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Figure S1. Topologically identical structure, decalin (left) and 1,1-bicyclopentane (right)

Figure S2. Two-dimensional PCA plots of train-validation sets before removing activity cliffs with
pIC50 values presenting in color scales; the greater the values, the more potent the compounds are to
the particular target. Each plot was separately prepared for specific target kinases.

1

1. Calculation of Activity Cliffs 2

Activity cliffs (ACs) are pairs or groups of compounds with high structural similarities 3

with significant activity or potency differences. In the view of medicinal chemists, AC 4

compounds provide essential Structure-Activity Relationship (SAR) structure information 5

that remarkably led to the contribution of lead optimization and related works. However, 6

the presence of discontinuous SAR regions in Quantitative SAR (QSAR) modelling entices 7

adverse effects over the predictive ability of machine learning models [1–3]. Thus, we 8

decided to add an AC-generator removal to our preprocessing procedure, exclusively 9

for the model-building dataset. We adjusted the common AC-removal criterion using 10

Tanimoto coefficient-based AC identification for this study. According to the reported 11

recommendation [4], we considered compound pairs to be ACs under the basis that if 12

(i) there was at least a 100-fold difference in potency values and (ii) Tanimoto similarity 13

of Extended Connectivity Fingerprint 4 (ECFP4) reached the similarity threshold at 0.55. 14

Tanimoto number of 0.55 from ECFP4 was applied since it has been identified for a high 15

structural similarity in similarity-potency tree analysis [5], and reported in the usage with 16

affinity value as Ki and IC50 [6]. 17
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Figure S3. Benchmark model comparison: RF (dark cyan), GBRT (coral), DNN (light steel blue), GCN
(pink), GAT (yellow green), PNA (gold), single-task PNA+DNN (tan) and multi-task PNA+DNN
(light gray). In this graph, each model structure consists of all RMSE values from 10-fold cross-
validation for overall (A), ALK (B), EGFR (C), ERBB2 (D), ERBB4 (E), MET (F), RET (G), and ROS1 (H)
prediction. The RMSE distribution is shown in a half-violin plot and box plot, which shows quartiles
1, 2 and 3 of the distribution. The mean value of each model is marked as a grey dot inside the box
plot. a Note that the overall graph (A) does not cover the RMSE points that present in the range of
6.5-8.5. for GCN.

2. Explanation of Online Screening Service 18

The online screening platform is available at https://github.com/kajjana/Multibind- 19

RTKs with the step-by-step user guide for facilitating the discovery of crucial tyrosine 20

kinase inhibitors involved in NSCLC therapy. There are two usage purposes, screening 21

(Figure S6) and customized model training (Figure S7). For screening purposes, users are 22

required to prepare a Comma-Separated Value (CSV) file containing the index and “smiles” 23

column of screening molecules as the following example input (Figure S8). The input file 24

needs to pass through the process as described in Github—get fingerprint, featurized, and 25

predict applicability domain (AD). 26
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Figure S4. (Left panel) The graphs show the loss functions in mean-squared error (MSE) on training
(green) and validation data (orange) over the running epochs of the model parameters used in this
study (A) along with the varied parameters as follows: Dropout = 0.05, Weight Decay = 5×10−4

(B), Dropout = 0.2, Weight Decay = 5×10−5 (C) and Dropout = 0.5, Weight Decay = 10−6 (D). (Right
panel) The graphs display the loss functions over zoomed-in epochs from 20 onwards. The solid
lines indicate the MSEs during the training of each model. Meanwhile, the dash lines indicate the
loss functions at the stopping point of the used model as a reference. This suggests that increasing
regularization parameters for our model increase the validation loss value, which is considered an
undesirable tradeoff due to the increase in the model’s bias. The training curve also shows that the
model was trained until the validation loss converged and did not over-trained.

Figure S5. The bar graph presents the influence of the defined applicability domain to external-test
activity prediction of 7 tyrosine kinases in R2. Each target consists of 3 bars, which are denoted for
all test data sets (grey), test compounds considered inside (green), and outside (pink) applicability
domain. The error bar represents the 95%-confidential interval of the variation in predictive perfor-
mance with 20 different random seeds. The numbers beside each error bar indicate the average R2

over 20-times of test prediction. The dash lines indicate the predictive QSAR-model threshold at 0.6.

Figure S6. Screening workflow diagram

Figure S7. Customized model training and its prediction diagram
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Figure S8. The format of an input-CSV file for a screening process

Figure S9. The format of an output-CSV file for a screening process

The output-CSV file containing pIC50-activity prediction of 7 tyrosine kinases would 27

be generated with the assigned AD presenting either “inside” or “outside” for each tar- 28

get shown in Figure S9. The promising candidates should be selected from high pIC50 29

compounds, and their AD should be considered “inside” for the targets of interest. For 30

customized model training, users have to prepare a curated dataset, consisting of “smiles”, 31

“pIC50_erbB4”, “pIC50_egfr”, “pIC50_met”, “pIC50_alk”, “pIC50_erbB”, “pIC50_ret”, and 32

“pIC50_ros1” columns. The pIC50 of some targets are allowed to be blanked if activity 33

values have not been reported (Figure S10). 34

Figure S10. The example of a model-using dataset in a CSV format for customized model training

The fingerprints need to be generated and passed through PCA and featurization 35

before training. The PCA, pre-trained model and loss function report will be saved after 36

the execution is finished. The report contains the loss of train and internal-test set over each 37

training epoch. To utilize the customized model, users can follow the same manner as the 38

screening scenario by using their pre-trained model instead of our provided pre-trained 39

model. However, for the prediction of pIC50 using a customized pre-trained model, the AD 40

analysis would be excluded as shown in Figure S11. 41

Figure S11. The example of an output-CSV file from the prediction using a customized model
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