-NH MOF, 12.31 Å for Fe-O MOF, and 13.65 Å for Fe-S MOF, respectively
(Table 1 and Table S1). These optimized lattice constants agree with previous investiga-
tions [22,26,27]. The bond lengths of Fe-N, Fe-O, and Fe-S are 1.85 Å, 1.83 Å, and 2.15 Å,
respectively, and the bond lengths of C-N, C-O, and C-S are 1.35 Å, 1.30 Å, and 1.74 Å,
respectively, due to differences in the atomic radius of N (r = 70 pm), O (r = 66 pm), and S
(r = 104 pm). The diameters of the holes in Fe-MOF sheets vary as well by 3.44 for Fe-NH
MOF, 5.17 Å for Fe-O MOF, and 5.74 Å for Fe-S MOF, respectively (Table 1).
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Table 1. Calculated geometric parameters (lattice constants (la), the bond length of Fe-N (O, S)
(DFe-N (O,S)), C-N (O,S) (DC-N (O,S)), and diameter of the hole (Φ) (Å)), total magnetic moment (Mtot,
µB) and Bader charge (QFe (e), QN,O,S (e)) of Fe-NH-MOF, Fe-O-MOF, and Fe-S-MOF monolayers.

Materials la (Å) DFe-N (O,S) (Å) DC-N (O,S) (Å) Φ (Å) Mtot (µB) QFe (e) QN,O,S (e)

Fe-NH-MOF 12.61 1.85 1.35 3.44 6.00 −1.26 +0.83
Fe-O-MOF 12.31 1.83 1.30 5.17 10.45 −1.51 +1.07
Fe-S-MOF 13.65 2.15 1.74 5.74 9.25 −0.58 +0.13

We examined the stability of three Fe-MOF monolayers after attaining their unique
structures, because the good stability of the given materials is a prerequisite for their practi-
cal uses. Notably, high-quality 2D Fe-S MOF have been experimentally synthesized [27],
however, their thermal stabilities were still performed using first-principles plus ab initio
molecular dynamics simulations (AIMD). At a temperature of 500 K, a total time process
of 3000 fs with a time step of 1 fs was implemented using specified 2 × 1 × 1 rectangular
supercells (included 102 atoms for Fe-NH MOF and 78 atoms for Fe-O/ Fe-S MOFs). The
variations of total energy and temperature and the final snapshots in 3000 fs are depicted in
Figure 2. Their total energies and temperature exhibit up and down trends within a fixed
range. These final structures display lack of structural distortion and no bond-breaking. It
slight up and down changes in final plane structure can be seen. These results revealed
that these three Fe-MOF monolayers could maintain their original atomic structures at a
high temperature of 500 K, implying their exceptional thermal stability. The high stability
may result from the large π-bonds of high-symmetric sp2-C atoms in graphene nanosheets,
which agrees with previous work [22,27]. Notable are the slight up and down changes in
the plane. The plane structure shows some fluctuation changes.
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Figure 2. The AIMD simulations of (a) Fe-NH-MOF, (b) Fe-O-MOF, and (c) Fe-S-MOF monolayers at
500 K during the timescale of 3 ps.

We further perform Bader charge analysis to investigate the chemical bonding in these
Fe-MOF monolayers. The electron localization function (ELF) map and isosurfaces of ELF
with a value of 0.50 au are plotted in Figure 3a–c, the Fe loses 0.58–1.51 e, and the N, O, and
S gain 0.13–1.07 e, which contributes to their robust ionic bonds. Note that the positive Fe
atom may be used as an active site for chemical reactions.

2.2. Electronic Property

Previous research has shown that the electronic structures of 2D-based catalysts have a
significant impact on their catalytic efficiency [28]. Thus, we computed their band structures
and density of states (DOS) with the DFT + U method [29]. As shown in Figure 4a, the Fe-O
MOF and Fe-S MOF display intrinsic metallicity due to the several bands at the Fermi level,
while Fe-NH MOF is a semiconductor with band gaps of 0.56 eV for spin up and 0.89 eV
for spin down. Thus, the high electrical conductivity of Fe-O and Fe-S MOFs should ensure
rapid charge transfer in electrochemical reactions. It can be clearly observed that all three
Fe-MOF nanomaterials possess spin splitting of band structures, producing magnetism.
The computed total magnetic moment (Mtot) of the primitive cells of Fe-NH-MOF, Fe-O-
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MOF, and Fe-S-MOF monolayers are 6.00 µB, 10.45 µB, and 9.25 µB, respectively. Further
study of magnetism comes from the spin-charge density in Figure 3(a3,b3,c3), the spin-up
densities are mainly around the Fe atoms, matching their total magnetic moments (Table 1).
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Previous research suggested that metallic characteristics and strongly spin-polarized
Fe atoms could enhance the chemical catalysis process [30]. The density of states (DOS) of
these three Fe-MOFs was then calculated to further understand them better. The projected
density of states (PDOS) of Fe, N, O, S, and C elements are further plotted in Figure 4b–d.
There are obvious hybridizations between Cu-dyz and Cu-dxz orbitals and N-pz orbitals
(Figure 4b), confirming the strong bond between Fe and N atoms. We also concluded the
semiconductor character for Fe-NH MOF since there are no states at the Fermi level. For
the Fe-O MOF in Figure 4c, the metallic feature mainly comes from the contributions of
Fe-dxy, Fe-dx2-y2, O-px, and O-pz orbitals, which also mainly give the spin magnetism
and hybridizations of the Fe-O bond. For Fe-S MOF in Figure 4d, S-px, S-pz, Fe-px and
Fe-dx2-y2 existing at the Fermi level, these orbitals endow their metallicity, spin magnetism,
and strong bond to Fe-S.

2.3. HER

The hydrogen adsorption free energies are estimated under various configurations
in this part to assess the HER activity of these Fe-MOFs. Four representative adsorption
sites are chosen to show the HER catalysis activity, which are Fe, N/O/S, C1, C2, and C3
atoms in Figure 3. The corresponding adsorption structures are displayed in Figures S2–S4.
The calculated HER free energy diagrams of three Fe-MOFs at a potential U = 0 relative
to the standard hydrogen electrode at pH = 0 are plotted in Figure 5. For Fe-NH MOF in
Figure 5a, the Gibbs free energies of hydrogen adsorption (∆GH) on Fe and N sites are
0.16 eV and 0.45 eV, while the ∆GH is more than 0.88 eV on C sites, suggesting that the
optimized HER activity is 0.16 eV. The ∆GH of Fe-O MOF on Fe and O atoms are 0.60 eV
and 0.08 eV, respectively, the C atoms also exhibit a poor HER catalysis performance and the
∆GH > 0.67 eV. Similarly, the Fe-S MOF monolayer possesses poor HER catalytic behavior
due to the high hydrogen adsorption free energies (∆GH > 0.37 eV).
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The reason can be deduced from the Bader charge analysis in Table 1, the O gains
more electrons (+1.07 e) showing higher catalysis activity, the S and N gain fewer electrons
(+0.13–+0.83 e) displaying poor catalysis properties. In comparison with the findings of
previous studies (Table 2), the Fe-O MOF displays the small or comparable hydrogen
adsorption free energy (∆GH = 0.08 eV), implying its excellent HER electrocatalytic activity.
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Table 2. Comparison of the HER (∆GH, eV), OER (ηOER, V), and ORR (ηORR, V) catalysis performance
in our results with previous literatures.

Materials ∆GH (eV) ηOER (V) ηORR (V) Materials ∆GH (eV) ηOER (V) ηORR (V)

Fe-NH-MOF 0.16 0.92 0.38 IrO2 [31] - 0.45–0.59 -
Fe-O-MOF 0.08 1.00 0.85 Co-BP [32] - 0.42 0.36
Fe-S-MOF 0.37 1.22 0.75 Ni-BP [32] - 0.44 0.29

V-W2B2O2 [33] 0.01–0.15 - - Pt-BP [32] - 0.25 0.32
ZnW2B2O2 [33] 0.14–0.26 - - Fe-BHT [24] - 0.88 -

Zn@InSe [34] 0.02 - - Ir3(HITP)2 [35] - - 0.31
Ni@PR-GDY [36] −0.05 0.29 0.38 Rh3(HITP)2 [35] - - 0.37

2.4. OER

The OER electrocatalytic activity of these three Fe-MOF monolayers was then eval-
uated. According to previous work, the OER process should consist of four elementary
steps [37]. They are (1) *+ H2O → *OH+ H+, (2) *OH → *O + H+, (3) *O + H2O →
*OOH + H+, and (4) *OOH→ *+ O2 + H+, respectively. The optimized atomic structures
of *OH, *O, and *OOH intermediates on three Fe-MOF monolayers are diagnosed by con-
sidering different adsorbed sites and conformations (Figures S2–S4). It is found that their
reaction sites are the same as Fe atoms (Figure 6), which is in agreement with those of other
MOF materials [22,24].
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The OER free energy diagram at 0.00 V, 1.23 V, and work potential is depicted in Figure 6.
The OER free energy diagram of Fe-NH MOF plotted in Figure 6a indicates that the third
step possesses the biggest uphill, and the elementary step *O + H2O→ *OOH + H+ is the
rate-limiting step. When the electrode is 2.15 V, all four-element steps are downhill. Thus,
the calculated OER overpotential (ηOER) is 0.92 V. The working potentials of Fe-O MOF and
Fe-S MOF are 2.23 V and 2.45 V, where it can be deduced that their OER overpotentials are
1.00 V and 1.22 V. Therefore, the Fe-NH MOF exhibits the best OER catalytic activity for
converting H2O to O2 in this study. We further compare the OER performance of Fe-MOF
with the recent catalysts in Table 2. It is worth noting that the OER overpotential of Fe MOF
(ηOER = 0.92–1.22 V) is 2–3 times that of the best-known OER catalyst IrO2 (0.45–0.59 V) [31],
implying their poor OER electrocatalytic activity. The other methods should be adopted to
tune the OER electrocatalytic activity of 2D Fe MOF monolayer.
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2.5. ORR

The ORR electrocatalytic activity of the Fe–MOF sheets is discussed in this section. Pre-
vious studies have shown that the O2 dissociative pathway is difficult to achieve on 2D MOF
materials, which are similar to Pt(111) [38] and several single-atom catalysts [28,36,39,40].
Here, the ORR can be regarded as the inverse process of OER, which is also described by
four elementary steps (1) * + O2 + H+ → *OOH, (2) *OOH + H+ → *O + H2O, (3) *O + H+

→ *OH, and (4) *OH + H+ → *+ H2O, respectively. The optimized atomic structures of
ORR intermediates on three Fe-MOF monolayers are the same as OER intermediates on
them and the active sites are Fe atoms (Figures S2–S4).

The calculated ORR free energy diagrams of three Fe-MOFs are depicted in Figure 7.
The blue, black, and red lines represent the electrode potentials at 0.00 V, 1.23 V, and
working potential. As displayed in Figure 7a, the elementary steps of Fe-NH MOF at
0.00 V are downhill. When the electrode potential is up to 0.85 V (which is defined as
working potential, Uwork), the first step is spontaneous, thus the * + O2+ H+ → *OOH step
is the rate-limiting step, which is defined as working potential. Thus, the corresponding
ORR overpotential is 0.38 V, which can be calculated by the equation (ηORR = 1.23–0.85).
Similarly, it is worth noting from Figure 7b,c, that the rate-limiting steps on Fe-O MOF and
Fe-S MOF are the first and the fourth steps. Their corresponding working potentials (Uwork)
are 0.38 V and 0.48 V for Fe-O MOF and Fe-S MOF, indicating that their ORR overpotentials
(ηORR) are 0.85 V and 0.75 V. Therefore, the Fe-NH MOF possesses the lowest overpotential,
and the ηORR is even lower than the best ORR catalyst of Pt (0.45 V) [38]. We also compare
this ηORR value with that of other excellent ORR catalysts (Table 2), which suggests that the
Fe-NH MOF could boost ORR electrocatalysis performance.
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To gain further insight into the catalysis property of Fe-MOF, we analyze the ad-
sorption free energies of OOH, O, and OH species. Here we give the values of an ideal
ORR catalyst, which are 3.69 eV for ∆G*OOH, 2.46 eV for ∆G*O, and 1.23 eV for ∆G*OH,
respectively. Furthermore, the Sabatier principle claims that an ideal catalyst should serve
moderate adsorbed energies for all reaction species. For Fe-NH MOF, the values are
∆G*OOH = 4.06 eV, ∆G*O = 1.92 eV, and ∆G*OH = 1.02 eV, the corresponding adsorbed
energy differences are 0.10 eV (4.06–3.69), 0.54 eV (2.46–1.92), and 0.21 eV (1.23–1.02),
respectively, which indicates that Fe-NH MOF exhibits strong adsorption to *O species.
We also conclude that the adsorbed energy differences are 0.58 eV, 0.05 eV, and 0.06 eV
for Fe-O MOF, and 0.16 eV, 0.80 eV, and 0.75 eV for Fe-S MOF, which suggests that Fe-O
possesses weak adsorption energy to OOH, Fe-S displays strong adsorption strength to
OH. These adsorbed energy differences could confirm the rate-limiting steps, which are
the first step for Fe-NH and Fe-O MOFs, and the fourth step for Fe-S MOF. The results
confirm the Sabatier principle [41]. In other words, the Fe atom in Fe-NH MOF loses 1.26 e,
in Fe-O MOF it loses 1.51 e, and in Fe-S MOF it loses 0.58 e (Table 1), thus the active Fe
exhibits different adsorption energies for various ORR species, which led to the different
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ORR catalysis activity. In summary, the coordinated ligand can promote the charge transfer
between the central Fe atom and graphene nanosheets, and further regulate their chemical
catalysis performance for HER, OER, and ORR.

3. Methods

The first-principles calculations were performed with the context of spin-polarized
DFT as implemented in the Vienna ab initio simulation package (VASP) [42]. The exchange-
correlation approximation was described by the generalized gradient approximation with
the Perdew–Burke–Ernzerhof function [43,44]. The plane-wave cutoff energy was 500 eV
for the projected augmented wave approach [45]. The vacuum layer was larger than 15 Å.
All geometry structures were allowed to fully relax until the Hellmann–Feynman force on
atoms was less than 0.01 eV Å−1, and the total energy change was less than 1.0 × 10−5 eV.
The grid density of k-point mesh in Monkhorst–Pack scheme was less than 2π × 0.01 Å−1.
The ab initio molecular dynamics (AIMD) were conducted with the Nosé algorithm in
the NVT ensemble to investigate thermodynamical stability [46]. To treat the exchange–
correlation energy of the localized d-orbital of Fe atoms, the PBE+U calculations were
employed by adding the Hubbard term to the Hamiltonian [29,47]. The DFT-D3 correction
was adopted to describe the long-range van der Waals interaction [48]. The VASPKIT code
was used to analyze the output files from the VASP. The free-energy change (∆G) for each
fundamental step was calculated by the equation [38],

∆G = ∆E + ∆EZPE − T∆S + ∆GU + ∆GpH + ∆Gfield (1)

where ∆E is the electronic energy difference, ∆EZPE is the zero-point energy (ZPE), T is
298.15 K, and ∆S is the difference in entropy. ∆GU = eU, where U is the electrode potential,
and e is the electron transfer. ∆GpH = kBT× ln10× pH, where kB is the Boltzmann constant,
and pH = 0 in this study, which is the same as previous works [24,31,35,36]; ∆Gfield is
neglected. The entropy and vibrational frequencies of the gas species are taken from the
database [49].

4. Conclusions

To summarize, we have obtained the atomic geometry, stability, HER, OER, and
ORR electrocatalytic activity of Fe-MOF by using first-principles calculations. The Fe-
MOFs with NH, O, and S ligands possess high stability and are atomically thin like 2D
graphene. It was found that the coordinated ligands (NH, O, and S) could promote the
charge redistribution in Fe-MOF, and further regulated their electronic structures and
chemical performance. These three Fe-MOFs possess spin magnetism. The calculated free
energy diagrams indicate that the Fe-O MOF displays the smallest hydrogen adsorption
free energy (∆GH = 0.08 eV), the Fe-NH MOF exhibits the best ORR catalysis performance
with the overpotential of 0.38 V. Unfortunately, these three Fe-MOFs possess poor OER
properties due to the ηOER > 0.92 V. Our computational results offer not only a promising
strategy for the design of high efficiency versatile electrocatalysts, but also promote the
following experimental exploration on the use of 2D MOF in water splitting, fuel cells, and
metal-air batteries.

Supplementary Materials: The following supporting information can be downloaded online. Figure S1
supercell (2× 2) of (a) Fe-NH-MOF, (b) Fe-O-MOF, and (c) Fe-S-MOF monolayers; Figure S2 the optimized
top and side views of H, OOH, O, and OH on Fe-NH MOF monolayer; Figure S3 the optimized top
and side views of H, OOH, O, and OH on Fe-O MOF monolayers; Figure S4 the optimized top and side
views of H, OOH, O, and OH on Fe-S MOF monolayers; Table S1 optimized lattice constants (la) vs total
energies (Etot) of Fe-NH-MOF, Fe-O-MOF, and Fe-S-MOF monolayers.
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