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Abstract: The volatile flavor profiles and sensory properties of different vegetable soybean varieties
popularized and cultivated in China for 20, 10, and 2 years (TW292, X3, and SX6, respectively) were
investigated. Nutrient composition analysis revealed that TW292 had a high soluble protein and
soluble sugar content but low fat content. The total free amino acid content (15.43 mg/g) and umami
free amino acid content (6.08 mg/g) of SX6 were significantly higher (p < 0.05) than those of the
other varieties. An electronic tongue effectively differentiated between the umami and sweetness
characteristics of the vegetable soybeans. Differences in sensory evaluation results were mainly
reflected in texture and taste. A total of 41 volatile compounds were identified through HS-SPME-GC-
MS, and the main flavor compounds were 1-octen-3-ol, hexanal, (Z)-2-heptenal, 2-octene, nonanal,
(Z)-2-decenal, and 3,5-octadien-2-one. However, the volatile composition of different vegetable
soybean varieties exhibited large variability in type and relative contents. Considerable differences in
nutritional, organoleptic, and aroma characteristics were found among different varieties. The results
of this study will provide a good basis for the assessment and application of the major vegetable
soybean varieties grown in China.

Keywords: vegetable soybean; volatile flavor profile; sensory properties; electronic tongue; HS-
SPME-GC-MS

1. Introduction

Vegetable soybean (Glycine max (L.) Merr.), also called ′maodou′ in China and ′edamame′

in Japan, is a soybean harvested at the R6 growth stage (full pod) when the seeds are
still immature and green but are fully developed inside the pods [1,2]. At this stage, the
seeds have maximum volume and high levels of sucrose and chlorophyll [2]. Vegetable
soybeans have been grown and consumed for almost 1000 years in China [3]. Compared
with the grain type soybean harvested after full maturity (R8 stage), vegetable soybeans
are large and have unique sensory characteristics [4]. Vegetable soybeans are rich in
nutrients, such as carbohydrates, proteins, vitamins, minerals, and phytochemicals [5].
The consumption of vegetable soybeans result in many health benefits, including lowered
low-density lipoprotein cholesterol levels and reduced risk of cardiovascular disease [6].
Vegetable soybeans are mainly boiled in the pod and then shelled and consumed as a snack
or added to soup or salad [7]. They can also be used as a nutrient supplement or a food
ingredient due to their high nutritional value [8]. In addition, vegetable soybeans have
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higher market value than grain soybeans [9]. As vegetable soybeans are nutrition-rich
and have good economic benefits, they play an important role in the food culture of many
Asian countries and have gained widespread acceptance in the USA and some European
countries within the last 20 years [5,9].

The parameters used in evaluating the quality of vegetable soybeans include flavor,
texture, and sensory quality, which are distinct from those used in grading grain soy-
beans [10]. Green seed coat, large pods, sweet flavor, smooth texture, and distinct seed
fragrance are key features of vegetable soybeans [3]. Chemical variability is associated
with the organoleptic quality of vegetable soybeans, and chemicals mainly include crude
fat, crude protein, soluble sugar, free amino acids, and other compounds [1,11]. Crude fat
and crude protein determine the mouthfeel or texture of vegetable soybeans, soluble sugar
mainly affects the sweet taste of vegetable soybeans, and sucrose is the predominant sugar.
Free amino acids play an important role in the sweetness and umami [7]. Asparagine,
alanine, and glutamate are the principal amino acids in vegetable soybeans [7]. In contrast
to these compounds, volatile compounds in vegetable soybeans are rarely explored despite
the fact that they greatly contribute to flavor diversity [5]. The chemical composition of
vegetable soybeans depends on many factors, such as variety, harvest date, and storage
conditions [7].

Many varieties of vegetable-type soybeans are cultivated in China, which is the largest
producer, consumer, and exporter of vegetable soybeans in the world [12,13]. However, no
comprehensive study has reported the volatile composition and organoleptic components
of different major vegetable soybean varieties grown in China. Hence, studies on the
organoleptic components of different vegetable soybean varieties grown in China may
be of great interest. In this study, three vegetable soybean varieties, Taiwan 292 (TW292),
Xin 3 (X3), and Suxin 6 (SX6), were selected. TW292 is a variety from Taiwan and has
been popularized and grown for more than 20 years. X3 comes from Shanghai and has
been popularized for almost 10 years. SX6 was approved by the Crop Breeds Examination
and Approval Committee of Jiangsu Province (China) in 2019 and has been popularized
over a large area in the last two years. This study was performed to analyze differences in
volatile flavor profiles and sensory properties among these three major vegetable soybean
varieties. Chemical composition analysis (crude fat, crude protein, soluble protein, soluble
sugar, and free amino acids), sensory evaluation, electronic tongue analysis, and SPME-
GC-MS were conducted. The aim of this study is to identify the volatile compounds of
the major vegetable soybean varieties grown in China and to understand differences in
sensory properties among them. The results of this study will provide a good basis for the
assessment and application of different vegetable soybean varieties.

2. Results and Discussion
2.1. Chemical Compositions

The nutrient compositions of TW292, X3, and SX6, particularly crude fat, crude protein,
soluble protein, and soluble sugar content, are shown in Table 1. Significant differences in
nutrient components were found (p < 0.05). The crude fat content of X3 was the highest,
whereas that of TW292 was the lowest. Crude protein content had the following sequence
from high to low: SX6 > TW292 > X3. TW292 had the highest soluble protein content, and no
statistically significant difference was observed between X3 and SX6. X3 had significantly
lower soluble sugar content than SX6 and TW292.
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Table 1. Chemical compositions of three vegetable soybean varieties.

Nutrient Content (g/100 g) TW292 X3 SX6

Crude fat 15.40 ± 0.49 a 22.66 ± 0.23 c 18.71 ± 0.44 b

Crude protein 35.36 ± 0.06 a 37.44 ± 0.23 b 39.35 ± 0.47 c

Soluble protein 11.60 ± 0.10 b 10.29 ± 0.14 a 10.31 ± 0.12 a

Soluble sugar 8.70 ± 0.13 c 3.43 ± 0.10 a 7.03 ± 0.27 b

All values are mean ± standard deviation for triplicate experiments. Values are expressed on a dry matter basis.
Significant difference (p < 0.05) is represented by a, b, and c.

Vegetable soybeans of high quality normally have high protein and high soluble
sugar content [4,14]. Song et al. reported that the soluble sugar content in vegetable
soybeans ranged from 15.131 to 33.979 mg/g [7]. Rao et al. reported that the protein content
in 12 vegetable soybeans ranged from 333.2 to 386.0 g/kg [15]. In contrast to previous
findings, the contents of soluble sugar and crude protein measured in this study had a large
distribution. Fat has a significant impact on the taste quality of vegetable soybeans, and
high fat content results in waxy texture. Therefore, with regard to chemical composition,
the three vegetable soybeans have their own advantages. TW292 has a high soluble sugar
content, which results in sweet taste. X3 has a low soluble sugar content but high fat content,
which may result in good texture. SX6 has the highest amount of crude protein content.

2.2. Free Amino Acid

Seventeen free amino acids were detected in the vegetable soybeans (Figure 1 and
Table 2). Specifically, glutamate, asparagine, and alanine were the major amino acids in
the vegetable soybean seeds. The results were similar to those in a previous report [16].
The total free amino acid content of the SX6 variety was 15.43 mg/g, which was signif-
icantly higher (p < 0.05) than that of X3 (8.21 mg/g) or TW292 (9.84 mg/g). The three
varieties contained seven essential amino acids: lysine, phenylalanine, methionine, thre-
onine, isoleucine, leucine, and valine, which accounted for 33.7%, 33.9%, and 32.9% of
total amino acid content. The ratio between essential and nonessential amino acids ranged
from 0.49 to 0.51, close to the WHO/FAO reference protein model (0.60). Compared with
previous findings [7,17], the total free amino acid content in the three varieties was higher.
Song et al. reported that the total free amino acid content in eight vegetable soybeans
ranged from 4.581 to 10.180 mg/g. It was reported by Flores et al. that the total free amino
acid content in three vegetable soybean varieties ranged from 0.49 to 0.71 g/100 g. The
amount of free amino acids possibly depended on variety as these vegetable soybeans
were cultivated under the same climatic conditions and with the same management factors
(irrigation, fertilization, and pest management).

In accordance with the flavor characteristics of free amino acids, the 17 free amino acids
were divided into 4 groups: sweet (alanine, glycine, serine, threonine, and proline), bitter
(arginine, histidine, isoleucine, leucine, methionine, phenylalanine, and valine), umami
(aspartic and glutamic), and tasteless (lysine, tyrosine, and cysteine) [18,19]. SX6 exhibited
the highest umami free amino acid content (6.08 mg/g), constituting over 40% of total
free amino acids. Sweetness and umami taste are two of the important sensorial attributes
of vegetable soybeans [6,17]. The sweet taste comes from its high sugar content, and the
umami taste is probably attributed to its amino acid composition [20].

2.3. Sensory Properties

Sensory evaluation is currently the main method for estimating the sensory quality of
vegetable soybeans. Although people’s senses are effective comprehensive detectors, it’s
necessary to recognize that sensory evaluation is easily affected by subjective factors. In
this study, sensory evaluation was performed and an electronic tongue was used for the
sensory analysis.
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Figure 1. Classification of free amino acid of three vegetable soybean varieties.

Table 2. Content of free amino acid of three vegetable soybean varieties.

Amino Acid Flavor Characteristics
Content (mg/g)

TW292 X3 SX6

Ala sweetness 1.15 ± 0.03 a 0.6 ± 0.01 b 1.03 ± 0.05 c

Gly sweetness 0.15 ± 0.01 c 0.09 ± 0.01 a 0.18 ± 0.02 b

Ser sweetness 0.09 ± 0.01 b 0.03 ± 0.02 a 0.52 ± 0.04 c

Thr sweetness 0.16 ± 0.03 b 0.05 ± 0.01 a 0.10 ± 0.02 c

Pro sweetness 0.09 ± 0.01 b 0.07 ± 0.02 a 0.12 ± 0.01 b

Asp umami 1.06 ± 0.04 c 1.25 ± 0.02 a 1.35 ± 0.04 b

Glu umami 2.79 ± 0.05 a 2.07 ± 0.05 a 4.73 ± 0.05 b

Arg bitterness 1.52 ± 0.02 a 1.97 ± 0.03 a 2.07 ± 0.13 b

His bitterness 1.52 ± 0.04 a 0.83 ± 0.03 a 1.66 ± 0.03 b

Iss bitterness 0.05 ± 0.01 a 0.08 ± 0.01 b 0.09 ± 0.01 b

Leu bitterness 0.08 ± 0.01 a 0.13 ± 0.02 b 0.08 ± 0.01 a

Met bitterness 0.03 ± 0.01 a 0.03 ± 0.01 b 0.06 ± 0.01 c

Phe bitterness 0.13 ± 0.01 c 0.10 ± 0.02 b 0.01 ± 0.01 a

Val bitterness 0.12 ± 0.02 b 0.09 ± 0.02 a 0.14 ± 0.02 c

Tyr non-taste 0.31 ± 0.02 b 0.36 ± 0.02 a 2.55 ± 0.04 c

Cys non-taste 0.03 ± 0.01 a 0.02 ± 0 b 0.05 ± 0.01 b

Lys non-taste 0.56 ± 0.01 b 0.43 ± 0.01 a 0.70 ± 0.02 c

Total FAAs 9.84 ± 0.09 b 8.21 ± 0.06 a 15.43 ± 0.04 c

All values are mean ± standard deviation for triplicate experiments. Values are expressed on a dry matter basis.
Significant difference (p < 0.05) is represented by a, b, and c.

2.3.1. Sensory Evaluation

Six attributes, namely, size, color, texture, taste, aroma, and overall acceptability, were
used in the sensory evaluation of the three vegetable soybean varieties. The acceptability
of all samples was over seven points (“like moderately”), indicating that all the vegetable
soybeans are high-quality varieties. However, large variability in sensory evaluation scores
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was found among the different types of vegetable soybeans (Figure 2). The scores of SX6
for size and color were significantly higher than those of the other varieties. SX6 had a
relatively large size and a bright green color. TW292 had the highest score for texture,
followed by SX6, and they have a minimal score difference. TW292 had a tender texture,
whereas SX6 exhibited a hard texture. In terms of scores for taste, TW292 and SX6 had
similar scores, which were significantly higher than X3. With regard to scores for aroma,
no statistically significant differences were found among the varieties. It was difficult for
the panelists to distinguish aroma among the three varieties. The sequence of the overall
acceptability evaluation scores from high to low was as follows: SX6 > TW292 > X3. From
the perspective of sensory evaluation, the panelists preferred samples with sweet and
umami flavors and tender taste.

Molecules 2022, 27, x FOR PEER REVIEW 5 of 14 
 

 

SX6 had a relatively large size and a bright green color. TW292 had the highest score for 
texture, followed by SX6, and they have a minimal score difference. TW292 had a tender 
texture, whereas SX6 exhibited a hard texture. In terms of scores for taste, TW292 and SX6 
had similar scores, which were significantly higher than X3. With regard to scores for 
aroma, no statistically significant differences were found among the varieties. It was dif-
ficult for the panelists to distinguish aroma among the three varieties. The sequence of the 
overall acceptability evaluation scores from high to low was as follows: SX6 > TW292 > 
X3. From the perspective of sensory evaluation, the panelists preferred samples with 
sweet and umami flavors and tender taste. 

Carneiro et al. demonstrated that the appearance, taste, aroma, and texture of vege-
table soybeans as sensory attributes significantly affect the acceptability of vegetable soy-
beans [21]. However, Flores et al. noted that varieties are separated in different factors for 
flavor and texture, but not appearance [17]. In this study, texture and taste were consid-
ered the most important attributes by panelists. TW292 showed the highest soluble sugar 
content, and SX6 exhibited high soluble sugar and umami amino acid contents, which led 
to high sensory scores. The results of the sensory evaluation were consistent with Table 1 
and Figure 2. 

 
Figure 2. Radar map for sensory evaluation of three vegetable soybeans. 

2.3.2. Electronic Tongue 
Figure 3 was based on the taste sensing scores obtained with an electronic tongue 

system. Among the five taste response values of the three vegetable soybeans, umami, 
sweetness, and bitterness showed great differences. In terms of response value for umami, 
SX6 was 1752.47, which was higher than the values obtained from TW292 and X3 and 
might be related to the high amino acid content. On the response value for sweetness, 
TW292 showed the best performance (1981.72), followed by SX6. The electronic tongue 
data was consistent with the results of the soluble sugar content. In the sensory evaluation, 
the scores for taste of TW292 and SX6 were significantly higher than the score of X3. The 
panelists might have had clear preferences for umami and sweetness. The radar chart 
showed that X3 had the highest response value in bitterness (1820.93). Regarding taste 

Figure 2. Radar map for sensory evaluation of three vegetable soybeans.

Carneiro et al. demonstrated that the appearance, taste, aroma, and texture of veg-
etable soybeans as sensory attributes significantly affect the acceptability of vegetable
soybeans [21]. However, Flores et al. noted that varieties are separated in different factors
for flavor and texture, but not appearance [17]. In this study, texture and taste were consid-
ered the most important attributes by panelists. TW292 showed the highest soluble sugar
content, and SX6 exhibited high soluble sugar and umami amino acid contents, which led
to high sensory scores. The results of the sensory evaluation were consistent with Table 1
and Figure 2.

2.3.2. Electronic Tongue

Figure 3 was based on the taste sensing scores obtained with an electronic tongue
system. Among the five taste response values of the three vegetable soybeans, umami,
sweetness, and bitterness showed great differences. In terms of response value for umami,
SX6 was 1752.47, which was higher than the values obtained from TW292 and X3 and might
be related to the high amino acid content. On the response value for sweetness, TW292
showed the best performance (1981.72), followed by SX6. The electronic tongue data was
consistent with the results of the soluble sugar content. In the sensory evaluation, the scores
for taste of TW292 and SX6 were significantly higher than the score of X3. The panelists
might have had clear preferences for umami and sweetness. The radar chart showed that
X3 had the highest response value in bitterness (1820.93). Regarding taste coordination, X3
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might be weaker than TW292 and SX6. Consequently, X3 obtained the lowest taste score.
The data of the electronic tongue test was greatly correlated with soluble sugar content,
free amino acid content, and sensory evaluation score.
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2.4. Volatile Compounds

Volatile compounds are associated with aroma and make important contributions to
flavor diversity. In this study, the analysis of volatile substances in the three vegetable
soybeans was performed using HS-SPME-GC-MS. The total ion chromatograms of the three
vegetable soybeans are shown in Figure 4. Differences among the chromatograms were evi-
dent, indicating that the volatile composition of the vegetable soybean varieties had large
variability. A total of 41 volatile compounds (Table 3) were identified, versus the 27 com-
ponents detected by Plonjarean et al. in Japanese vegetable soybean ’Chakaori’ [22]. They
used an acid-phase solvent to extract the aroma compounds and analyzed them through
capillary GC-MS. The most abundant flavor compounds that they detected were n–hexanal
(0.91%), 1-hexanol (1.79%), 2-hexanal (0.48%), 3-hexene-1-ol (0.49%), and phenylethyl
alcohol (0.40%).

The 41 volatile compounds were classified into 5 groups according to chemical proper-
ties: aldehydes (19), alcohols (5), ketones (5), esters (4), and others (8) (Figure 5a). Aldehydes
and alcohols were the main volatile substances. A total of 35 kinds of volatile components
were detected in TW292, comprising 2 alcohols, 17 aldehydes, 5 ketones, 3 esters, and 8
others. Among them, nonanal, hexanal, and 1-octen-3-ol had a high content (6.97%, 15.01%,
and 41.14%, respectively). In X3, 31 volatile components were identified (2 alcohols, 16
aldehydes, 4 ketones, 4 esters, and 5 others). In X3, 2-octenal, (Z)-2-decenal, hexanal, (Z)-2-
heptenal, nonanal, and 1-octen-3-ol were identified as the high-content volatile compounds,
which accounted for 6.32%, 7.95%, 8.78%, 9.94%, 10.29%, and 27.80%, respectively. In SX6,
34 volatile components were detected, comprising 5 alcohols, 18 aldehydes, 4 ketones,
2 esters, and 5 others. Nonanal, hexanal, (Z)-2-decenal, 2-octenal, (Z)-2-heptenal, and
1-octen-3-ol had high relative content (6.88%, 7.41%, 8.84%, 9.67%, 11.70%, and 18.45%,
respectively). For the analysis of the aroma characteristics of vegetable soybeans, a heat
map based on peak areas was generated for visualization of difference in main aroma com-
pound composition. As shown in Figure 5b, the evident difference in color showed that the
volatile composition of the varieties considerably varied in type and relative content. The
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differences among the proportions of volatile compounds of the varieties led to differences
in aroma properties.
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Table 3. Relative content of volatile compounds among different classes in vegetable soybean samples.

Number RI Compounds Formula
Relative Contents (%)

TW292 X3 SX6

1 802 Hexanal C6H12O 15.01 8.78 7.41
2 858 2-Hexenal C6H10O 1.54 1.1 1.04
3 875 1-Hexanol C6H14O 1.53 1.26 0.99
4 892 1,3,5,7-Cyclooctatetraene C8H8 1.28 ND ND
5 906 Nonane C9H20 ND 0.93 ND
6 963 (Z)-2-Heptenal C7H12O 4.02 9.94 11.7
7 967 Benzaldehyde C7H6O ND ND 4.58
8 984 1-Octen-3-ol C8H16O 41.14 27.8 18.45
9 1004 Hexanoic acid C6H12O2 ND ND 0.93

10 1008 Octanal C8H16O 1.55 3.89 3.76
11 1018 2,4-Heptadienal C7H10O 1.26 1.61 2.77
12 1040 3-Cyclohexene-1-carboxaldehyde, 4-methyl- C8H12O ND ND 0.78
13 1064 2-Octenal C8H14O 3.15 6.32 9.67
14 1076 (E)-2-Octen-1-ol C8H16O ND ND 0.8
15 1080 3,5-Octadien-2-one C8H12O 2.37 3.15 2.57
16 1100 Levomenthol C10H20O ND 1.17 0.75
17 1104 Undecane C11H24 2.18 ND ND
18 1109 Nonanal C9H18O 6.97 10.29 6.88
19 1160 2,6-Nonadienal C9H14O 0.84 0.6 0.5
20 1167 2(E)–Nonenal C9H16O 1.42 2.24 2.43
21 1172 4-ethyl-Benzaldehyde C9H10O 0.36 ND 0.57



Molecules 2022, 27, 939 8 of 14

Table 3. Cont.

Number RI Compounds Formula
Relative Contents (%)

TW292 X3 SX6

22 1202 Dodecane C12H26 1.21 1.03 1.11
23 1205 Decanal C10H20O 1.58 1.92 1.27
24 1220 L-Cysteine C3H7NO2S 0.38 0.45 0.6
25 1222 (E,E)-2,4-Nonadienal C9H14O 0.2 0.7 1.52
26 1228 cis-3-Hexenyl isovalerate C11H20O2 1.02 1.95 2.41
27 1269 (Z)-2-Decenal C10H18O 2.28 7.95 8.84
28 1295 3-Undecanone C11H22O 0.14 ND ND
29 1301 Cyclohexanone,2,5,5-trimethyl-3-(1-methylethylidene)- C12H20O 0.52 0.56 0.82
30 1314 Undecanal C11H22O 0.26 ND ND
31 1325 (E,E)-2,4-Decadienal C10H16O 1.73 1.19 2.38
32 1357 Methyl anthranilate C8H9NO2 2.47 0.72 0.41
33 1372 2-Undecenal C11H20O 0.64 1.48 1.27
34 1405 Tetradecane C14H30 0.61 0.4 0.34
35 1462 (E)-6,10-dimethyl-5,9-Undecadien-2-one C13H22O 0.2 0.33 0.4
36 1493 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-Buten-2-one C13H20O 0.13 0.17 0.16
37 1538 3-(2-pentenyl)-1,2,4-Cyclopentanetrione C10H12O3 0.2 0.25 0.34
38 1576 2,4,6,10-tetramethylpentadecane C19H40 0.28 0.18 0.16
39 1606 Hexadecane C19H40 0.32 0.3 0.25
40 1651 Diethylene glycol adipate C10H18O6 0.24 ND ND
41 2000 Hexadecanoic acid, ethyl ester C18H36O2 ND 0.14 0.21

ND: not detected.

Aldehydes are the crucial compounds detected. They are important flavor and fra-
grance volatiles in many fruits [23]. Hexanal was abundant in the three vegetable soybeans.
It contributes a green and grassy off-flavor, which is regarded to be principally responsible
for the beany flavor [24]. (Z)-2-Heptenal, 2-octene, and (Z)-2-decenal were the predom-
inant aldehydes and provided fruity or fat odor notes [25]. Nonanal is naturally found
in essential oils, such as rose, citrus, white lemon, and brussels oil, and as a strong oil
atmosphere. When diluted, it emits rose and citrus-like aromas. In TW292, hexanal and
nonanal had considerably higher relative content than the other aldehydes. Therefore,
hexanal and nonanal were identified as the main aldehyde volatile components in TW292.
In X3 and SX6, hexanal, (Z)-2-heptenal, 2-octene, nonanal, and (Z)-2-decenal were the main
aldehyde volatiles.

Alcohols constituted the second largest class of identified volatile compounds in the
three vegetable soybeans, especially in TW292. Alcohol provides a pleasant aroma (sweet,
floral, or fruity) [26]. The most abundant volatile substance detected was 1-octen-3-ol. Its
content has a significant impact on the flavor of vegetable soybeans because 1-octen-3-ol
has a pleasant loamy aroma and a strong herbal fragrance, similar to the aroma of lavender,
rose, and hay. This study showed that 1-octen-3-ol was the main volatile component in
vegetable soybeans.
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In this study, low levels of ketones, esters, and other compounds were detected in
vegetable soybeans and made a low contribution to flavor. The most abundant ketone
was 3,5-octadien-2-one. Czerny et al. reported that 3,5-octadien-2-one makes a positive
contribution to aroma [27].

On the basis of these results, the volatile composition of three major vegetable soybean
varieties in China exhibited a large variability in type. However, 1-octen-3-ol, hexanal,
(Z)-2-heptenal, 2-octene, nonanal, (Z)-2-decenal, and 3,5-octadien-2-one were considered
the main flavor compounds.

3. Materials and Methods
3.1. Materials

Vegetable soybeans, namely TW292, X3, and SX6, were grown under the same environ-
ment in the Liuhe Base of the Jiangsu Academy of Agricultural Sciences (Nanjing, China)
situated at 32.08◦ N 118.40◦ E. The experiment was planted in a complete block design
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with three replications with four-row (3.05 m length and 3.66 m width) plots and a row
spacing of 0.914 m. Vegetable soybeans were planted on 3 May and harvested at the end of
June. All vegetable soybeans were harvested at the R6 stage of seed development (when
the majority of the pods were filled before the pods turned yellow and were at the fresh
edible stage). Vegetable soybeans of similar maturity without physical injury or infection
were selected, washed, and stored until use. According to Song et al. [7], although some of
the harvested vegetable soybeans are processed for use in snacks or salads, most are boiled
in pods and eaten. Sensory evaluation, electronic tongue analysis, and volatile compound
analysis were performed on cooked vegetable soybeans (vegetable soybeans were cooked
in boiling water for 5 min). Freeze-dried samples were used in other modes of analysis.
Basic information (name and geographical origin) and photographs of these vegetable
soybeans are presented in Table 4 and Figure 6. Length, width, height, and hundred-seed
weight were used to describe the size of these samples. The hundred-seed weight from
high to low was arranged as follows: SX6 (106.619 g) > X3 (73.327 g) > TW292 (64.438 g).

Table 4. Name, geographical origin, and agronomic traits of vegetable soybean samples investigated
in this study.

Name Place of Origin Length/cm Width/cm Height/cm Hundred-Grain Weight/g

TW292 Taiwan 1.5 1.0 0.8 64.438
X3 Shanghai 1.5 1.1 0.8 73.327

SX6 Jiangsu 1.5 1.2 1.0 106.619

The length and width are defined in Figure 6.
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3.2. Chemicals and Reagents

Amino acid mix standard solution, bovine serum albumin (BSA), and anthrone were
purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). Solid-phase microextraction
(SPME) manual holder and fiber (50/30 µm divinylbenzene/carboxy/polydimethylsiloxane)
were purchased from Supelco Co., Ltd. (Bellefonte, PA, USA). All other reagents were of
analytical grade and purchased from Sodebio Reagent Co., Ltd. (Nanjing, China).

3.3. Chemical Composition Analysis

Freeze-dried vegetable soybean samples were used in the analysis. Soluble sugar
content was determined using the anthrone colorimetric method, and glucose was used as
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the standard [28]. Soluble protein content was measured with the Bradford method, and
BSA was used as the standard [29]. Protein content was determined using the Kjeldahl
method and a Kjeltec TM2300 autosampler system (Foss Analytical, Hillerd, Denmark).
Titration was performed with 0.05 M sulfuric acid and a conversion factor of 6.25 was
used to estimate the crude protein [11]. Soxhlet extraction (Extraction System B-811, Buchi,
Flawil, Sankt Gallen, Switzerland) with petroleum ether was used in determining crude fat
content [30].

3.4. Free Amino Acid Analysis

The free amino acid in the vegetable soybean was determined in accordance with the
following method [31]: 1 g of freeze-dried vegetable soybean samples was mixed with
3% (m/m) sulfosalicylic acid and completely homogenized. Then, the homogenate was
centrifuged at 10,000× g (Eppendorf Centrifuge 5804R, Hamburg, Germany) for 10 min at
4 ◦C. The solution was filtered through 0.22 µm filters, and the analysis was performed
using a Hitachi 8900 amino acid analyzer (Hitachi High-Technologies, Tokyo, Japan).
The mixture of FAA standards was used for quantification. Each sample was analyzed
in triplicate.

3.5. Sensory Evaluation

Sensory assessment was performed using quantitative descriptive analysis (QDA).
Panelists composed of 20 women and 20 men were randomly recruited at the Jiangsu
Academy of Agricultural Sciences (Nanjing, China). They were 21–58 years old. Before the
sensory evaluation, a preliminary test was conducted. The panelists sat at a round table.
After the evaluation of the sample, an open discussion was started in order to define the
best descriptors for characterizing the samples. Vegetable soybeans were cooked in boiling
water for 5 min [17]. After cooling to room temperature, the samples were numbered
randomly and fitted in plastic cups. Each panelist received a cup containing the samples
and then evaluated the samples with a nine-point hedonic scale (1 = dislike extremely,
2 = dislike very much, 3 = dislike moderately, 4 = dislike slightly, 5 = neither dislike nor like,
6 = like slightly, 7 = like moderately, 8 = like very much, 9 = like extremely). The evaluation
included the aspects of size (a high score indicates a large size of vegetable soybean), color
(a high score indicates green vegetable soybean), taste (a high score indicates the sweetness
and umami of vegetable soybean), aroma (a high score indicates the intense aroma of
vegetable soybean), texture (a high score indicates tenderness and waxiness), and overall
acceptability (a high score indicates high liking). All the members were provided with
mineral water to gargle between evaluations.

3.6. Electronic Tongue Analysis

The taste attributes of the vegetable soybean were analyzed using an α-ASTREE elec-
tronic tongue (Alpha MOS, Toulouse, France). This taste sensor consists of an array of seven
liquid cross-sensitive electrodes, an autosampler, and an associated interface electronic
module [32]. The taste sensor output exhibits different patterns for chemical substances that
have different taste qualities: bitterness, sourness, saltiness, umami, sweetness, aftertaste-A,
and aftertaste-B. Vegetable soybeans (50 g) were cooked in boiling water for 5 min and then
ground into juice with three times the amount of distilled water. The juice was extracted
for 1 h at 42 ◦C. After cooling to room temperature, the juice was centrifuged at 10,000× g
for 10 min to obtain the supernatant, which was aliquoted into a specific electronic tongue
beaker. Prior to analysis, the instrument was calibrated and diagnosed in accordance with
the instructions of the manufacturer to ensure the stability and reliability of experimental
data [33]. Then, the electronic tongue was set for the sample detection method, detection
sequence, and cleaning procedures. Sample collection and cleaning were conducted alter-
nately. Deionized water (80 mL) was used to clean the sensors. The instrument parameters
were set as follows: delay = 0 s, acquisition time = 180 s, interval = 1 s, and clean time = 10 s.
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3.7. Volatile Compound Analysis

Volatile compounds were extracted and identified through head space solid-phase
micro-extraction and gas chromatography coupled with mass spectrometry (HS-SPME-
GC-MS). Accurately weighed cooked vegetable soybean (2.0 g) was placed in a 20 mL
headspace sample bottle. After water bath extraction at 60 ◦C for 10 min, the volatiles were
sampled with a 50/30 µm DVB/CAR/PDMS fiber purchased from Supelco (Bellefonte, PA,
USA) at 60 ◦C for 40 min [34,35]. Subsequently, the fiber was immediately inserted into the
injection port of a Thermo Fisher TSQ8000EVO chromatograph system (Waltham, MA USA)
coupled with a quadrupole mass filter and desorbed at 250 ◦C for 3 min [36]. The extracts
were separated on a TG-5MS capillary column (30 m × 0.25 mm I.D., 0.25 µm df). The
sample inlet temperature was set at 250 ◦C and the column temperature was programmed
to start at 40 ◦C. After 2 min, the temperature was ramped to 100 ◦C at 3 ◦C/min (held for
1 min), 160 ◦C at 5 ◦C/min (held for 1 min), and finally to 280 ◦C at 10 ◦C/min (held for
1 min). Helium was used as a carrier gas at a constant flow rate of 1.0 mL/min. The MS con-
ditions were set as follows: EIMS electron energy = 70 eV; ion source temperature = 230 ◦C;
detection was performed in full scan mode over a mass range of 35–800 [37]. Volatile
compounds were tentatively identified according to the database of the NIST 2017 library.
Retention index (RI) was calculated using n-alkanes (C7–C40) as the external reference
under the same operating conditions for further confirmation. The relative content of each
volatile component was calculated using the peak surface area.

3.8. Statistical Analysis

All experiments were run in triplicate, and the results were expressed as mean ± standard
deviation. Statistical analysis was performed through one-way ANOVA and Duncan’s multiple
test for the identification of significant differences at a level of 0.05. SPSS version 26.0 (SPSS Inc.,
Chicago, IL, USA) was used. Graphs were drawn using OriginPro 8 (OriginLab Corporation,
Northampton, MA, USA).

4. Conclusions

The volatile flavor profiles and sensory properties of different vegetable soybean
varieties were investigated. Forty-one volatile compounds were identified through HS-
SPME-GC-MS and the major flavor components were 1-octen-3-ol, hexanal, (Z)-2-heptenal,
2-octene, nonanal, (Z)-2-decenal, and 3,5-octadien-2-one. Seventeen free amino acids
were detected, and glutamate, asparagine, and alanine were the major amino acids in all
varieties. The three varieties contained seven essential amino acids: lysine, phenylalanine,
methionine, threonine, isoleucine, leucine, and valine. Differences in sensory evaluation
results were mainly reflected in texture and taste. It was difficult for the panelists to
distinguish aroma among the three varieties. The electronic tongue effectively differentiated
the umami and sweetness characteristics of different vegetable soybeans. Our results
indicated that high-quality vegetable soybean varieties tend to have excellent sweet taste
and umami taste and tender texture. In terms of chemical components, they contain
high soluble sugar content and high sweet and umami amino acid content. Considerable
differences in nutritional, organoleptic, and aroma characteristics were found among the
varieties. SX6 was found to be a rich source of amino acids and showed strong sweet and
umami taste and favorable sensory characteristics. Thus, it was preferred by the panelists.
This study provides useful insights into the sensory properties and flavor composition of
the major vegetable soybean varieties grown in China. It may be helpful in the potential
application of different vegetable soybean varieties as a healthy food.
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