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Abstract: Extra virgin olive oil (EVOO) is a key component of the Mediterranean diet, with several 
health benefits derived from its consumption. Moreover, due to its eminent market position, EVOO 
has been thoroughly studied over the last several years, aiming at its authentication, but also to 
reveal the chemical profile inherent to its beneficial properties. In the present work, a comparative 
study was conducted to assess Greek EVOOs’ quality and authentication utilizing different analyt-
ical approaches, both targeted and untargeted. 173 monovarietal EVOOs from three emblematic 
Greek cultivars (Koroneiki, Kolovi and Adramytiani), obtained during the harvesting years of 2018–
2020, were analyzed and quantified as per their fatty acids methyl esters (FAMEs) composition via 
the official method (EEC) No 2568/91, as well as their bioactive content through liquid chromatog-
raphy coupled to high resolution mass spectrometry (LC-HRMS) methodology. In addition to 
FAMEs analysis, EVOO samples were also analyzed via HRMS-untargeted metabolomics and op-
tical spectroscopy techniques (visible absorption, fluorescence and Raman). The data retrieved from 
all applied techniques were analyzed with Machine Learning methods for the authentication of the 
EVOOs’ variety. The models’ predictive performance was calculated through test samples, while 
for further evaluation 30 commercially available EVOO samples were also examined in terms of 
variety. To the best of our knowledge, this is the first study where different techniques from the 
fields of standard analysis, spectrometry and optical spectroscopy are applied to the same EVOO 
samples, providing strong insight into EVOOs chemical profile and a comparative evaluation 
through the different platforms. 

Keywords: extra virgin olive oil; authenticity; variety identification; FAMEs; HRMS; metabolomics; 
optical spectroscopy; visible absorption; fluorescence; Raman; machine learning 
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1. Introduction 
Extra virgin olive oil (EVOO) has attracted particular attention due to its high nutri-

tional value. Mainly consisting of triacylglycerols, which represent more than 98% of the 
oil weight, and small quantities of free fatty acids (less than 0.8% in EVOOs [1]), it is con-
sidered one of the most valuable edible fats worldwide, with several health benefits being 
derived by its consumption. Olive oil consumption has been associated with the preven-
tion of cardiovascular disease, diabetes, cancer, age-related cognitive decline, and lower 
incidence of metabolic syndrome [2]. In fact, bioactive compounds included in the minor 
fraction of 2% w/w together with monounsaturated fatty acids (MUFAs), mainly referring 
to oleic acid, which is the most predominant type, present an increasing potential for 
health protection by decreasing low-density lipoprotein levels [3,4]. In this ambit, ac-
knowledging EVOO’s high nutritional value and the health benefits derived from its con-
sumption, European Union (EU) has proceeded to the establishment of relative regulation 
frameworks and health claims. Specifically, regarding fatty acids, the EU health claim of 
2006 acknowledges cis-MUFAs (e.g., oleic acid) and cis- polyunsaturated fatty acids 
(PUFAs) (e.g., linoleic acid and alpha-linolenic acid) to the maintenance of normal blood 
cholesterol levels [5]. In the same aspect, the regulation (EU) 432/2012 stated that foods 
with concentration of alpha-linolenic acid above 0.6 g/100g are considered as foods with 
high content in Ω-3 fatty acids, whereas foods with concentration of linoleic acid above 
1.5 g/100g helps maintain normal blood cholesterol levels [6]. The same regulation also 
highlights the health effects related to polyphenols, directly associated with European 
Food Safety Authority (EFSA) preceded substantiation about the benefits of EVOOs con-
sumption [7], setting the limit of “at least 5 mg of hydroxytyrosol and its derivatives (e.g., 
oleuropein complex and tyrosol) per 20 g of olive oil” [6]. Different methodologies have 
been developed to assure that olive oil meets regulatory standards and to allow the use of 
health claims related to fatty acids and bioactive content. Regarding olive oil quality as-
surance, the methodologies applied by all control authorities are determined by the pro-
tocols established from regulatory bodies (e.g., European Commission Regulation) [1].  

Under the perspective of authenticity assessment and quality verification, more ho-
listic approaches are needed in order to address challenging authenticity issues, such as 
variety or geographical origin identification of EVOO. High resolution mass spectrometry 
(HRMS)-metabolomics and optical spectroscopy are two cutting-edge methodologies that 
make full use of EVOOs chemical profile, allowing their thorough investigation. HRMS-
metabolomics has demonstrated its potential on the field of EVOOs analysis with both 
targeted (focusing on a specific group of compounds-metabolites, identified and quanti-
fied) and untargeted approaches (investigating the whole profile) being reported so far 
[8–12]. HRMS-workflows, often hyphenated with chromatographic techniques (e.g., liq-
uid chromatography, LC), increase depth of coverage, with compounds of different chem-
ical classes being detected in a single acquisition run. Hence, the methodology developed 
and applied by the authors [8] regarding EVOOs’ bioactive content determination, allows 
the detection of a large number of compounds separated according to the different chem-
ical groups (i.e., phenols, lignans, terpenoids, flavonoids, fatty acids etc.). As a result, a 
holistic overview on EVOOs profile is implemented, which is crucial in metabolomics-
based studies. Moreover, taking advantage of HRMS data dependent acquisition (DDA) 
mode, high-quality spectra are provided, thus enabling the accurate identification and 
structure annotation of even unknown compounds. To this purpose, the followed data 
treatment workflow comprises all information retrieved through LC-HRMS analysis (i.e., 
retention time, mass accuracy, isotopic pattern and MS2 fragmentation) aiming for tenta-
tive identification. 

Optical spectroscopy has been introduced as a powerful analytical tool for EVOO 
authenticity determination, providing rapid and accurate results. Spectroscopic tech-
niques such as absorption, fluorescence, Raman and FT-IR are non-invasive methods, rel-
atively cheap, and user and environmentally friendly, as they have the advantage of the 
absence of reagents and solvents and require a small amount of sample. Over the last 
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several years, the application of optical spectroscopic techniques combined with machine 
learning methods has been used to deal with various analytical problems of interest in the 
olive oil authenticity sector. Specifically, optical spectroscopic techniques were used to 
distinguish the EVOO samples based on their geographical origin [13]. In addition, they 
have been used for detection of adulteration in extra virgin olive oil [14] and for the veri-
fication of its quality parameters [15,16]. Moreover, these techniques have also been 
shown to be efficient tools for the identification of EVOOs based on their variety [17,18].  

Both spectrometry and optical spectroscopy techniques derive data which contain a 
large amount of information. In order to eliminate noise and redundant information, ma-
chine learning analysis is considered a powerful and essential tool. Machine Learning 
methods, and in this case classification methods, give insight and intuition into the points 
of interest (i.e., identification of variety, geographical or botanical origin). Both targeted 
and untargeted techniques have been previously combined with machine learning meth-
ods, such as PLS-DA, SVMs, Neural Networks etc. Indicatively, various agricultural prod-
ucts such as honey [19,20] and wine [21–26] have been investigated, considering a wide 
range of issues and authentication purposes such as their quality, variety and geograph-
ical and botanical origin. 

In the present collaborative study, both targeted and untargeted approaches have 
been established to evaluate olive oil quality and assure its authentication in terms of va-
riety identification. Greek EVOOs have been analyzed and assessed to meet the estab-
lished health claims, thus highlighting their nutritional value, while thorough study of 
their profile has also been performed. Regarding the latter, both HRMS and optical spec-
troscopy techniques were implemented to gain perspective and investigate different 
chemical classes. All information retrieved was utilized to its fullest, contributing to the 
creation of predictive models, according to the parameter of analysis (i.e., fatty acids con-
tent, metabolomics, visible absorption, Raman and fluorescence). For the construction of 
the predictive models, the most widely used classification methods were employed, 
namely the Logistic Regression, Random Forest, SVMs and KNN. For each different tech-
nique (FAMEs, HRMS, visible absorption, Raman and fluorescence), the best-performing 
classification model was chosen based on the cross-validation procedure. Each model was 
validated and evaluated for its ability to correctly discriminate between three emblematic 
Greek olive oil varieties (Koroneiki, Kolovi and Adramytiani), performing a comparative 
study through the different analytical platforms. Finally, the constructed models were fur-
ther evaluated with 30 commercially available EVOO samples in order to verify their va-
riety. 

2. Results and Discussion 
2.1. Fatty Acids Methyl Esters (FAMEs) 

In total, 17 different fatty acids, in their methyl-esterified form, were detected and 
quantified in all olive oil samples. FAMEs have been characterized as MUFAs and PUFAs 
based on their saturation (Table S1), while linoleic and alpha-linolenic acid were also stud-
ied individually according to their health claims established. As indicated from the box-
and-whisker plots of MUFAs and PUFAs (Figure 1A and B), the samples of Koroneiki 
variety were found to be rich in MUFAs (i.e., mostly oleic acid), while the EVOOs of 
Adramytiani and Kolovi variety prevailed in PUFAs content (i.e., linoleic and alpha-lino-
lenic acid). Regarding linoleic acid and alpha-linolenic acid in particular (Figure 2A and 
B), the entire set of samples was found to be rich in content of both fatty acids, thus high-
lighting Greek EVOOs’ high quality and nutritional value. More specifically, a mean value 
of 9.28 g/100g in linoleic acid was recorded, 6.2-fold higher than the limit reported in the 
Regulation (referring to 1.50 g/100g), while alpha-linolenic acid mean value was found to 
be 0.78 g/100g, 1.3-fold higher compared to the regulation limit of 0.60 g/100g. Analysis of 
variance (ANOVA) was also performed to study potential differentiation among groups, 
resulting that EVOOs from the three different varieties are indeed differentiated, with the 
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mean difference between the groups being statistically significant (Table S2). Koroneiki’s 
market samples are intentionally depicted separately in the chart for comparison pur-
poses, with the mean value though not being statistically significant compared to those of 
Koroneiki sampling 2018–2020 (Table S3). All statistical information regarding FAMEs’ 
results is provided in Table S4. 
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(B)  

 

 

 

 

Figure 1. Box-and-whisker plots of EVOOs from the three different varieties regarding MUFAs (A) 
and PUFAs (B).  

 
The FAMEs content of EVOOs, including all 17 fatty acids, were consequently com-

bined with machine learning methods to investigate the variety identification. SVM was 
selected as optimum classification method with RBF kernel and regularization parameter 
C = 1.5. Table 1 presents the outcome of the classification, with all 52 test samples being 
correctly classified based on their variety, recording the total score of 100%, both on accu-
racy, mean sensitivity and mean specificity. 
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Figure 2. Box-and-whisker plots of EVOOs from the three different varieties regarding linoleic (A) 
and alpha-linolenic acid (B). 

Table 1. Confusion Matrix of FAMEs test samples. SVM was performed and achieved 100% accu-
racy, mean sensitivity and mean specificity. 

Predicted Label 

Tr
ue

 L
ab

el
 

 Adramytiani Kolovi Koroneiki 
Adramytiani 3 0 0 

Kolovi 0 12 0 
Koroneiki 0 0 37 

2.2. HRMS-Metabolomics 
2.2.1. Bioactive Content 

All samples were analyzed and evaluated regarding their bioactive content. 25 phe-
nolic compounds available in the in-house target database were detected and further 
quantified (Table S5). Among them, 14 compounds were characterized as “hydroxytyro-
sol derivatives” and therefore related to EU health claim legislation. Figure 3 depicts 
EVOOs’ bioactive content evaluated for all the monovarietal samples belonging to the 
three different varieties as well for the market samples. Approximately, half of the sam-
ples (47.8%) encountered bioactive content higher or equal to 250 mg/kg and could 
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consequently bear the health claim indication as described by EU 432/2012 legislation. It 
is also worth noticing that only 23.3% of the samples acquired from the market reached 
the health claim limit (Figure 3A), which may be partially attributed to the storage condi-
tions and shelf-time of the product, parameters that highly affect EVOOs’ bioactive con-
tent [27]. ANOVA was also implemented among the groups, demonstrating that the three 
varieties are differentiated, with the mean difference between the groups being statisti-
cally significant (Table S6). Results from bioactive content analysis, along with the statis-
tical parameters used in pie- and box--and-whisker plots, are summarized in Table S7. 

 

 

 

 

 

(A) 

 

 

 

 

 

 

 

 

(B) 

 

 

 

 

Figure 3. Column and pie-charts depicting the number and % percentage of EVOOs that may claim 
or not the EU health indication based on their bioactive content (A), and box-and-whisker plot of 
EVOOs from the three different varieties regarding bioactive content (B). 

2.2.2. Untargeted Metabolomics 
Taking a step forward, an untargeted HRMS approach was implemented aiming at 

EVOOs’ holistic profile evaluation. In contrast with the targeted approach which focused 
particularly in one chemical class (i.e., phenols and derivatives), on the applied untargeted 
methodology, compounds of different chemical classes were studied, increasing depth-
of-coverage and enabling the study of EVOOs total profile. Figure 4 illustrates a typical 
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base peak chromatogram (BPC), as well as extracted ion chromatograms (EICs) of com-
pounds classified into different chemical groups, acquired with the current HRMS meth-
odology applied in EVOOs. 

 
Figure 4. Typical base peak chromatogram (BPC) of extra virgin olive oil and extracted ion chroma-
tograms (EICs) of compounds from different chemical classes, detected with the current untargeted 
HRMS methodology. 

All information retrieved through untargeted HRMS metabolomics was combined 
with machine learning methods for the identification of the three examined olive oil vari-
eties. More specifically, model-based feature selection was performed using Random For-
est with 100 trees, minimum split size = 2 and minimum leaf size = 9, while classification 
was carried out using Logistic Regression with l2 penalty and regularization parameter C 
= 0.5. As observed in the confusion matrix of Table 2, all 52 test samples were correctly 
classified leading to 100% accuracy, mean sensitivity and mean specificity. 

Table 2. Confusion matrix of HRMS-untargeted metabolomics test samples. Feature Selection using 
Random Forest combined with Logistic Regression as a classification method, where all samples 
were correctly classified, leading to 100% accuracy, sensitivity and specificity. 

Predicted Label 

Tr
ue

 L
ab

el
 

 Adramytiani Kolovi Koroneiki 
Adramytiani 3 0 0 

Kolovi 0 12 0 
Koroneiki 0 0 37 

2.2.3. Variety Markers’ Identification 
During the feature selection procedure 92 out of the total 648 exact mass retention 

time (EMRT) pairs were selected. The HRMS-based methodology applied in the study 
enabled the identification of features of interest, providing high-quality MS and MS2 
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spectra, inherent to accurate formula and structure assignment, respectively. Identifica-
tion was performed via in-house target and suspect databases available [10]. The identifi-
cation criteria have been previously described in “Data treatment” section. For unknown 
compounds though (i.e., features not included in the databases), a stepwise identification 
approach was implemented utilizing all information available from HRMS analysis. More 
specifically, formula annotation was performed using Bruker’s “SmartFormula Manu-
ally” tool, embedded in DataAnalysis software, which estimates formulas based on accu-
rate mass and isotopic pattern. Only compounds consisting of C (n ≤ 50), H (n ≤ 100), O (n 
≤ 20) and N (n ≤ 10) atoms, which is mainly the composition of bioactive compounds, were 
considered for the molecular formula assignment. Proposed formulas were sorted accord-
ing to their SmartFormula Manually Scores, with the most prevailed ones scoring 100%, 
while the rest follow in a descending order. 

Subsequently, a thorough search in online databases (e.g., MassBank, 
http://www.massbank.jp/?lang=en, accessed on 15 October 2021; ChEBI, 
https://www.ebi.ac.uk/chebi/, accessed on 15 October 2021) and FoodB, http://foodb.ca/, 
accessed on 15 October 2021) was performed to assign formula to a probable structure. 
Only compounds found in olive oil and products (consistent to OliveNet™ [28], 
https://mccordresearch.com.au/, accessed on 15 October 2021) were considered eminent 
candidates and further examined. MS2 fragmentation pattern was compared to those of 
the databases, while in cases of no experimental data available, in silico fragmentation 
was also assessed through MetFrag [29]. Figure 5 illustrates the identification performed 
in the case of DEDA acetal, while Table S8 includes the compounds tentatively identified. 

 

 
(A)                                           (B) 

 

 

 

 

(C) 

 

 

Figure 5. Identification for EMRT 229.1081_4.38 (DEDA acetal). EIC (A), MS spectrum and probable 
elemental composition (B), as well as MS2 spectrum depicting compound’s fragments along with 
their structure assignment (C). 

2.3. Optical Spectroscopic Methods 
2.3.1. Absorption Spectroscopy 

The EVOO samples from the three different varieties were analyzed by absorption 
spectroscopy in the visible region (400–700 nm). Figure 6 displays a typical absorption 
spectrum of EVOO in this region. The spectrum of EVOO in the visible region contains 
information mainly for pigments, such us carotenoids and chlorophyll, and the bands that 
appear are due to the electronic excitations’ transitions of those compounds. Specifically, 
the observed peaks at 454 and 480 nm are assigned to carotenoids contained in the olive 
oil samples. The peaks at 416, 535, 610 and 670 nm correspond to the presence of chloro-
phyll in the samples [13,30]. 
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The evaluation of the absorption spectroscopic data was performed via model-based 
feature selection using Random Forest with 100 trees, minimum split size = 9 and mini-
mum leaf size = 3 and via classification using SVM with linear kernel and regularization 
parameter C = 1.5. According to Table 3, in which the confusion matrix of the test samples 
is presented, 5 out of 37 samples of Koroneiki variety were misclassified. The samples 
from Adramytiani and Kolovi varieties were shown a 100% correct classification. In total, 
5 out of the 52 test samples were misclassified. The obtained results depict a high rate of 
correct classification as the accuracy of this classification was 0.9 and the balanced accu-
racy was 0.95. During the feature selection procedure 47 features out of the total 148 were 
selected. The evaluation of feature selection that was applied to the absorption spectro-
scopic data for the presented classification indicated selected features at 400–524 nm and 
580–694 nm from the spectral region 400–700 nm. As mentioned above, the selected fea-
tures are related to the characteristic absorption bands of several pigments such us carot-
enoids (beta-carotene and lutein) and chlorophyll (a, b chlorophyll and a, b pheophytin). 

 
Figure 6. Absorption spectrum of extra virgin olive oil (EVOO) in the region 400–700 nm. 

Table 3. Confusion matrix of visible absorption spectroscopic test samples. Feature Selection using 
Random Forest combined with SVM as a classification method was performed. Five out of the total 
52 test samples were misclassified leading to 90% accuracy, 95% mean sensitivity and 96% mean 
specificity. 

Predicted Label 

Tr
ue

 L
ab

el
 

 Adramytiani Kolovi Koroneiki 
Adramytiani 3 0 0 

Kolovi 0 12 0 
Koroneiki 1 4 32 

2.3.2. Raman Spectroscopy 
The EVOO samples from the three different varieties were also analyzed using Ra-

man spectroscopy. Figure 7 depicts a characteristic Raman spectrum of olive oil in the 
range 1000–1700 cm−1 after the background subtraction, using the Zhangfit technique [31] 
Table 4 shows the characteristic Raman bands and their corresponding assignments to 
vibrational modes of the functional groups [13,14,32]. Those bands correspond to the fatty 
acids contained in the sample, with the peaks located at 1265 and 1657 cm−1 corresponding 
to the unsaturated fatty acids. The regions that were taken into account were 1000–1140 
cm−1, 1212–1552 cm−1 and 1620–1700 cm−1 (Figure 7). The rest of the 1000–1700 cm−1 spectral 
region was excluded since it does not contain information about the varieties. 
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Figure 7. Raman spectrum of extra virgin olive oil (EVOO) from 1000 to 1700 cm−1 after background 
subtraction. 

The predictive performance results of the Raman spectroscopic data are presented in 
this section. Based on the selected model, model-based feature selection was performed 
using Random Forest with 100 trees, minimum split size = 2 and minimum leaf size = 10, 
and classification using SVM with linear kernel and regularization parameter C = 1. Table 
5 shows the confusion matrix of the test samples. As observed in Table 5, 49 out of the 
total 52 test samples were correctly classified leading to an accuracy score of 94%, while 
the mean sensitivity is equal to 85% and mean specificity is equal to 97%. The lower value 
regarding the mean sensitivity is related to the misclassification of one sample from 
Adramytiani variety, which had high influence on the balanced accuracy score due to the 
small sample size of this specific class. During the Feature Selection procedure, 42 from 
the total 234 features were selected. The selected features were mainly associated with the 
spectral regions at 1040–1087 cm−1, 1222–1275 cm−1 and band at 1655 cm−1. As seen from 
the Raman band assignment in Table 4, the spectral regions which mainly contributed to 
EVOOs variety identification are due to stretching vibrations of unsaturated fatty acids. 
These results are in good agreement with the FAMEs results (Section 2.1), which reveal 
that MUFA and PUFA mean values are significantly different for the three examined va-
rieties. 

Table 4. Raman band assignments of the EVOO (spectral region 1000–1700 cm−1). 

Raman bands (cm−1) Assignments 
1072 C–C stretching of (CH2)n group 
1265 =C–H stretching of cis (R–HC=CH–R) 
1300 C–H bending (twist) of CH2 group 
1440 C–H bending (scissoring) of CH2 
1655 C=C stretching of (RHC=CHR) 

Table 5. Confusion matrix of Raman spectroscopic test samples. Feature Selection using Random 
Forest combined with SVM as a classification method was performed. Three out of 52 test samples 
were misclassified leading to 94% accuracy and 85% mean sensitivity and 97% mean specificity. 

Predicted Label 

Tr
ue

 L
ab

el
 

 Adramytiani Kolovi Koroneiki 
Adramytiani 2 1 0 

Kolovi 1 11 0 
Koroneiki 0 1 36 



Molecules 2022, 27, 1350 11 of 21 
 

 

2.3.3. Fluorescence Spectroscopy 
The synchronous fluorescence spectra (SFS) of the EVOO samples for different Δλ 

values were measured (Section 3.3). Each SFS contained 66 data points of fluorescence 
intensity. These data were then used to construct a three-dimensional matrix with seven 
columns and 66 rows for each sample. Figure 8 exhibits a typical contour map of an EVOO 
sample constructed from this matrix. The contour map contains numerous emission bands 
and can be divided manly into two regions. The first region presents a short-wavelength 
characteristic band and is associated with the presence of tocopherols and its derivatives. 
In general, the excitation range of 270–320 nm and emission at 290–400 nm is associated 
with tocopherols, tocotrienols and several phenolic compounds. The phenolic compounds 
contribution in this region is mainly due to tyrosol and hydroxytyrosol which originated 
from phenolic glycosides contained in the EVOO. The second region with an excitation 
range of 290–360 nm and an intermediate emission range at 350–480 nm is attributed to 
the oxidation products [15]. Moreover, as reported in the literature, the excitation range 
from 300 to 400 nm with emission at 450–580 nm is due to the excitation of vitamin E and 
carotenoids [18]. In the spectral region that is selected to monitor the fluorescence of 
EVOO the intense emission of pigments such as chlorophyll is absent. Chlorophyll b, 
along with its derivatives (pheophytin a and b), is excited at around 350–420 nm and emits 
light at 650–700 nm. Due to the several fluorophores contained in the EVOO, fluorescence 
spectroscopy represents the fingerprint of the EVOO that reflects its chemical composi-
tion. 

 
Figure 8. Contour map constructed by synchronous fluorescence spectra of EVOO samples. In this 
map, x-axis depicts the different Δλ values, y-axis depicts the excitation wavelength and the color 
scale represent the fluorescence intensity with blue and red corresponding to the weakest and 
stronger intensities, respectively. 

For the evaluation of the fluorescence spectroscopic data, each sample was unfolded 
into a single row, where the different scans were placed successively resulting in 7 × 66 = 
462 data points (features), as reported in previous works [33]. In this way the fluorescence 
spectroscopic data were handled like the other spectrometric and spectroscopic data of 
this study. In order to analyze the unfolded fluorescence spectroscopic data, model-based 
feature selection was performed using Random Forest, with 100 trees, minimum split size 
= 2 and minimum leaf size = 2, and classification using KNN, with number of neighbors k 
= 3. Table 6 presents the confusion matrix, where 51 out of 52 samples were correctly clas-
sified. The calculated classification metrics for the present predictive model are 98% for 
accuracy, 89% for mean sensitivity and 99% for mean specificity. For the specific analysis, 



Molecules 2022, 27, 1350 12 of 21 
 

 

during the feature selection procedure 55 out of the 462 total features were selected. The 
selected features belong to a wide range of the different synchronous fluorescence spectra. 
Most of the selected features were from the synchronous fluorescence spectra with wave-
length intervals (Δλ) of 30, 60, 90 and 120 nm. From the SFS spectra the compounds which 
emit light is associated with tocopherols and phenolic molecules, with wavelength inter-
vals Δλ 30 and 60 nm. Respectively, with Δλ of 90 and 120 nm, the compounds of EVOO 
which fluorescence are related to oxidation products, vitamin E and carotenoids.  

Table 6. Confusion matrix of fluorescence  spectroscopic test samples. Feature Selection using 
Random Forest combined with KNN as a classification method was performed. One out of the total 
52 samples was misclassified, leading to 98% accuracy, 89% mean sensitivity and 99% mean speci-
ficity. 

Predicted Label 

Tr
ue

 L
ab

el
 

 Adramytiani Kolovi Koroneiki 
Adramytiani 2 1 0 

Kolovi 0 12 0 
Koroneiki 0 0 37 

2.4. Comparative Results 
In this section the predictive performance efficiency of all techniques used in this 

study are gathered and compared. All techniques achieved significantly better results 
compared to the baseline, which was a model that always predicted the most frequent 
class, in this case Koroneiki. Such baseline achieved 71% accuracy and 33% balanced ac-
curacy. The models based on FAMEs and HRMS analysis managed to correctly classify 
all the test samples, while the results of the spectroscopic techniques are also present high 
values of accuracy to the correct classification of EVOOs based on their variety. The com-
parative results from the five different techniques that used are presented in Table 7. The 
sensitivity and specificity for each variety are presented in Table S9. 

Table 7. Accuracy and balanced accuracy values for the techniques used in this study. 

 FAMEs HRMS 
Absorption 

Spectroscopy 
(400–700 nm) 

Raman 
Spectroscopy 

Fluorescence 
Spectroscopy 

Accuracy 
(%) 100 100 90 94 98 

Mean 
Sensitivity 

(%) 
100 100 95 85 89 

Mean 
Specificity 

(%) 
100 100 96 97 99 

2.5. Classification of Market Samples 
After the model construction and evaluation on test data, it was furtherly tested for 

its ability to correctly identify the variety of market samples. Specifically, 30 market sam-
ples of Koroneiki variety were collected and introduced to the models. The number of 
correctly predicted market samples for each technique is presented in Table 8. 

The models constructed with FAMEs, HRMS, Raman and fluorescence analysis data 
correctly predicted all the market samples available in the study, while the model 
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constructed with the visible absorption analysis data misclassified 3 market samples. 
Overall, for the different approaches, the high predictive performance results, both in the 
test data and in the market samples, indicate that these techniques could give an intuition 
for the authentication of unlabeled EVOO samples and for the verification of labelled 
EVOO samples.  

Table 8. Number of correctly classified market samples. The total number of market samples was 
30. 

 FAMEs HRMS 

Absorption 
Spectroscop
y (400–700 

nm) 

Raman 
Spectroscopy 

Fluorescence 
Spectroscopy 

#correctly 
identified 30/30 30/30 27/30 30/30 30/30 

3. Materials and Methods 
3.1. Chemicals and Reagents 

In fatty acids analysis, compounds were identified by the use of two commercial 
standards (i.e., FAME Mix C24-C22 and FAME Mix C4-C24) purchased from Supelco 
(Sigma, Saint Louis, MO, USA), while analytical grade methanol, heptane and potassium 
hydroxide were purchased from Carlo Erba Reagents.  

All standards and reagents used in HRMS analysis were of high-purity grade (>95%): 
p-coumaric acid, eriodictyol, pinoresinol and syringaldehyde were acquired from Sigma-
Aldrich (Stenheim, Germany). Hydroxytyrosol and luteolin were purchased from Santa 
Cruz-Biotechnology (Santa Cruz, CA, USA), while apigenin, naringenin, tyrosol and van-
illin were purchased from Alfa Aesar (Karlsruche, Germany). Ligstroside aglycone, olea-
cein, oleocanthal, oleocanthalic acid, oleomissional and oleuropein aglycone were ob-
tained from Prof. P. Magiatis laboratory (Laboratory of Pharmacognosy and Natural 
Products Chemistry, Faculty of Pharmacy, University of Athens, Athens, Greece). The 
standards had been previously isolated from olive oil extracts and their structure and pu-
rity grade were evaluated by NMR analysis [34]. Methanol (MeOH) (LC-MS grade) was 
purchased from Merck (Darmstadt, Germany), whereas 2-propanol (LC-MS grade) was 
purchased from Fisher Scientific (Geel, Belgium). Sodium hydroxide monohydrate for 
trace analysis ≥99.9995% and ammonium acetate ≥99.0% were purchased from Fluka 
(Buchs, Switzerland). Distilled water was provided by a Milli-Q purification apparatus 
(Millipore Direct-Q UV, Bedford, MA, USA). Finally, regenerated cellulose syringe filters 
(RC, pore size 0.2 μm, diameter 15 mm) were purchased from Phenomenex (Torrance, 
CA, USA). Stock standard solutions of individual compounds (1000 mg L−1) were pre-
pared in MeOH and stored at −20 °C in dark glass bottles. Working mix solutions at six 
different concentrations levels (0.5, 1, 2, 5, 10 and 20 mg L−1) were prepared by gradient 
dilution of the stock solutions in MeOH/H2O 80:20, v/v and analyzed each time at the be-
ginning of each sequence. 

3.2. EVOOs Samples and Sample Preparation Protocols  
A total of 173 monovarietal EVOOs produced from three cultivars (Koroneiki, Kolovi 

and Andramytiani) were collected from the three major olive-cultivated regions in Greece, 
namely, Crete, Peloponnese and Lesvos in descending order, during the harvesting peri-
ods of 2018–2020. Koroneiki variety is the cultivar more widely cultivated in Greece 
(found in all 3 regions mentioned), representing around 60% of the total Greek olive-
growing land [35]. The widely cultivated olive variety, i.e., Koroneiki, allowed the selec-
tion of a large number of samples (154-market samples included). On the other side, 
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Kolovi and Adramytiani cultivars are mainly cultivated in North Aegean region (the ma-
jority of which in Lesvos) with Kolovi representing the majority of cultivation in this ge-
ographical area. Therefore, during EVOO sampling a significant number of 41 Kolovi 
samples were selected, while only 8 monovarietal Adramytiani samples available were 
acquired. It also needs to be clarified at this point that only monovarietal samples were 
included in our study in order to study the influence of variety in EVOOs classification, 
which consequently reduced the number of Adramytiani samples included in the study 
Nevertheless, the limited number of Adramytiani samples has been addressed but also 
reported in previous studies [8]. Samples were packaged in dark-brown glass bottles and 
stored at 4 °C until analysis. Furthermore, during the same period, a total of 30 branded 
monovarietal (Koroneiki cultivar) EVOOs were sampled from the market. 

The fatty acid composition was determined according to the official method of the 
Commission Regulation (EEC) No 2568/91 [1]. Briefly, the fatty acid methyl esters were 
prepared by vigorous shaking of 0.1 g olive oil in 3 mL heptane, with 0.2 mL of 2 mg L−1 
methanolic potassium hydroxide in screwcap vials. After 30 min, 1 μL of the upper phase 
of the vial was injected into the gas chromatograph system for analysis.  

To study the metabolomic profile of olive oil, a liquid-liquid extraction with 
MeOH/H2O (80:20, v/v) used as extraction solvent was implemented, previously reported 
in the literature [36]. Syringaldehyde was used as internal standard (IS) at 1.30 mg L−1 [9]. 
Olive oil extracts were subjected to a 2-fold dilution with MeOH/H2O 80:20, v/v before 
analysis. Procedural blank was also prepared and analyzed to detect potential contami-
nation. At the beginning of each instrumental sequence a six-points analytical standards’ 
curve was analyzed (from 0.5 to 20 mg L−1) to check system suitability. Quality control 
(QC) samples were also prepared and analyzed to ensure analytical performance. The QC 
samples were prepared by mixing same-volume aliquots of 15 EVOOs, derived from the 
3 different varieties (5 EVOOs of each variety). A QC sample was injected at the beginning 
of each sequence (six times for conditioning) and also at regular intervals (every 10 injec-
tions) to monitor potential instrumental drifts. The intensity of three exact mass retention 
time (EMRT) pairs (m/z 153.0557_3.5 min, m/z 271.0612_7.0 min, and m/z 319.1187_5.6 min, 
corresponding to hydroxytyrosol, naringenin and oleacein respectively) were monitored, 
and their ratios to IS peak intensity were calculated to evaluate system stability, recording 
in all cases ratios within QC limits (±2s) (Figure S1). 

For the optical measurements no sample pretreatment was necessary. 

3.3. Instrumental Analysis  
3.3.1. Fatty Acids Determination 

The fatty acids methyl esters (FAMEs) profile, expressed as % m/m using the peak 
area, was determined using an Agilent 7890A Chromatograph (Agilent Technologies, 
Santa Clara, SA, USA) coupled to a flame ionization detector (FID). The separation of fatty 
acid methyl esters was accomplished with a TR-FAME column, 50 m × 0.22 mm, i.d. 0.25 
μm film thickness (Thermo Fisher Scientific, Waltham, MA, USA). The injector was set at 
250 °C and the detector at 260 °C. The oven temperature was initially retained at 160 °C 
for 2 min, then raised with a rate of 1 °C min−1 up to 165 °C and kept for 30 min, then 
raised again with a rate of 3 °C min−1 up to 200 °C and kept for 8 min, resulting to a total 
run time of 57 min. Helium was used as carrier gas at a flow rate of 3 mL min−1. Each 
sample was injected twice, in split mode (50:1) with an injection volume of 1μL, using an 
autosampler. FAMEs analysis was performed at Hellenic Food Authority (EFET).  

3.3.2. HRMS-Metabolomics 
Metabolomics analysis was carried out using an ultra-high performance liquid chro-

matography system (UHPLC) with an HPG-3400 pump (Dionex Ultimate 3000 RSLC, 
Thermo Fischer Scientific, Dreieich, Germany) coupled to a quadrupole time-of-flight 
mass spectrometer (QTOF) (Maxis Impact, Bruker Daltonics, Bremen, Germany). Samples 
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were analyzed in reversed phase liquid chromatography (RPLC) using an Acclaim C18 
column (2.1 × 100 mm, 2.2 μm) for the chromatographic separation obtained from Thermo 
Fischer Scientific (Dreieich, Germany) and preceded by a guard column of the same pack-
aging material, thermostatted at 30 °C. The mobile phases consisted of water/methanol 
90/10 (solvent A) and methanol (solvent B), both acidified with 5mM ammonium acetate. 
A gradient elution program was adopted starting with 1% B (flow rate of 0.2 mL min−1) 
for 1 min, increased to 39% in 2 min and then to 99.9% (flow rate of 0.4 mL min−1) for 
another 11 min. At this point, 99.9% of B is being kept constant for 2 min (flow rate of 0.48 
mL min−1) and then initial conditions are restored within 0.1 min, for the next 3 min; then 
the flow rate decreases to 0.2 mL min−1. Injection volume was set to 5μL. The QTOF-MS 
system was equipped with an electrospray ionization interface (ESI), operating in nega-
tive mode, with the following operation parameters: capillary voltage 3500 V; end plate 
offset 500 V; nebulizer pressure 2 bar; drying gas 8 L min−1 and gas temperature 200 °C. 
The QTOF-MS system was operated in data independent acquisition mode (broadband 
collision-induced dissociation, bbCID), as well as in data-dependent acquisition mode 
(AutoMS/MS), and recorded spectra over the range of m/z 50–1000, with a scan rate of 2 
Hz. A QTOF-MS external calibration was performed daily with the manufacturer’s solu-
tion. The typical resolving power of the instrument was ranged (FWHM) between 36,000 
and 40,000 at m/z 226.1593, 430.9137, and 702.8636. HRMS-metabolomics was performed 
at National and Kapodistrian University of Athens. 

3.3.3. Optical Spectroscopy 
Absorption spectra were recorded with a Shimadzu UV-1900 spectrophotometer 

(Shimadzu Corporation, Kyoto, Japan), which covers the spectral range from 190 to 1100 
nm, as reported in a previous work by the authors[13]. For the visible region in the range 
of 400 nm to 700 nm, a quartz cuvette with a 2 nm pathlength was used. The correspond-
ing spectral resolution for the absorption spectroscopy was 2 nm. 

The fluorescence spectra were collected with Horiba FluoroMax-3 (HORIBA Ltd., To-
kyo, Japan). For the measurements, a quartz cuvette, with a 10mm pathlength was used 
and placed in the front face geometry (at 35° to the incident beam—in order to avoid inner 
filter effects) without any prior pre-treatment. Synchronous fluorescence spectra (SFS) 
were recorded by performing simultaneously scanning of the excitation and emission 
monochromators. In this case the emission wavelength (λemission) was following the excita-
tion wavelength (λexcitation) at a constant distance (Δλ) so that λemission= λexcitation + Δλ. For each 
sample seven different SFS were collected with wavelength intervals (Δλ) of 30, 60, 90, 
120, 150, 180 and 210 nm and the excitation wavelength ranged from 270 nm to 400 nm, 
in 2 nm step. The integration time was set at 0,25 s and the excitation and emission band-
widths were 1 and 2 nm, respectively. 

The Raman spectra were carried out with a mobile Raman spectrometer (HE 785, 
Horiba Jobin Yvon, Rue de Lille, France). The light source was a semiconductor diode 
laser, emitting at 785 nm. The instrumentation and the collection parameters have been 
described in previous work [13]. Optical spectroscopy measurements were performed at 
IESL-FORTH.  

3.4. Data Treatment 
Data acquired from HRMS analysis were processed using target, suspect and un-tar-

get screening workflows. DataAnalysis 5.2 and TASQ 2.1 software (Bruker Daltonics) 
were used to the target and suspect approaches, while data treatment in the un-targeted 
approach was performed using MetaboScape® 4.0 software (Bruker Daltonics).  

The target database used in the screening workflow comprised of 70 bioactive com-
pounds found in natural products and in olive oil in particular, classified under the chem-
ical class of phenols (i.e., flavonoids, lignans, phenolic acids, secoiridoids or simple phe-
nols). The database included information of compounds’ molecular formulas, pseudomo-
lecular ions ([M-H]−), retention time (min), MS2 fragments (qualifier ions) as well as their 
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elemental formulas. Compounds’ identification was performed setting specific matching 
criteria: mass accuracy (mass error ≤ 2 mDa), isotopic fitting (mSigma ≤ 50), retention time 
(±0.2 min in relevance to standard’s analysis), MS2 qualifier ions, minimum peak area 
threshold at 800 and minimum intensity threshold at 200, as reported in previous study 
by the authors [8]. Quantification of the analytes was performed through an external 
standard calibration curve [8]. 

“Suspect” compounds, often occurring in olive oil, but with no reference standard 
available, were successfully identified based on the aforementioned criteria, described in 
the targeted approach. Quantification was performed according to the in-house semi-
quantitation methodology, previously reported by the authors [9], which relies on com-
pounds chemical similarity. In total 9 “suspect” compounds were identified in olive oil 
samples and further quantified, namely 10-hydroxy decarboxymethyl oleuropein agly-
cone, 10-hydroxy-10-methyl oleuropein aglycone, 10-hydroxyoleuropein aglycone, 1-ace-
toxypinoresinol, elenolic acid, hydroxylated form of elenolic acid, hydroxytyrosol acetate, 
methyl oleuropein aglycone and syringaresinol.  

Regarding the un-targeted approach, a complete data pre-processing workflow, in-
cluding peak-picking, mass calibration and time alignment was performed using Time 
aligned Region complete eXtraction (T-ReX) algorithm, embedded in Bruker’s MetaboS-
cape software. In particular T-ReX 3D was used, compatible with LC-HRMS data ac-
quired, which extracted features according to 3 particular parameters (i.e., retention time, 
mass to charge ratio (m/z) and intensity), resulting to the creation of a peak-list. In the 
peak-picking step, intensity threshold was set at 1000 counts and minimum peak length 
of 5 spectra was selected. Mass recalibration was automatically performed for each sam-
ple, using the same calibrant solution with that of external calibration (i.e., sodium acetate) 
at 0.1–0.25-time range (min). Retention time and mass range were also defined and set the 
same with analysis conditions (i.e., retention time range: 0.25–15min, mass range: 50–1000 
m/z). Primary ion of [M-H]− was selected for negative acquisition mode. Procedural blank 
subtraction was also performed in the software interface to subtract false positive peaks 
and avoid potential contamination. Only features of 3-fold higher intensity compared to 
the respective intensity of the blank were taken into account and included in the final 
peak-list. 

3.5. Machine Learning Analysis  
For the machine learning analysis a Python’s open-source library for Machine Learn-

ing, scikit-learn was used [37]. 

3.5.1. Methods 

Feature Selection 
Prior to data classification, feature selection was performed. Feature Selection is the 

process of selecting a subset of features that is relevant to the target (i.e., geographical 
origin, variety identification etc.). It provides simplified models as well as a more intuitive 
interpretation of the model results. Among different feature selection techniques provided 
by scikit-learn, model-based feature selection was applied. Specifically, some learning al-
gorithms perform feature selection as part of their overall operation [38,39]. For this scope, 
Random Forest was used as a feature selector. For this procedure the “SelectFromModel” 
function of scikit-learn was used. 

Feature Selection was performed on the spectroscopic data as well as the HRMS data, 
which due to their nature might contain redundant information. For the FAMEs data, no 
feature selection was performed, as the data contain targeted information. 

Classification 
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The classification procedure was performed to the data of the different techniques 
(FAMES, HRMS, Raman, Fluorescence, Visible). Specifically, four classification methods 
were examined: K Nearest Neighbors (KNN) [40], Support Vector Machines (SVM) [41], 
Logistic Regression (LR) [42] and Random Forests (RF) [43]. 

KNN assumes that the samples of each class are “close” to each other. Having the 
train data and their corresponding labels, each new sample is classified according to the 
majority class of its k-nearest neighbors. 

Random forest is an ensemble model that fits multiple decision trees on different sub-
samples of the initial train data. For a new sample, each tree in the Random Forest outputs 
a class prediction. The model finally predicts the most voted class. Moreover, the Random 
Forest model outputs the importance of each feature. The most important features are the 
ones that contribute the most to the classification results. Random Forest could also be 
used as a feature selector prior to the classification procedure, by selecting the most im-
portant features according to a threshold. 

Logistic Regression is a generalized linear model used for classification purposes. 
Specifically, it fits a logistic function (i.e., sigmoid function) to the training data, that takes 
values in [0, 1]. For each new sample, the model outputs the probability that it belongs to 
the positive class based on the fitted logistic function. If the probability is over 0.5 the 
model predicts that the sample belongs to the positive class, or else to the negative class. 
The multiclass case is handled according to a one-vs-rest scheme. 

Support Vector Machines for binary classification tasks aim to find a hyperplane in 
the p-dimensional space (p features in the data) that discriminates the samples of different 
classes. The support vectors are defined as the closest samples to the hyperplane and spec-
ify its position and orientation. SVMs can handle data that are not linearly separable by 
mapping them into a high-dimensional feature space, where they become linearly sepa-
rable (kernel trick) [41]. The multiclass case is handled according to a one-vs-one scheme. 

Both feature selection and classification methods require some user-defined param-
eters (hyperparameters). For example, KNN’s hyperparameter is the number of the near-
est neighbors; the hyperparameters of SVM are the type of kernel (linear, RBF, polyno-
mial, sigmoid) and the regularization parameter C. The hyperparameter tuning was per-
formed during the cross-validation procedure. The different values of the hyperparame-
ters of each method are shown in Table S10. 

3.5.2. Methodology 
The data were randomly split into train (70%) and test set (30%) in a stratified manner 

such that the percentage of samples for each class is preserved as observed in the original 
data. The train set, total number 121 samples (87 Koroneiki, 29 Kolovi, 5 Adramytiani) 
was used for the model construction and the test set, total number 52 samples (37 Koro-
neiki, 12 Kolovi, 3 Adramytiani) was used for testing purposes. 

In order to determine the model with the best hyperparameter set, stratified k-fold 
cross validation was performed in the train set. During the stratified k-fold cross valida-
tion the train samples are randomly partitioned into k equal sized folds. Each fold contains 
approximately the same percentage of samples of each class as in the train set. Each model 
is trained in the k-1 folds and the left-out fold is used for testing. The procedure is repeated 
k times, where every fold is used exactly one time as the test fold. The final estimation 
originates from the mean performance of all repetitions. In our case k was equal to 5. 

After the model with the best hyperparameters was determined from cross-valida-
tion, it was trained to the entire train set. The model’s performance was then evaluated on 
the test set. The results were compared to the baseline (“DummyClassifier” of scikit-
learn), which is a model that always predicts the most frequent class, in our case Koro-
neiki.  

As metrics of evaluation the accuracy score, the sensitivity and specificity, as well as 
the confusion matrix were used. Accuracy is the percentage of correctly predicted 
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samples. The sensitivity and specificity are separately measured for each class. For each 
class, sensitivity (True Positive Rate) is shown in the following equation:  ( ) =  +  

Specifically, it refers to the proportion of samples that are correctly predicted to be-
long to the class (True positives-TP) among all samples that actually belong to the class 
(True Positives + False Negatives (TP + FN)). The specificity for each class refers to the 
proportion of samples that are correctly predicted that they do not belong to the class 
(True Negative-TN) among all samples that actually do not belong to the class (True Neg-
ative + False Positive (TN + FN)). It is shown in the following equation:  ( ) =  +  

The highest value for sensitivity and specificity is 100%. The mean sensitivity (speci-
ficity) is the average sensitivity (specificity) of all classes. The confusion matrix is also 
presented for further intuition of the results. It is a c-by-c matrix, where c is the number 
of classes. Each row represents the true label and each column the predicted one. The 
diagonal elements represent the correct predictions, while the non-diagonal elements rep-
resent the misclassifications. The highest performance is achieved when the diagonal ele-
ments are equal to the number of samples per class and all the non-diagonal elements are 
zero. 

3.5.3. Data Pre-Processing 
In general, machine learning algorithms benefit from data pre-processing. In order 

to evaluate the data of each different technique, the most appropriate and required pre-
processing methods were applied. Specifically, autoscale (z-score) was performed in the 
FAMEs data. 

In HRMS data, extracted features were subjected to normalization by internal stand-
ard (i.e., syringaldehyde) to reduce variation between samples that may attributed to sam-
ple procedure, instrumental conditions, or data-processing factors. 

For the Raman spectroscopic data, baseline subtraction was performed to correct the 
baseline offset caused by sample fluorescence on the Raman spectra, using the airPLS al-
gorithm (Zhangfit) [31]. SNV and autoscale pre-processing were furtherly applied for ex-
tracting the spectral information from Raman spectroscopic data. In a similar way, fluo-
rescence spectroscopic data and the visible absorption data were processed with a combi-
nation of Savitzky-Golay [44], SNV and autoscale pre-processing techniques.  

To avoid information leakage from the test set, both for the FAMEs and spectroscopic 
data, the autoscale procedure was performed independently on each feature of the sam-
ples in the train set. The statistics were stored in order to be used on the test data.  

4. Conclusions 
In this work, a thorough study has been performed for the varietal identification of 

Greek EVOOs. Different analytical techniques have been implemented and compared, 
from more conventional ones such as gas chromatographic FAMEs’ determination, to 
more sophisticated ones, such as spectrometric (i.e., HRMS) and spectroscopic techniques 
(i.e., visible absorption, Raman and fluorescence spectroscopy). The analytical results 
were combined with Machine Learning algorithms for the classification of the samples to 
Koroneiki, Kolovi and Adramytiani varieties. For each technique, the predictive model 
with the best hyperparameter set was chosen. The models’ predictive power was evalu-
ated on test data. The results indicated that the FAMES and HRMS analysis achieve the 
highest predictive ability. In parallel, the spectroscopic techniques exhibited high perfor-
mance with a small number of misclassifications. The models were furtherly tested using 
commercially available market EVOOs for the verification of their variety. The results 
demonstrated that both targeted and untargeted techniques correctly predicted the 
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variety of all the commercially available market EVOOs, except from the visible absorp-
tion spectroscopy, where only 3 out of the 30 market EVOOs were misclassified.  

Based on these encouraging results, HRMS metabolomics as well as optical spectro-
scopic techniques combined with machine learning methods provide an alternative ap-
proach for the identification of olive oil variety, compared to the official methods already 
established (e.g., FAMEs). Through untargeted metabolomics a thorough investigation on 
EVOOs chemical profile may be accomplished, while that identification of compounds of 
interest is also enabled, exploiting HRMS full capabilities. Regarding optical techniques, 
they have prevailed in the field as they are facile, rapid and cost-effective compared to 
other analytical techniques. They also require no sample pre-treatment, while their pre-
dictive performance is comparable to the modern analytical procedures. 

Finally, to the best of the authors’ knowledge, this is the first time where different 
techniques from the fields of standard analysis, spectrometry and spectroscopy are ap-
plied to the same EVOO samples, and the results are compared and evaluated by machine 
learning techniques. The findings of this work are valuable for providing a novel meth-
odology for EVOO authentication that might help in the field of production, packaging 
and trading of EVOO.  

Supplementary Materials: The following are available online. Table S1: Fatty acids detected in extra 
virgin olive oil along with their categorization in MUFAs and PUFAs based on their saturation, 
Table S2: Single factor ANOVA (alpha = 0.05) of FAMEs for EVOOs of different varieties. P-value 
below 0.05 denotes that the mean difference between the groups is statistically significant, Table S3: 
Single factor ANOVA (alpha = 0.05) of FAMEs between the two groups of Koroneiki variety. In the 
case of Koroneiki (2018–2020) and Koroneiki (market) EVOOs, the P-value above 0.05 denotes that 
the mean difference between the groups is not statistically significant, both in MUFAs (A) and 
PUFAs (B), Table S4: Statistical parameters of fatty acids (MUFAs, PUFAs, linoleic acid and alpha-
linolenic acid) in EVOOs of different variety, as well as in samples from the market, Table S5: Com-
pounds detected in EVOOs, with the target database, in negative acquisition mode ([M–H]-), Table 
S6: Single factor ANOVA (alpha = 0.05) of bioactive content for EVOOs of different varieties. P-value 
below 0.05 denotes that the mean difference between the groups is statistically significant, Table S7: 
Statistical parameters of bioactive content in EVOOs of different variety, as well as in samples from 
the market, Table S8: Tentative identification of characteristic markers in EVOOs variety classifica-
tion, Table S9: Sensitivity and Specificity results for each variety, Figure S1: QC charts of EMRT 
known compounds for (A) Hydroxytyrosol (153.0557_3.5), (B) Naringenin (271.0612_7.0) and (C) 
Oleacein (319.1187_5.6), Table S10: Hyperparameters of feature selection and classification methods. 
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