
����������
�������

Citation: Nakarin, F.; Boonpalit, K.;

Kinchagawat, J.; Wachiraphan, P.;

Rungrotmongkol, T.; Nutanong, S.

Assisting Multitargeted Ligand

Affinity Prediction of Receptor

Tyrosine Kinases Associated Nonsmall

Cell Lung Cancer Treatment with

Multitasking Principal Neighborhood

Aggregation. Molecules 2022, 27, 1226.

https://doi.org/10.3390/

molecules27041226

Academic Editors: Bono Lučić and
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Abstract: A multitargeted therapeutic approach with hybrid drugs is a promising strategy to en-
hance anticancer efficiency and overcome drug resistance in nonsmall cell lung cancer (NSCLC)
treatment. Estimating affinities of small molecules against targets of interest typically proceeds as a
preliminary action for recent drug discovery in the pharmaceutical industry. In this investigation, we
employed machine learning models to provide a computationally affordable means for computer-
aided screening to accelerate the discovery of potential drug compounds. In particular, we introduced
a quantitative structure–activity-relationship (QSAR)-based multitask learning model to facilitate
an in silico screening system of multitargeted drug development. Our method combines a recently
developed graph-based neural network architecture, principal neighborhood aggregation (PNA),
with a descriptor-based deep neural network supporting synergistic utilization of molecular graph
and fingerprint features. The model was generated by more than ten-thousands affinity-reported
ligands of seven crucial receptor tyrosine kinases in NSCLC from two public data sources. As a result,
our multitask model demonstrated better performance than all other benchmark models, as well as
achieving satisfying predictive ability regarding applicable QSAR criteria for most tasks within the
model’s applicability. Since our model could potentially be a screening tool for practical use, we have
provided a model implementation platform with a tutorial that is freely accessible hence, advising
the first move in a long journey of cancer drug development.

Keywords: quantitative structure–activity relationship (QSAR); machine learning; multitasking;
affinity prediction; drug discovery

1. Introduction

Multitargeted therapies by hybrid drugs as multitargeted agents with a concept of
“single molecule multiple targets” have been alternatively introduced to overcome the anti-
cancer drug resistance together with improving their effectiveness and safety issues [1–4].
Properly designed hybrid molecules exhibiting several modes of action promote beneficial
approaches for malignancies displaying intrinsic or acquired modification by attacking
different hallmarks of cancer [4,5]. In the case of nonsmall cell lung cancer (NSCLC) med-
ication, the US Food and Drug Administration (FDA), thus far, approved some receptor
tyrosine kinase inhibitors associated with multitargeted affinity, for instance, ErbB family
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inhibitor Afatinib, ALK/RET dual-blocker Alectinib, and ALK/MET/ROS1 multi-inhibitor
Crizotinib [6,7]. These multitargeted drugs were reported in positive outcomes resulting in
more prolonged progression-free survival and reduced lung cancer symptoms [8–11] even
though most of them were not initially designed for the border target interaction [12,13].

Rational drug design for multitargeted strategy has been considered a challenging
task for researchers with extensive drug development efforts to achieve the promising
agents based on current understanding [5,14]. High-throughput screening of target ligand
affinity at the half-maximal inhibitory concentration (IC50) via biochemical assay provides
information related to cancer cell response [15], which indeed consumes massive resources
in large-scale development [16]. Instead, virtual high-throughput screening is preferably
used in drug design and discovery due to manageable cost and time [17,18]. Ligand-
based computational modeling by applying the quantitative structure–activity relationship
(QSAR) concept is one of the most promising techniques frequently used to assist the
discovery of hit candidates [19–21]. The general idea of QSAR is to estimate how strongly
the chemical interaction of a ligand performed relies on its structural relevance to learning
information [22]. To enable the discovery of hits interacting with multiple targets in
conventional QSAR, models are necessarily performed in sequences to filter chemicals in a
library by each desired target criteria leading to a limited number of hits passing through
the final filter [23]. Multitasking QSAR employing a machine learning-driven model is
a methodology that allows synchronous learning by exploiting extracted patterns from
one task to aid learning of related tasks [24]. In other words, the chemical properties of
molecules that target one protein can be used to infer the properties against another protein
from the same family or with a comparable binding site. Thus, multitask QSAR modeling
would be an applicable assistant tool [25] to accelerate the discovery of lead candidates
targeting multiple tyrosine kinases for NSCLC treatment.

The conventional machine learning models, including linear models such as support
vector machine (SVM) and nonlinear models such as random forest (RF) and gradient
boosted regression trees (GBRT), are general methods for QSAR study [26]. The molecular
structures are transformed into binary vectors, known as molecular fingerprints, which are
then employed as model inputs [27,28]. SVM creates the maximum-margin hyperplane in
multidimensional feature space, while RF and GBRT build the decision trees, for regression
or classification. The main difference between RF and GBRT is that RF applies bagging
on multiple decision trees and averages the output from those trees [26], in contrast,
GBRT creates a single decision tree sequentially based on the previous tree’s error [29].
However, the learning algorithm modification is required to build a multitasking QSAR
model, so the deep neural networks (DNN) framework offers a more straightforward
approach to multitask learning on molecular fingerprints. Another powerful method to
represent molecular structure in deep learning models is graph representation, which
aims to preserve the natural representation of the chemical structure. The atoms and bond
connectivity encoded by the atom and bond feature vector are used as input to graph neural
networks (GNN), i.e., graph convolutional neural networks (GCN) and graph attention
networks (GAT). The GNN’s characteristic is its ability to automatically learn task-specific
representations without the use of handcrafted fingerprints [26]. Nevertheless, to determine
the sort of model to be used, task-by-task evaluation is required [30].

The GNN has been active in the research development that persuaded beneficial
movements in various fields of study, especially molecular machine learning [31–33].
However, the current GNN is limited due to isomorphism tasks. The learning power of
GNN is restricted by a single aggregator, which is incapable to extract enough information
from the neighborhood nodes to differentiate the topologically identical molecules. For
instance, the nonidentical molecules, decalin and 1,1-bicyclopentane (Figure S1 in the
Supplementary Materials), can be recognized as the same molecule in molecular graph
network due to their identical topology [34]. This issue resulted in a lower predictive
power of the model [35], causing a difficulty with bioactivity prediction [36]. Accordingly,
multiple aggregation strategies have been proposed to improve the GNN’s performance,
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leading to the development of the principal neighborhood aggregation (PNA) method by
DeepMind [37]. PNA is a novel GNN architecture with multiple aggregation layers that are
able to distinguish the isomorphic graphs. By comparing with other GNN architectures,
PNA showed an outstanding performance in computer vision benchmark (CIFAR10 and
MNIST), chemistry benchmark (ZINC), and multitask artificial benchmark datasets [37].

Based on recent studies of PNA, there is no published work of PNA-related QSAR
models. Herein, we aimed to develop the first PNA-implemented multitask QSAR model
for the prediction of ligand affinity values of seven FDA-drug-targeted receptor tyrosine
kinases: ALK, EGFR, HER2/ERBB2, HER4/ERBB4, MET, RET, and ROS1. The ligand fea-
tures presented in structural fingerprints and molecular graphs were extracted from more
than 10,000 reported data on protein-based biochemical assays for the model development.
Our model was benchmarked and compared against other QSAR existing models, which
once were state-of-the-art models for both descriptor-based and graph-based models. In
addition to ensuring the prediction reliability in practical hit-screening, we proposed a
prompted method to scope the boundary of model applicability, assisting the model users
to evaluate their multitargeted candidates for these seven NSCLC-related tyrosine kinases
assuredly.

2. Results and Discussion
2.1. Overview

An arrangement of a framework developed QSAR model (Figure 1) was designed
consisting of the following steps: (1) collecting and preparing affinity profiles of tyrosine
kinase inhibitors in pIC50, (2) generating descriptor-based and graph-based features that
comprehensively represent chemical structures of inhibitor compounds, (3) implemention
of our developed multitask deep learning regression model, (4) assessing prediction perfor-
mance of the model with cross-validation and independent test set, and (5) defining the
model applicability for practical implementation.

Figure 1. Framework diagram illustrates the workflow process in this study.

2.2. Data Distribution

A set of 16,345 unique compounds consisting of 11,070 molecules from ChEMBL and
14,130 molecules from BindingDB remained in the curated dataset with 18,561 bioactivity-
reported data for the seven studied tyrosine kinases. The pIC50 values were not reported
for all target proteins in every compound. The EGFR-measured compounds were the
most abundant endpoints in the dataset with 7427 points, followed by MET (3618 points),
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RET (2985 points), ERBB2 (2313 points), ALK (1871 points), ERBB4 (196 points), and ROS1
(151 points) measurement.

The meaning of a predictive multitask model based on related knowledge in the tasks
is available in the model-building dataset [24]. This assumption requires evidence of activity
overlap of all target datasets [38]. Therefore, the two-dimensional visualization of chemical
space distribution in each target-reported set was generated by principal component
analysis (PCA) from the 16 fingerprints to evaluate the shared structural spatiality across
the target domains. The plot in Figure 2A illustrates the overlapping space of all targets
between −30 to 30 of PC-1 and PC-2 on the horizontal and vertical axes. The nearby
distribution within the certain PC range and 1918 multiple activity-reported compounds
(see Table S3 in the Supplementary Materials) indicates a promising movement [39] when
combining these seven tyrosine kinase compound sets in QSAR modeling. As shown in
Figure 2B, the chemical space of training, validation (internal test), and external test sets
display a similar spatial distribution in all target data space, implying a rationally random
division method was applied to the dataset.

Figure 2. Chemical distributions of the dataset after curation specified by (A) target activity and
(B) divided datasets used in this study. (C) Two-dimensional PCA plots for seven tyrosine kinase
datasets after AC analysis with pIC50 values presenting in color scales; the greater the values, the
more potent the compounds to the particular targets.

After identification and eradication of activity cliff (AC) generators by the mean
of the activity–similarity difference in the model-building dataset (train–validation set),
the chemical space of each target set was visualized by a PCA plot (Figure 2C) with
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its activity profile. Overall, the compounds in their target space were exhibited a less
overlapping chemical space between the red-zone active (pIC50 value > 7) and the blue-
zone inactive (pIC50 value ≤ 7) compounds compared to the data plots before identified
AC-pair removal (Figure S2 in the Supplementary Materials). This characteristic should
benefit the modelability [40] of QSAR modeling by supporting the critical strategy of QSAR
that is based on similar properties probably observed in structurally similar chemicals.
Details of the AC analysis method relating to calculating ACs and excluding the identified
ACs was described in the Supplementary Materials.

2.3. Comparison of Machine Learning Algorithms

To compare the multitask model performance with baseline algorithms, the average
root-mean-square error (RMSE) over 10-fold cross-validation was collected from every
benchmark model (Table 1) and the box and violin plots of average RMSE values from
seven target predictions for all models are presented in Figure 3.

Table 1. Comparison of baseline algorithms by average RMSE over 10-fold cross-validation.

Target Name

Model Structure

Single-Task Multitask

RF GBRT DNN GCN GAT PNA PNA+DNN PNA+DNN

All 1.3783 0.6348 0.6488 1.8507 1.0018 0.7211 0.6072 0.5883
ALK 1.3912 0.6318 0.6108 1.3069 0.9658 0.6861 0.5671 0.5921
EGFR 1.4533 0.7224 0.6577 1.2630 1.0958 0.8343 0.6898 0.6612
ERBB2 1.3592 0.5931 0.5603 0.8063 0.8163 0.7139 0.5567 0.5592
ERBB4 1.3386 0.8921 1.0511 1.3941 1.1843 0.9004 0.8370 0.7837
MET 1.2484 0.5855 0.5458 0.9500 0.9244 0.6337 0.5557 0.5579
RET 1.0885 0.4812 0.4778 1.0220 0.6992 0.5522 0.4486 0.4582
ROS1 1.7687 0.5373 0.6379 6.2125 1.3267 0.7269 0.5950 0.5059

Figure 3. Benchmark model comparison. In this graph, each model structure consists of all RMSE
values from 10-fold cross-validation for all targets. The RMSE distribution is shown in a half-violin
plot and box plot, which shows quartiles 1, 2, and 3 of the distribution. The mean value of each model
is marked as a grey dot inside the box plot. a Note that the graph does not cover all RMSE points in
the GCN plot, this is due to an extensive spread of the outlier data in the RMSE range of 6.5–8.5.

The GBRT model shows the lowest overall RMSE among the descriptor-based bench-
mark models (RF, GBRT, and DNN) with the average overall RMSE of 0.6348. However, the
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RMSE of DNN model is lower than GBRT in five out of seven targets. For the graph-based
benchmark models (GCN, GAT, and PNA), PNA is the best model with the all-target RMSE
of 0.7211. The RMSEs of the PNA model are lower than those of the other models in all
targets. We introduced DNN to the PNA model as it might enhance the descriptive power
of molecular representation by integrating graph-based and descriptor-based models and
capture the pattern from both molecular graphs and fingerprints [28]. Thus, this method
could lead us to better model performance [41–43]. For a combined PNA model with DNN,
the improvement of the model is indicated. The overall RMSEs decreased from 0.6488 and
0.7211 in DNN and PNA to 0.6072 in PNA+DNN. As the activity overlap was found in
data distribution, the multitask learning method was applied on the PNA+DNN model
and the results show that the all-target RMSE is reduced to 0.5883. Although the RMSEs
of five tasks are slightly increased from the single-task PNA+DNN model, the RMSEs of
ERBB4 and ROS1 tasks, which faced data lacking, are decreased by around 0.05 and 0.10,
respectively. These results indicate the influence of multitask learning in the data-lacking
tasks, while the overall performance of the model is likely maintained.

2.4. Model Results and Validation

The multitask model consisting of PNA and DNN algorithms was employed for
the prediction of pIC50 against seven tyrosine kinases targets. The statistical results of
the developed QSAR model in numeric RMSE and R-squared formations are shown in
Table 2 to evaluate if the model has achieved predictive power conditions. While RMSE is
a standard method to compute errors of quantitative prediction from normalized distances
between observed values and predicted values, R-squared (R2) indicates how well a model
describes the variation of the responses overall. However, it does not successfully present
the explanation in a particular dataset. Alternately, RMSE is often used to indicate a
model’s usefulness in a regression task [26,30]. An error-based metric as RMSE, on the
other hand, indirectly presents predictive achievement of the modeling process, while a
direct estimation of a QSAR model is counted by R-squared [44]. In this research, the two
metrics, R2 (or Q2 in cross-validation) and RMSE, were satisfied to determine the model
performance in discrete roles.

Table 2. Statistical results of seven tyrosine kinases activity prediction from our multitask model.

Target Name
Calibration Internal Validation External Validation

RMSEtrain R2
train RMSECV Q2 RMSEP R2 R2−R2

0
R2

0
k |R2

0− R
′2
0 |

ALK 0.1578 0.9840 0.5944 0.7735 0.6771 0.7280 −0.0046 0.9900 0.1489
EGFR 0.1777 0.9831 0.6629 0.7645 0.8083 0.6664 −0.0017 0.9931 0.1288
ERBB2 0.1712 0.9790 0.5627 0.7734 0.6558 0.6973 −0.0011 0.9949 0.0913
ERBB4 0.3266 0.9123 0.8167 0.4517 0.6251 0.4344 −0.3745 1.0457 0.0789
MET 0.1586 0.9795 0.5585 0.7453 0.6723 0.6569 −0.0001 0.9988 0.2038
RET 0.1723 0.9688 0.4629 0.7746 0.5072 0.7192 −0.0019 0.9952 0.0985
ROS1 0.2379 0.9746 0.5274 0.8750 0.8527 0.6219 −0.1047 0.9546 0.0538

Through tenfold cross-validation, except for ERBB4, all target activity predictions
displayed good predictive results with Q2 around 0.74 to 0.88, relatively higher than a
recommendation from QSAR practitioners at 0.7 [45]. Accordingly, low RMSECV (RMSE
from cross-validation) results in satisfied-Q2 tasks presented as 0.463, 0.527, 0.558, 0.563,
0.594, and 0.663 for RET, ROS1, MET, ERBB2, ALK, and EGFR, in order. In contrast,
ERBB4 with RMSECV and Q2 of 0.8167 and 0.4517 was unable to be considered as a
satisfying performance. Despite the fact that the evaluation metrics in the training dataset
are considerably higher than those for internal validation, this situation would not certainly
imply a poor QSAR model in the case of manipulating a deep neural network [46]. The
training–validation loss ratio could serve as a heuristic to indicate overfitting in some
instances, what constitutes a suitable threshold may differ according to the model type
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and the dataset. The training–validation loss ratio could serve as a heuristic to indicate
overfitting in some instances, what constitutes a suitable threshold may differ according to
the model type and the dataset. Various machine-learning models, especially in intricate
architectures such as deep learning, have been found to be a practical approach, even
when the ratio between training loss and validation loss is high [47–49]. A well-established
phenomenon in deep learning, as well as some classical machine learning, has addressed
this issue regarding the bias-variance tradeoff, known for the double descent risk curve [50].
Specifically, the test and validation performance increase upon adding parameters, even
if it would mean that the training loss could go to a very low range. To ensure this, we
compared our model performance with the same architectural models, yet different in
the degree of regularization. The results emphasize that our current model provides the
best bias–variance tradeoff among other hyperparameter configurations (Figure S4 in the
Supplementary Materials). In addition, the consideration of overfitting in deep learning is
generally counted when models are either overly parameterized or overly trained to the
point of the validation loss starting to increase. By the meaning of early-stopping practice,
our model did not experience an increasing trend in the validation loss, suggesting that
the model should not be considered facing a concern in overfitting issue (Figure S4A in
the Supplementary Materials). The external validation performance on the independent
data supports the insistence that the model captured the general relationship of the several
targets used in this study. Overall, the R2 values for all targets, except ERBB4, were reported
between 0.62 and 0.73, which are greater than the standard R2 threshold for QSAR models

of 0.6. Furthermore, other statistical parameters as (R2−R2
0)

R2 , |R2
0 − R

′2
0 |, and k values of all

seven-target tasks (Table 2) are acceptable for certain conditions in the particular substances
(see Section 3.6.2). Figure 4 illustrates the clustering of overall data points near the
ideal fitting line for training, validation, and test sets for all targets, demonstrating a high
correlation between predicted and observed values.

The prediction of absolute activity in the ERBB4 task could suffer from insufficient
data in the data source, especially in multitarget reported chemical profiles [39] (approx-
imately 90%) compared to the better prediction in the ROS1 target that provides 100%
of chemicals in the dataset involved in multitarget activity. Nonetheless, it can not deny
the assumption that a clustering characteristic in a property range of the ERBB4 test set
led to insufficient predictive power on ERBB4’s activity prediction pointed by R-squared
for external validation. Since the difference between RMSE of prediction (RMSEP) from
the ERBB4 task and a 10% of the property range in its training set is nearly equal to this
variance in the ALK task which exhibited a pleasant data-fitting performance (R2 = 0.7280).
As shown in Figure 4, test data points of ALK distribute between 5 to 10 while ERBB4
experiences a narrow span of around 6 to 8. According to a calculation of R2, ∑(Y−Y)2

would be greater if a larger variation in observed values is obtained, leading to a pointless
increase of R2 even if the prediction residuals are maintained [46]. So far, the prediction task
of the ERBB4 target could not be considered as a predictive QSAR for practical screening.
However, if we acknowledge that statistical fluctuations easily influence a small dataset
during random data partitioning [51] along with RMSEP, the ERBB4-activity prediction
from our multitask model tends to produce a promising result when further coupling with
a more appropriate property range. Note that a 10% of training range of each task can be
found in Table S8 in the Supplementary Materials.
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Figure 4. The plots display the distribution of model-predicted values versus experimental values of
the seven tyrosine kinases with ideal dashed trendlines (y = x). The training set, validation (internal
test) set, and external test set are represented by light blue, green, and amber marks, respectively.

2.5. Applicability Domain Analysis

A question arises in the reliability of an individual model result if a specific compound
prediction is tested in actual screening practices. Many QSAR models have proven a concept
of the applicability domain (AD) and shown significant improvement in the prediction
result when including a defined domain of applicability [52,53]. QSAR practitioners have
developed multiple techniques to define the applicability of QSAR prediction models [54].
However, AD methodology should cover broader perspectives rather than feature sharing
for critical decision making. In this study, we adopted the elaborated AD concept from
Hanser, Thierry, et al. [55] to create a condition inside the domain of our model applicability.
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We also considered significant chemical structure overlapping in test and training chemicals
to ensure that the predicted activities are determined by model learning. Meanwhile,
general performance within the test compounds’ structural space is taken into account to
evaluate the tendency of test results to serve reliable predictions.

Our defined AD method was examined in external test prediction using the developed
multitask PNA+NN model with 20 variations of training random seeds to determine the
confidentiality of the prediction scope and to reveal the actual predictive ability of the
model. Although predictive power of most prediction tasks fulfilled the QSAR multicrite-
rion without AD implementation, the performance inside target domains was improved in
the certain tasks indicated by the decrease of their RMSE values, as shown in Figure 5. On
the other hand, the outside-domain compounds encountered an overall poor performance
for most tasks even compared to their abilities before implementing the AD conditions.
Enhancement of the test’s prediction by AD also corresponded with R2 that performed in a
range around 0.68–0.88 for all satisfied-criteria tasks (Table S6b in the Supplementary Mate-
rials). In contrast, the test set considered inside the ERBB4 domain was observed in a more
flawed prediction than the outside domain set. Thus, the acceptable model is necessarily
proved to secure the benefits of an AD approach in the prediction. Optimized parameters
involving the AD method can be found in Tables S7 and S8 in the Supplementary Materials.

Figure 5. The bar graph presents the influence of the defined applicability domain to external test
activity prediction of seven tyrosine kinases in RMSE. Each target consists of three bars, which
are denoted for all test datasets (grey), test compounds considered inside (green), and outside
(pink) applicability domain. The error bar represents the 95% confidence interval of the variation in
predictive performance with 20 different random seeds. The numbers beside each error bar indicate
the average RMSE over 20 times of test prediction.

2.6. Online Screening Service and Model Implementation

ML-driven virtual screening serving as a high-throughput process provides more
cost and time manageability in an extensive library contrasted to traditional methods for
drug discovery [17,56]. Our developed multitask model had been plausibly established
to assist a multitargeted hit-finding for ALK (R2 = 0.7575), EGFR (R2 = 0.7082), ERBB2



Molecules 2022, 27, 1226 10 of 18

(R2 = 0.7090), MET (R2 = 0.6783), RET (R2 = 0.7396), and ROS1 (R2 = 0.8794) with the
defined domains of applicability. The designed model coupling with the AD method is
available at https://github.com/kajjana/Multibind-RTKs (accessed on 23 December 2021),
to serve as an online screening platform for the identification of these crucial tyrosine kinase
inhibitors involved in NSCLC therapy [57]. We have also provided a detailed tutorial to
guide users step-by-step while utilizing our tool. Users are required to prepare a candidate
library with molecular representations in a desalted Simplified Molecular-Input Line-Entry
System (SMILES) format. The output containing pIC50-activity prediction of seven tyrosine
kinases would be generated with an assigned AD presenting either “inside” or “outside”
for each target. Examples of input and output files are provided in the same source. All
parameters used in the calculations are fixed at the best value from our optimization. Most
of the prediction tasks (6 out of 7) certainly afforded pleasant power in numeric prediction;
instead, ERBB4 activity prediction has not been recommended to identify and prioritize
hit compounds due to its suspected predictive performance. In addition to the prompted
screening model, a training version of the multitask modeling is provided for free access at
the corresponding link to enhance flexibility in training with applicant’s sources of interest,
which promotes the most fitting prediction for special needs.

3. Materials and Methods
3.1. Dataset

In this study, we collected the experimental IC50 values from two publicly accessible
databases, ChEMBL and BindingDB, to maximize the variation of dataset in model building
and validation process. Our integrated dataset contains bioactivity data of compounds of
the wild-type Homo sapiens ALK, EGFR, ERBB2, ERBB4, MET, RET, and ROS1, which are
the tyrosine kinases reported as targets of FDA-approved drugs for NSCLC treatment [6].

3.2. Data Curation

The initial dataset was curated following a protocol from Virakarin, Puri et al. [43].
In brief, compound structures in the dataset were presented in SMILES format. Each
compound provides information covering details about its target, assay description and
activity value. Only compounds reported with continuous IC50 values from biochemical or
single protein assays with the interest target were collected. The redundant compounds
with the same assay description and IC50 were removed. The lowest IC50 value was
retained as an endpoint if the compound reported different activity values. Salts were
stripped from SMILES format for all compounds. To avoid confusion in different units, we
converted all IC50 values in the molar unit to -log(IC50) referred to as pIC50. An additional
outlier removal proceeded in ChEMBL data using the interquartile range (IQR) cutoff
method of the ChEMBL-provided parameters, considering Lipinski’s rule of five violations,
molecular weight, and octanol–water partition coefficient (logP). The compound qualified
was considered as an outlier if it fell outside the range of Q1 − 3(IQR), Q3 + 3(IQR), and
was excluded from each target dataset. After curation, compound sets from two sources
were merged, leaving only one better-reported value (higher pIC50) if similar compounds
reported redundant activities. The final data resulted in 16,345 compounds with at least one
activity value focused against seven tyrosine kinases; then, were brought into further steps.
The summarized number of compounds divided by reported activities for each target from
two data sources are shown in Table S1a in the Supplementary Materials.

3.3. Data Split

To create a dataset for training and testing the model with a multitasking structure, we
randomly divided the data by remaining the ratio in the number of candidate data points
per task to the original dataset. In order to define a target label of each compound with
more than one activity value, the targets of that compound were ranked in ascending order
by the number of reported compounds in each target data. The labels of the multitarget
compounds were dedicated to the target with more minor reported data. An external test

https://github.com/kajjana/Multibind-RTKs
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set, which plays as an independent test set (unseen data), was taken out for 10% of the
dataset at the beginning. The remaining 90% of the training–validation set was further
divided into a training set and a validation set in 90:10 ratio. The validation set, or internal
test set, was made to terminate deep neural network models in an early stopping process.
The datasets of single-task models were further separated into each target domain from
the same three subdatasets of the multitask model data. The number of each subdataset
for multitask and single-task modeling is listed in Table S1a in the Supplementary Mate-
rials. Then, we removed AC generators from the training–validation set of each target to
smoothen the activity landscape for building a model with less confusing data [58].

3.4. Feature Extraction

In this work, we represent chemical structure data as descriptors and graphs. The use
of feature types depends on the input characteristics of model algorithms. For molecular
fingerprints, we generated 16 structural fingerprints from SMILES through freely available
platforms from the CDK [59], RDKit [60], and PyBEL [61] packages and stored them in
Boolean data type. Details of the selected fingerprints are provided in Table S2 in the
Supplementary Materials. Feature reduction with PCA method reduced the 16-descriptor
dimensions by remaining 95% of the initial variance in training data. For a graph fea-
turization, each canonical SMILES was constructed into a binary vector of 30-dimension
node(atom) and 75-dimension edge(bond) by RDKit [60] implemented in DeepChem [62].
The feature length was set by following a default of DeepChem [28].

3.5. Model Construction

The multitask model was constructed using PNA layers to empower GNN, learning
on molecular graphs. Multiple aggregators were employed to extract adequate information
from the neighborhood nodes and to ensure that at least one aggregator was compatible
with our task [63]. The DNN layers were built in parallel to the PNA layers to extract addi-
tional features from molecular fingerprints, then integrated with the PNA component via a
fully connected layer (FLCs). The model was implemented using PyTorch Geometric [64].
The summary of model architecture is illustrated in Figure 1.

The PNA layer consists of four compositions of the multiple aggregators (mean,
standard deviation, maximum, and minimum), whereas most GNN layers simply adopt
only the primitive summation aggregator that may cause exploding or vanishing gradients.
The three degree-scalers (identical, amplification, and attenuation) are combined with the
aggregators to improve the model’s generalization.

S(d, α) =

(
log(d + 1)

δ

)α

, δ =
1

|train| ∑
i∈train

log(di + 1) (1)

where S is degree-scaler with linear-degree (d > 0) and variable parameter (α), which is zero
for identical, +1 for amplification, and −1 for attenuation.

The PNA learns the graph representations by accumulating the information of feature
vectors of neighborhood nodes. The feature vector xt

i , xt
j encodes the atomic properties of

nodes i and j at layer t, Ej→i encodes the bond properties of edge (j,i), and MLP denotes
multilayer perceptrons (MLPs)

xt+1
i = MLP

xt
i ,
⊕

(j,i)∈E

MLP
(

xt
i , Ej→i, xt

j

) (2)
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where ⊗ is a tensor product and

⊕
=

 1
S(D, α = 1)

S(D, α = −1)


︸ ︷︷ ︸

scalers

⊗


µ
σ

max
min


︸ ︷︷ ︸

aggregators

(3)

The PNA and DNN layers were built independently and applied on molecular graphs
and molecular fingerprints, respectively. The pooling layer coupled with MLPs was made
on top of the PNA layer, then concatenated with DNN layers. The model resulted in pIC50
of the molecule against seven target tyrosine kinases via FLCs. The Adam optimizer with
L2 regularization was used to minimize the loss function, and training was stopped early
after the internal test (validation) set error and the average of the previous ten epochs’
internal test set error did not decrease after ten epochs.

The multitask learning method utilized for model construction is the hard parameter
sharing scheme [65], in which all layers except the last FLCs are shared between each task.
Each of the chosen tasks for the model is highly related due to the target belonging in
the same group of protein. The model is built in comparison to the same architecture for
single task evaluation to demonstrate the effect of multitask learning. The equation for the
backward loss is simply

Loss =
T

∑
t=1

(
1
nt
)

n

∑
i=1

(Ŷi −Yi)
2 (4)

where T represent the number of task and nt is the number of the sample of the respective
task within the mini batch. Ŷi is the predicted value of the compound i and Yi is the
experimental value for the particular compound

The model was trained on the joint data of seven tasks, and the missing label of some
tasks was allowed. The training was performed in a mixed batch of random order, such that
each batch may contain unequal numbers of the sample from each task. The loss utilized
for the backpropagation algorithm of the model is the total mean-squared error (MSE) of
the existing label within the batch.

To obtain the best hyperparameter set of the multitask model, the Bayesian optimiza-
tion from the optuna [66] library was performed for the following parameters: (i) number of
PNA layer, (ii) number of nodes in MLP, (iii) number of nodes in FLCs, (iv) number of DNN
layer, (v) the number of nodes in DNN layer, (vi) probability of dropout, (vii) learning rate,
(viii) weight decay rate, and (ix) batch size. Table S4 and Table S5 in the Supplementary
Materials provides details of the hyperparameter ranges and best hyperparameter set,
respectively.

3.6. Model Assessment and Statistical Performance

To assess the performance of the regression models in this study, we performed internal
validation by stratified 10-fold cross-validation and external validation with an independent
test set. Two statistical parameters were used to evaluate each model’s performance as
follows: (i) the standard deviation of the residuals or RMSE (Equation (5)), and (ii) the
coefficient of determination or R2 (Equation (6))

RMSE =
1
n

√
n

∑
i=1

(Ŷi −Yi)2 (5)

R2 = 1−

n
∑

i=1
(Ŷi −Yi)

2

n
∑

i=1
(Yi −Y)2

(6)
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where n is total the number of chemicals and Y is the mean value of all compound samples.
The smaller the value of RMSE and the closer to 1.0 of R2, the better accuracy of the model
prediction is performed.

3.6.1. Internal Validation

The predictive ability of a fitting model in terms of stability and robustness can be
verified by internal cross-validation on the training data [45,67]. The dataset was randomly
subdivided into 10 equal-sized subsamples containing similar target-label proportions
to original training data as mentioned in the data split step. Nine of the subparts were
used for training sets to calibrate the model, and one group was held as a test set. The
procedure was repeated in 10 iterations on the remaining 9 training data to evaluate with
different omitted training data. The statistical parameters from RMSE (Equation (5)) and
R2 (Equation (6)) were calculated as overall result validation over the 10-round process
referred to as RMSECV and Q2 in order. The lower RMSECV and the higher Q2 indicate
that the models have achieved a better consistent and robust prediction capacity [46].

3.6.2. External Validation

The use of an independent test set for external validation is necessary for assessing
the reliability of QSAR models outside the training set, hence, demonstrating a practical
scenario [44]. Since the test set is not involved in the model generating process, test
compounds are unknown to the models. For external evaluation, RMSEP and R2 are used
to assess the model prediction similarly to internal validation.

In addition, the combination of two validation multicriterions recommended by Gol-
braikh, Alexander, and Tropsha were applied to the model to evaluate whatever our
developed QSAR model demonstrates, which showed adequate predictive performance
for practical use. According to the latest version of a Golbraikh-Tropsha rule [68,69] and
Alexander et al. [44], the acceptable QSAR model must satisfy the following conditions:

1. Q2 > 0.5
2. R2 > 0.6 ; however, QSAR models can be considered practically applicable if the

models exhibiting a low RMSE with independent data

3. (R2−R2
0)

R2 < 0.1
4. 0.9 ≤ k ≥ 1.1
5. |R2

0 − R
′2
0 | < 0.3

where Q2 and R2 are the same coefficients of determination from cross-validation and
external test quantities as previously specified; R2

0 and R
′2
0 are the correlation coefficients

through the origin of predicted (X-axis) versus experimental (Y-axis) values and experimen-
tal (X-axis) versus predicted (Y-axis) values, respectively; and k defines as a slope of the test
predicted (X-axis) versus experimental (Y-axis) trendline through the origin.

3.7. Model Benchmarking

We compared the performance of the multitask model with the selected machine learn-
ing methods, which have been reported as a benchmark for molecular machine learning [30]
or reported in benchmarking of PNA model [37]. To unveil the performance of PNA, the
benchmark models were constructed as a single-task model. The ensemble learning is the
traditional ML algorithms with several reported studies on molecular property predic-
tion [30,70–72]. RF [73] and GBRT [29] models were constructed using implementation in
scikit-learn [74] to apply on molecular fingerprints. Recently, the graph-based models have
been gaining attraction as a state-of-the-art method for molecular property prediction since
atom-level or bond-level features were used as inputs for the molecular graph. A number
of graph-based QSAR models are increased, including GCN [26,30,75] and GAT [26,76,77].
The GCN and GAT models from DeepChem were built to apply on molecular graphs.
Additionally, the single-task models of DNN, PNA, and PNA combined with DNN also
counted as benchmark models to see the improvement of model via combining PNA with
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DNN and multitask learning method. The benchmark models were trained using the same
method as the multitask model and their hyperparameters were optimized using bayesian
optimization from skopt [78] for RF and GBRT models, DeepChem for GCN and GAT
models, and Optuna for all other models. Table S4 and Table S5 in the Supplementary
Materials provide the details of hyperparameter ranges and best hyperparameter sets
of all benchmark models. We also benchmarked our proposed multitask model with all
mentioned models by implementing 10-fold cross-validation. An average RMSE value
calculated from each approach in the cross-validation was utilized to indicate the model’s
predictive ability.

3.8. Calculation of Applicability Domain

The Organization of Economic Co-operation and Development (OECD) [67] has intro-
duced the AD to a QSAR methodology to define model boundaries, which are applicable
in providing accurate predictions with confidence for query compounds. To apply the AD
concept, we have verified that any test molecules could be predicted by the scope of the
model’s specification. Dealing with more than ten thousand data points, we intended to
choose a similarity-based method [54], which conveniently applies to an extensive dataset
for structural comparison. The method quantifies the Tanimoto index through Extended
Connectivity Fingerprint with radius 4 (ECFP4) of test compounds to the nearest neighbor
in all-target model training compounds. To determine an appropriate threshold of similar-
ity, we optimized the value through the prediction result from cross-validation. We selected
the compounds within the third quartile (Q3) range of the squared error distribution in
each approach and computed Z-scores of their similarities in the remaining molecules. A
threshold value in each fold was determined by the minimum Tanimoto similarity among
the compounds holding their Z-scores within a critical Z-value at 95% confidence level. The
average of the 10-fold thresholds was further calculated to be an optimized threshold for the
applicable model boundary. Suppose the maximum Tanimoto similarity of a test compound
to its nearest neighbor has reached the threshold. In that case, the compound is reflected
in a meaningful chemical sharing to the model building data. Another perspective of our
applied AD condition is to assure that a reliable prediction is exclusively served to model
users. The reliability of an individual response was filtered by the relevant information of
the model for a specific task. The quality of training knowledge available to the nearby test
molecules in the region can be indicated by the general performance of training neighbors
when performing cross-validation [55]. The target neighbors surrounding the test chemicals
were identified by Tanimoto similarity reaching 0.35 to training chemicals with specific
target-activity labels. A mean squared residual of these neighbors was calculated and
indicated a general performance around test compounds. The cutoff value identifying
a confidential area for each task was settled at 10% of a training property range [46] for
a particular target. The test compounds potentially provide a reliable prediction if the
mean-squared-error values fall below the target-cutting number.

4. Conclusions

In this study, we proposed a framework of QSAR-model development in a deep-
learning based multitasking approach from two public data sources with a combination of
16 standard molecular fingerprints and PNA, which is the newly improved molecular graph
algorithm, to assist the preliminary step of multitargeted drug discovery to enhance NSCLC
targeted therapy. Overall, our multitask model outperformed all baseline models previously
used in molecular modeling for both descriptor-based and graph-based architectures, as
well as the similar PNA+DNN model structure in single-task. The developed model
fulfilled all widely-used predictive QSAR multicriterions through internal and external
validations, either with or without the defined AD in 6 out of 7 prediction tasks. The
evaluations indicate that our QSAR model provides a satisfying predictive power with
the potential of a screening tool for practical usage. In addition, our pre-trained model by
learning 7 kinds of protein in the receptor tyrosine kinase group reasonably accommodates
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useful information to further transfer this knowledge into the related prediction tasks, for
example, other tyrosine kinases involved in other cancer treatments.

Supplementary Materials: Supplementary Materials can be found as follows [79–83]. support-
ingInfo.pdf: Topologically identical structure of decalin and 1,1-bicyclopentane (Figure S1); Two-
dimensional PCA plots of train-validation sets for each target before removing activity cliffs with
pIC50 values (Figure S2); Benchmark model comparison in RMSE values from 10-fold cross-validation
(Figure S3); The performance on training and validation data of the model parameters used in this
study along with the varied parameters (Figure S4); The influence of the defined applicability domain
to external-test activity prediction of 7 tyrosine kinases in R2 (Figure S5); Calculation of Activity Cliffs;
Explanation of Online Screening Service (Figure S6–S11); supportingTable.xlsx: Detailed Information
of Our Data Set and Its Prediction (Table S1a,b); Molecular Descriptors Used in This Study and
Software Implementation (Table S2); Number of Bioactivity Label per Task (Table S3); Parameter
Ranges for an Hyperparameter Tuning (Table S4); Optimized Parameter Sets Used for Model Training
(Table S5); Applicability Domain Evaluation of External-Test set (Table S6a,b); Applicability Domain
Optimization of Similarity Parameter (Table S7); Characteristics of Training Data (Table S8); Details
for Target Proteins of Research Interest (Table S9).
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77. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. arXiv 2017, arXiv:1710.10903.
78. Bergstra, J.; Yamins, D.; Cox, D.D. Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning

Algorithms. In Proceedings of the 12th Python in Science Conference, Austin, TX, USA, 24–29 June 2013; pp. 13–19. [CrossRef]
79. Cruz-Monteagudo, M.; Medina-Franco, J.L.; Perez-Castillo, Y.; Nicolotti, O.; Cordeiro, M.N.D.; Borges, F. Activity cliffs in drug

discovery: Dr Jekyll or Mr Hyde? Drug Discovery Today 2014, 19, 1069–1080. [CrossRef] [PubMed]
80. Stumpfe, D.; Hu, H.; Bajorath, J. Evolving concept of activity cliffs. ACS Omega 2019, 4, 14360–14368. [CrossRef] [PubMed]
81. Stumpfe, D.; Bajorath, J. Exploring activity cliffs in medicinal chemistry: miniperspective. J. Med. Chem. 2012, 55, 2932–2942.

[CrossRef]
82. Wawer, M.; Bajorath, J. Similarity- potency trees: A method to search for SAR information in compound data sets and derive SAR

rules. J. Chem. Inf. Model. 2010, 50, 1395–1409. [CrossRef]
83. Wassermann, A.M.; Dimova, D.; Bajorath, J. Comprehensive analysis of single-and multi-target activity cliffs formed by currently

available bioactive compounds. Chem. Biol. Drug Des. 2011, 78, 224–228. [CrossRef]

http://dx.doi.org/10.1088/1742-6596/1848/1/012110
http://dx.doi.org/10.1787/9789264085442-en
http://dx.doi.org/10.1016/S1093-3263(01)00123-1
http://dx.doi.org/10.1021/ci300338w
http://www.ncbi.nlm.nih.gov/pubmed/23030316
http://dx.doi.org/10.1186/s12859-019-3135-4
http://www.ncbi.nlm.nih.gov/pubmed/31655545
http://dx.doi.org/10.1038/s41598-017-02365-0
http://www.ncbi.nlm.nih.gov/pubmed/28522849
http://dx.doi.org/10.1021/acs.jcim.0c00652
http://www.ncbi.nlm.nih.gov/pubmed/32926776
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1093/bib/bbz042
http://dx.doi.org/10.3390/biom11030477
http://dx.doi.org/10.25080/Majora-8b375195-003
http://dx.doi.org/10.1016/j.drudis.2014.02.003
http://www.ncbi.nlm.nih.gov/pubmed/24560935
http://dx.doi.org/10.1021/acsomega.9b02221
http://www.ncbi.nlm.nih.gov/pubmed/31528788
http://dx.doi.org/10.1021/jm201706b
http://dx.doi.org/10.1021/ci100197b
http://dx.doi.org/10.1111/j.1747-0285.2011.01150.x

	Introduction
	Results and Discussion
	Overview
	Data Distribution
	Comparison of Machine Learning Algorithms
	Model Results and Validation
	Applicability Domain Analysis
	Online Screening Service and Model Implementation

	Materials and Methods
	Dataset
	Data Curation
	Data Split
	Feature Extraction
	Model Construction
	Model Assessment and Statistical Performance
	Internal Validation 
	External Validation 

	Model Benchmarking
	Calculation of Applicability Domain

	Conclusions
	References

