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Abstract: For the first time, the new microwave-assisted method for the synthesis of copper phyllosil-
icates on a commercial SiO2 carrier was developed. The application of microwave synthesis allowed
to decrease the synthesis time from 9 to 6 h compared to the traditional DPU method of preparing
chrysocolla. The synthesized catalysts were studied by N2 adsorption, TEM and XRD methods.
Catalysts prepared by microwave method are highly effective in the selective hydrogenation of the
C≡C bond in 1,4-butynediol to 1,4-butenediol and 2-phenylethinylaniline with a selectivity of 96.5%
and 100% at full conversion for 2 and 0.5 h of the reaction, respectively.

Keywords: microwave synthesis; copper phyllosilicate; selective hydrogenation; 1,4-butynediol;
1,4-butenediol

1. Introduction

Copper and copper-containing materials are widely used in catalytic processes due to
their electronic structure, which allows varying the oxidation state of copper from Cu3+

to Cu0 [1], high activity in both hydrogenation [2,3] and oxidation [4,5] reactions, and
relatively low cost compared to noble metals. Among the diversity of different copper
catalytic systems, copper phyllosilicates occupy a special place due to their unique structure.
Copper phyllosilicate, or chrysocolla, is a silica-supported copper material with a sandwich
structure consisting of octahedra CuO6 layers possessed between tetrahedra SiO4 layers [6].
In contrast to traditional SiO2-supported copper oxide, phyllosilicate has an improved
thermal stability, higher copper species dispersion, and larger specific surface area due to
its layered structure [7–9].

The synthesis of such structured materials is not a trivial task. Among the methods
for preparing phyllosilicates, it is worth noting an ion exchange [10], an ammonia evap-
oration [11], and the sol–gel [12] methods. However, the simplest and most convenient
method is the traditional thermal hydrolysis of urea, which makes it possible to obtain
phyllosilicate particles of small size [13]. The main disadvantage of this technique is the
synthesis time: the decomposition of urea in solution proceeds slowly and depends on its
concentration in the solution. Wei Di et al. [14] noted that complete urea hydrolysis takes
24 h during 35%Cu/SiO2 catalyst synthesis at urea: copper ratio 3:1. Hong Du et al. [15]
also pointed out that 18/%Cu/SiO2 phyllosilicate preparation by this method at urea:
copper ratio 2:1 proceeds within 24 h to achieve full urea thermal decomposition. Krijn P.de
Jong and co-authors [16] reported that complete copper phyllosilicate formation occurs for
7 days during urea thermal hydrolysis at urea: Cu ratio 1:1.

Molecules 2022, 27, 988. https://doi.org/10.3390/molecules27030988 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27030988
https://doi.org/10.3390/molecules27030988
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5400-8671
https://doi.org/10.3390/molecules27030988
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27030988?type=check_update&version=3


Molecules 2022, 27, 988 2 of 9

On the other hand, the development of chemical technology requires the use of new,
modern approaches to the synthesis of materials. The use of the microwave (MW) irradia-
tion during the synthesis of catalytic systems can significantly accelerate the decomposition
of the precursors used subsequently reducing the preparation time, which, in some cases,
can also lead to a decrease in the size of the deposited particles in comparison with conven-
tional synthesis methods [17–19].

In this work, for the first time, the synthesis of copper phyllosilicates (chrysocolla)
with 10% wt. Cu loading based on commercial SiO2 support was performed using the
microwave-assisted (MW) deposition–precipitation with urea method. The morphological
and textural properties of the samples obtained under the microwave irradiation were com-
pared with the samples prepared by the traditional DPU method. The catalytic properties
of the synthesized materials were investigated in the selective liquid-phase hydrogenation
of unsaturated compounds.

2. Results
2.1. Physico-Chemical Properties of Catalysts

Copper-containing catalysts with the copper phyllosilicate structure obtained by
thermal deposition–precipitation with urea were previously studied in detail by our group
and investigated in the hydrogenation reaction of nitro compounds [20]. Here, for the
synthesis of chrysocolla microwave irradiation was used for the decomposition of urea
for the first time and the physicochemical and catalytic properties were compared with
catalysts obtained by the traditional DPU method in the selective hydrogenation of different
unsaturated compounds.

The phase composition of all the prepared samples was estimated by X-ray diffraction
(XRD) analysis. XRD profiles of samples exhibited a main peak at 2Θ of 22◦, which
corresponded to commercial amorphous silica, and no obvious peaks corresponding to
CuO and Cu2O for the calcined catalysts were detected. On both XRD profiles of the dry
10%Cu/SiO2-DPU and 10%Cu/SiO2-MW (Figure 1) samples, there are broadened reflexes
at values of 2Θ at 30.5◦, 35.8◦, and 56.9◦, which ideally agree with the standard reflexes
of the (132), (023), and (360) chrysocolla planes. This indicates that copper nanoparticles
are strongly dispersed over the surface of the carrier. The dried sample obtained under
microwave conditions is slightly more crystallized compared to the DPU catalyst. After
calcination at 300 ◦C in air, the chrysocolla phase was preserved in all samples. Thus,
the microwave-assisted synthesis with urea makes it possible to obtain copper-containing
catalysts of the chrysocolla structure for 6 h by one-pot synthesis without further calcination.
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Figure 1. XRD profiles for dry and calcined 10%Cu/SiO2 samples obtained by microwave synthesis
(a) and DPU method (b).
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The textural properties of the two types of catalysts were presented in Table 1 and
Figure 2. The N2 adsorption–desorption isotherms of the samples obtained by DPU
and microwave-assisted methods with subsequent drying and calcination are shown in
Figure 2a,b. The shape of the adsorption curves in all cases belongs to type IV according
to the IUPAC classification [21], which indicates the predominance of the mesoporous
structure in all samples [22]. Comparison of the synthesized samples isotherms with
that of the pure SiO2-KSKG has shown the formation of additional narrow mesopores
d = 2–6 nm during the copper deposition which are absent in the carrier. The formation of
new pores leads to an increase in the specific surface area of the obtained catalysts (Table 1)
relative to the SiO2 support. The change in the textural characteristics of the synthesized
copper-containing samples relative to the initial carrier gives reason to believe that the
obtained catalysts have a hierarchical trimodal micro-meso-macro-porous structure. The
synthesized catalysts differed in color; the MW samples had a light blue coloration, and
the DPU samples were blue-greenish in color (Figure 3). The high specific surface area of
copper-containing samples and the color from blue to olive is explained by the presence of
copper phyllosilicates, as described in the work [23].

Table 1. Texture properties of the synthesized samples.

Sample SBET, m2/g Vtot, cm3/g Vmeso, cm3/g Vmicro (t-Plot),
cm3/g Dav, nm

10%Cu/SiO2-MW 303 0.862 0.853 0.0021 1–2, 2–25
10%Cu/SiO2-MW-300 299 0.857 0.848 0.0047 1–2, 2–25

10%Cu/SiO2-DPU 333 0.857 0.844 0.0017 1–2, 2–25
10%Cu/SiO2-DPU-300 323 0.863 0.851 0.0049 1–2, 2–25

SiO2-KSKG 244 0.782 0.773 0.0065 6–18
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Figure 2. N2 adsorption–desorption isotherms of prepared catalysts: dried samples (a) and calcined
at 300 ◦C samples (b).

The shape of the hysteresis loops of all catalysts is located between the H1 and H2
types according to the IUPAC classification [24]. This may indicate the presence of various
shape pores in the samples: both cylindrical and bottle-shaped [25]. The calculated values
of the pore volume and pore size distribution for samples synthesized by the MW method
are higher compared to the DPU samples (Figure 3, Table 1). The calcination of samples
leads to an increase in micropores volumes and a decrease in surface area relative to dry
samples. Thus, it can be noted that the use of the MW-assisted method leads to an increase
in volume of micropores compared to the samples obtained by the DPU method and, at the
same time, noticeably reduce the synthesis time of the materials.
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Figure 3. Pore size distributions of the 10%Cu/SiO2 catalysts.

The TEM images of calcined catalysts are presented in Figure 4. Microphotographs of
both catalysts show the presence of highly dispersed spherical nanoparticles. In addition,
filamentous morphology can be seen, which also confirms the formation of chrysocolla,
previously noted by XRD [26]. Statistical results calculated on the 200 particles showed that
the sizes of copper particles in 10%Cu/SiO2-MW-300 ranged from 4.3 to 5 nm, which was
smaller and more uniform than that of the DPU catalyst, where the average particle size
was about 7 nm.
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2.2. Catalytic Properties in the Selective Hydrogenation of Unsaturated Compounds

The effect of the samples’ preparation method on their catalytic properties was inves-
tigated in unsaturated compound hydrogenation reactions. Earlier in our works [27,28],
it was shown that, on copper phyllosilicates catalysts obtained by the DPU method, the
best catalytical performance in hydrogenation reactions was achieved at temperatures of
150–170 ◦C and H2 pressure up to 2 MPa.

In the hydrogenation of 1,4-butynediol at temperature of 120 ◦C, no conversion was
detected in the presence of the 10%Cu/SiO2-DPU-300 catalyst (Table 2), which might be
explained by the fact that, according to TPR-H2 studies, the beginning of the reduction
of the chrysocolla-like structure begins only above 150 ◦C. Thus, the optimal reaction
temperature for acetylene alcohol hydrogenation was 150 ◦C.

According to the experimental data presented in Table 2, all synthesized chrysocolla-
like samples are catalytically active under selected reaction conditions. However, the
catalytic behavior of the obtained Cu/SiO2 samples differ somewhat depending on the syn-
thesis method. Comparison of low-percentage samples showed that on a dry 5%Cu/SiO2-
MW sample, the full conversion of 1,4-butyndiol is achieved in 4 h of reaction with high
selectivity (90.2%) for the target 1,4-butenediol.

Increasing the copper content in the samples to 10 wt.% leads to an increase of the activ-
ity of catalysts obtained both in microwave-assisted and thermal DPU methods. However,
calcination of catalysts in air contributes to an increase in both the activity and selectivity
of the process. The best catalytic properties under the selected reaction conditions were
obtained in the presence of a 10%Cu/SiO2-MW-300 catalyst, while the full conversion of
1,4-butynediol was achieved in 2 h with selectivity for 1,4-butenediol of 96.5%. The catalyst
recyclization have shown the negligible drop of 1,4-butenediol selectivity from 96.5% to
91.2% after the third cycle at full substrate conversion.

Moreover, the catalyst with the higher catalytic performance (10%Cu/SiO2-MW-300)
was examined in the reactions of selective hydrogenation of arylacetylenes of various
structures (Table 2). Phenylacetylene is a highly reactive compound, and its full conversion
was achieved in 0.5 h with a 75.2% styrene selectivity. The relatively low activity and
very low selectivity toward stilbene in the diphenylacetylene hydrogenation are associated
with its poor solubility in ethanol, which leads to an instant hydrogenation of C≡C to
C-C bond. The complete conversion of 2-phenylethinylaniline was achieved in just 0.5 h at
a temperature of 160 ◦C with the 2-(2-phenyl-ethen-1-yl)-aniline selectivity of 100%.
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Table 2. Catalytic properties of chrysocolla-like Cu/SiO2 catalyst samples obtained by MW and DPU
methods in the selective hydrogenation of unsaturated compounds.

Substrate Catalyst
Reaction

Temperature,
◦C

Reaction Time,
h Conversion, % Selectivity to

C=C Bond, %
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3. Materials and Methods

The Cu/SiO2 catalysts were obtained by deposition–precipitation with urea by mi-
crowave synthesis (MW) and thermal hydrolysis (DPU). The synthesis of 10%Cu/SiO2—
MW catalyst was carried out in a laboratory microwave system Multiwave Pro (Anton-Paar)
under irradiation (2.45 GHz) with urea in four autoclave-type Teflon vessels for 6 h. In a
typical synthetic experiment, each vessel was filled with 50 mL of a mixture of decarbonated
water and certain volume of 1M Cu(NO3)2 (Acros Ogranics, 99+%) solution, prepared in
advance. Then, fine powder of SiO2 (Acros Organics, SBET = 244 m2 g−1) was added into
the solution and stirred. In 15 min, urea (molar ratio urea:copper was equal 6) was added
into the obtained colloid solution. Then, vessels filled with the above solution were placed
into microwave system and heated up to 93 ◦C for 6 h. The power of microwave radiation
during the synthesis was controlled automatically and was in the range of 70–80 W. The
pressure of the system was increased by 4.6 bars, indicating a urea decomposition process.
After the synthesis the obtained, the precipitate was separated from the mother liquor by
centrifugation (10,000 rpm, 10 min) and washed 2–3 times with 40 mL of decarbonated
water. The mother liquor was investigated for the deposition of Cu2+ ions onto the support
by a qualitative reaction with 1M NH4OH solution. The absence of blue coloration con-
firmed the complete deposition of the precursor onto the support surface. After each wash,
the precipitate was separated by centrifugation. The sample was dried under a vacuum
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on a rotary evaporator at 40 ◦C and a pressure of 40 mbar for 2 h and then dried at 110 ◦C
in an oven for 5 h. The dry sample was additionally calcined in an air atmosphere at a
temperature of 300 ◦C for 3 h (in a muffle furnace). Catalysts with a copper content of
5wt.% were obtained using a similar technique. Dry microwave samples were marked as
хCu/SiO2-MW, and the calcined samples were marked as xCu/SiO2-MW-300, where x is
the mass percentage of Cu (5 or 10 wt.%).

To compare the catalytic and physical–chemical properties, 5–10% Cu/SiO2 catalysts
with a chrysocolla structure were prepared by deposition–precipitation of Cu(NO3)2 on
the outer surface of the SiO2 support using thermal hydrolysis of urea (DPU). A detailed
method of preparation is described in our previously published article [25]. Decarbonized
distilled water (46.8 mL), 1 M Cu(NO3) solution (3.2 mL), and 1.13 g urea were used for
the initial solution for 10%Cu/SiO2-DPU sample. However, it should be noted that a
longer time of 9 h relative to the MW method is required for the complete deposition of
copper ions into the carrier structure by DPU method. The DPU samples were thermally
treated according to a similar MW-samples procedure. Dry DPU samples were marked as
хCu/SiO2-DPU, and the calcined samples were marked as xCu/SiO2-DPU-300, where x is
the mass percentage of Cu (5 or 10 wt.%).

The catalysts obtained by the two methods differed in color; photos of dry and calcined
samples are presented on Figure 5. The difference in the color of the samples is probably
due to the different volume of micropores.
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Chrysocolla-like catalysts were characterized by XRD and N2 adsorption–desorption.
X-ray diffraction (XRD) were performed after drying and calcination if the samples using an
ARL X’TRA diffractometer (Thermo Fisher Scientific) with CuKα radiation (40 kV, 40 mA)
with a scanning rate of 1.2◦ per minute over the scanning range of 10 < 2θ < 60◦. ICCD data
were used for the identification purpose.

The N2 adsorption–desorption isotherms at 77 K were measured by the Micromeritics
ASAP 2020 Plus System. Prior to acquisition of the adsorption isotherm, both dry and
calcined samples were degassed for 3 h at 130 and 300 ◦C under a residual pressure of 0.8 Pa,
respectively. The BET method was used to calculate the specific surface area of the sample.
Pore size distributions for mesopores were determined by Barret–Joyner–Halenda (BJH)
method applied to the desorption isotherms with the Harkins and Jura thickness curve.
The total pore volume was evaluated at p/po = 0.99. The cumulative volume at desorption
in the BJH method was taken as a mesopore volume. The micropore volume was calculated
as the difference between the total pore volume and the mesopore volume. The mesopore-
specific surface area was calculated as cumulative at desorption in the BJH method. The
micropore size distribution was calculated according to the Horwath–Kawazoe model in
assumption of a cylinder shape of the pores.
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The microstructure of samples was also studied by a JEM-2100 (JEOL, Tokyo, Japan)
transmission electron microscope. Before measurements, the samples were mounted on
3 mm carbon-coated copper grids from a suspension in isopropanol. Images were acquired
in the bright-field TEM mode at a 200 kV accelerating voltage.

The catalytic properties of the dry and calcined copper samples were investigated
in the selective liquid-phase hydrogenation of unsaturated compounds with molecular
hydrogen using a stainless-steel autoclave (100 mL) with a probe-withdrawing valve. The
reaction conditions of hydrogenation were as follows: a 0.2 M substrate solution in ethanol
(15 mL) with undecane as an internal standard, H2 pressure 1 MPa, 150–170 ◦C, and 1–4 h.
The stirring rate was 500 rpm (magnetic stirring). Samples of the reaction mixture were
analyzed by GLPC with an internal standard method.

4. Conclusions

In this study, a new microwave-assisted method for copper phyllosilicate on a com-
mercial SiO2 carrier synthesis is described. The formation of the chrysocolla phase in MW
samples is confirmed by the XRD and TEM results. The catalytic properties of the copper
samples strongly depend on their composition and conditions of thermal treatment. The
calcined samples are the most active catalysts in selective hydrogenation C≡C bonds. The
best catalytic properties were obtained in the presence of a 10%Cu/SiO2-MW-300 catalyst,
the full conversion of 1,4-butyndiol on which was achieved in 2 h with a selectivity for
1,4-butenediol of 96.5%. Additionally, the 10%Cu/SiO2-MW-300 catalyst is highly active
and selective in the hydrogenation of arylacetylenes to form a C = C bond with selectivity
of 75.2 and 100% to styrene and 2-(2-phenyl-ethen-1-yl)-aniline, respectively. The fast mi-
crowave synthesis method is an excellent alternative to traditional methods of synthesis of
chrysocolla-like systems, which require a very long synthesis time from 9 h to several days.
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