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Abstract: Nanocomposite materials have seen increased adoption in a wide range of applications,
with toxic gas detection, such as carbon monoxide (CO), being of particular interest for this review.
Such sensors are usually characterized by the presence of CO absorption sites in their structures,
with the Langmuir reaction model offering a good description of the reaction mechanism involved in
capturing the gas. Among the reviewed sensors, those that combined polymers with carbonaceous
materials showed improvements in their analytical parameters such as increased sensitivities, wider
dynamic ranges, and faster response times. Moreover, it was observed that the CO reaction mecha-
nism can differ when measured in mixtures with other gases as opposed to when it is detected in
isolation, which leads to lower sensitivities to the target gas. To better understand such changes,
we offer a complete description of carbon nanostructure-based chemosensors for the detection of
CO from the sensing mechanism of each material to the water solution strategies for the composite
nanomaterials and the choice of morphology for enhancing a layers’ conductivity. Then, a series of
state-of-the-art resistive chemosensors that make use of nanocomposite materials is analyzed, with
performance being assessed based on their detection range and sensitivity.

Keywords: chemosensor; carbon monoxide; nanocomposite carbon material; sensing mechanism;
electrodeposition; conducting polymers

1. Introduction

Declining air quality has a great effect on modern lifestyles, with an estimate of
4.2 million deaths being attributed to ambient air pollution related diseases. The main
contributors to the onset of diseases such as stroke, lung cancer, or acute respiratory diseases
include carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), and ammonia
(NH3). The selective detection and monitoring of air, both from the ambient and indoor
locations, could lead to great strides in limiting the exposure of people to toxic quantities of
such gases, ensuring a favorable environment for development and growth. Of particular
interest is CO, a colorless, odorless, and tasteless gas, resulting mainly from the incomplete
combustion of fossil fuels and thus largely spread in urban environments or regions with a
high traffic density. Both the molecular structure and chemical activity of carbon monoxide
assure that irreversible bounds are formed when it interacts with hemoglobin, blocking
the reaction sites that were originally meant for CO2. The resulting carboxyhemoglobin
hinders gas exchange between carbon dioxide and oxygen, which can lead to death by
functional asphyxia. Meanwhile, large concentrations, 0.1% for 1 h, of CO are lethal; the
more problematic aspects of CO are its effects on the human health and psyche when under
continuous exposure at low concentrations. Such cases routinely affect the central nervous
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system, reducing visual and physical capacity, lowering coordination, and introducing
lapses in concentration. Thus, the World Health Organization (WHO) has prescribed
exposures to CO of no more than 8 h at 9 ppm and 1 h at 26 ppm [1].

According to the IUPAC, chemical sensors can be classified according to their trans-
duction mechanism [2] into three main classes: (i) systems that detect changes in the
electrical and electrochemical properties of an analyte, (ii) systems that monitor changes in
their physical properties, and (iii) sensors that measure the optical absorption of chemical
analytes [3].

A subtype of the first class of chemical sensors, chemoresistive systems, when exposed
to gas, change their electrical resistance due to the sensitive film deposited on their surface.
An attractive feature of such sensors is the possibility of creating highly selective chemical
films, which are tailored toward the detection of a specific gas, without a need of sweeping
changes in the structure of the transducer or readout device. Prior research has identified
composite materials, a solution of metal oxides, carbon nanostructures, and conducting
polymers, as being effective films in the detection of toxic gases and in particular CO. The
detection of gases by chemoresistive sensors has received great attention because of their
advantages over the other sensors (electrochemical, optical): low cost, long lifetime, high
sensitivity, fast response time, and small sizes [4].

Carbon nanomaterials, such as single-walled carbon nanotubes (SWCNTs), pristine
carbon nanomaterials, multi-walled carbon nanotubes (MWCNTs), and graphene, have
been extensively used as the active layers for the development of chemoresistive sen-
sors [5–7]. This shift in material usage has been motivated by Kong et al., who observed
a change in the conductivity of carbon nanotube (CNT) functionalized materials on gas
absorption, leading to their use in a range of gas sensors [8,9]. Thus, polarity of the change
in conductivity of carbonaceous-modified chemosensors becomes a function of the type
of gas being analyzed. Hence, in highly oxidizing gases, electrons acceptor groups, such
as those present in NO2 and CO, lead to increases in the conductivity of p-semiconductor
carbon nanotubes due to an increase in the number of holes [10,11]. Meanwhile, in reducing
gases, the presence of electron donors, such as in NH3, leads to a decrease in conductivity
due to the occupation of holes with electrons. Thus, research is being conducted on com-
bining carbonaceous materials with conductive polymers to form nanocomposite materials
(NCMs) with increased selectivity to target gas molecules. With most chemosensors having
an interdigitated electrode (IDE) substrate, a controllable deposition method is required.
One such technique is electrochemical deposition, due to its high degree of control on the
end parameters of the polymer film, such as topography and thickness [12,13].

Thus, the focus of this review will be on resistive chemosensors for CO detection
with a functional layer based on a combination of carbon-based NCMs and conductive
polymers (CP). The performance of three conductive polymers is analyzed in the following
sections: polyaniline (PANI), polypyrrole (PPy), and poly (3,4-ethylenedioxythiophene)
(PEDOT), in combination with SWCNTs, MWCNTs, and graphene oxide (GO) or reduced
graphene (rGO). Analysis was performed from the perspective of sensing principle and the
formulation strategies.

2. Chemosensors: An Overview on CO Detection

A versatile subset of chemosensors, those based on a composite material sensing layer,
are primarily composed of three elements: metal oxides for the selective reaction with a
target gas, carbon nanostructures for increasing the working area, and CP for increased
stability and easier delivery of the signal to the transducer. Metal oxides refer to those p
or n-type semiconductor materials, such as ZnO, SnO2, or CuO, that have good chemical
stability, high electron mobility and that allow for easy control of their morphological
properties. Their primary function consists in the absorption and reduction of a gas on their
surface, which is followed by the measurement of any resulting change in the electrical
conductivity and resistance of the sensing layer. While such sensing layers are highly
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sensitive, large-scale implementation has been previously limited by their high operating
temperatures (300–500 ◦C) [14–16].

NCMs consisting of combinations of metal oxides with carbonaceous materials such
as rGO, MWCNT, SWCNT, or other CNTs-based structures were the primary solution
to the concerns regarding high temperature operation. Such structures operate at room
temperature without a loss in sensitivity, thus proving a superior alternative to sensors
solely based on metal oxides. Further enhancements in performance have been observed
on doping a CP using metal oxides while at the same time functionalizing the polymer
by use of carbon nanostructures. The use of functionalized conducting polymers such as
PANI, polythiophene (PTh), PPy, and PEDOT leads to larger sensing surface areas and an
increase in conductivity of the sensing layer due to the presence of many suspended bands
and defects at their surface. However, such sensors are sensitive to changes in humidity,
with high operating temperatures being employed to reduce its interference for simple
metal oxide sensors and chemical alterations of the sensing surface being employed for
composite materials.

The use of conductive organic polymers has shown increased performance in the
detection of gases, being highly synergistic with the functionalizing carbon nanostructures
and preserving the individual properties of the constituting components. Polymers such as
PANI, PTh, PEDOT, and PPy have shown superior electrical and mechanical properties
when combined with CNTs or rGO, improving sensitivity by up to 100% [17–19]. However,
to achieve those high-performance parameters, either a good adhesion of the metals to the
CP or a high homogeneity of the CP solution needs to be assured. This is typically achieved
by combining the organic CPs with hydrophilic polymers, with the solubility of PANI for
example being increased by combinations with polystyrene sulfonate (PSS), polyacrylic
acid (PAA), polyvinylpyrrolidone (PVP), or polyethylene glycol (PEG), leading to the
formation of composite solutions such as PANI:PSS, PANI:PAA, PANI:PVP, and PANI:PEG,
respectively. However, the homogeneity of the nanocomposite material dispersion can
prove problematic due to CNTs having a poor solubility due to their hydrophobic nature.
Thus, the uniformity of carbon structures, such as SWCNTs, within the CPs can be induced
through methods such as SWCNTs functionalization, surfactants addiction, ultrasonication,
or the association with other polymers, biomolecules, and organic acids. A diagram
highlighting the effect of various reagents on the electrical proprieties with an increase gas
sensitivity of such NCMs sensing layers can be seen in Figure 1.
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Figure 1. Effect of different reagents (polyelectrolytes) over the electrical proprieties of the conductive
layers; abbreviations: polystyrene sulfonate (PSS), polyacrylic acid (PAA), polyvinylpyrrolidone
(PVP), polyethylene glycol (PEG), polyaniline (PANI), poly(3,4-ethylenedioxythiophene)-PEDOT,
reduced graphene oxide (r GO), single walled carbon nanotube (SWCNT), multi walled carbon
nanotube (MWCNT), polypyrrole (PPy), graphene oxide (GO), carbon nanotubes (CNTs).
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Regarding their chemical structures, all CPs have aromatic rings and display p electron
conjugation, as shown in Figure 2. All three CPs have the capability to bind different NCMs
for improved conductivity, stability, and selectivity. Table 1 presents the structures of all
carbon-based NCMs employed in research for gas sensing.
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Table 1. Cont.

Name of CP and NCMs Abbreviation Chemical Structures
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Table 1. Cont.
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Alternating single and double bonds for these CPs lead to a broadening of the p
electron conjugation and thus to a decrease in the band energy and the stabilization of the
molecule. Differences between the structures of the analyzed polymers are given by the
presence of a nitrogen atom in the aromatic ring for PPy, whereas for PANI, a nitrogen
atom is found outside the aromatic ring and a sulfur atom is found in the aromatic ring for
PEDOT. The stabilization and electron insulation of the polymers is ensured by the electrons
localized in the σ bonds in the CP chain, and due to the delocalization of the electrons
within the p bonds, the CPs preserve conducting properties. However, high conductivity is
assured by doping at the conjugated double bonds, which is a process analogous to the
semiconductor doping process. For PPy and PEDOT, a redox reaction can be employed for
doping, whereas for PANI, protonation is typically used. A common fabrication technique is
the use of tethered oxygen or nitrogen atoms as they contain moieties that serve as effective
tethering points for catalytically active additives to the CNTs composites. Fabrication of
the sensing layer is achieved by electrodeposition, with conducting polymers being fixed
on a conductive substrate with the help of an electrochemical cell. The morphology of the
sensing surface is controlled through the tuning of the concentrations of the solvents, salts,
and monomers in the electrodeposition process, while surface roughness is controlled by
varying the deposition time or the charge–current ratio. The most common CPs employed
in emerging CO sensing technologies are PANI, PTh, and PPy, which is due to their
high electrical conduction, low cost, ease of fabrication, and flexibility in both use and
structure. Depending on the electropolymerization method and the chosen parameters for
the electrodeposition process, large changes in the conductivity and sensitivity to CO can
be observed [20,21].

3. Sensing Principle
3.1. PANI Structure and Conductivity

PANI is an intrinsically conductive polymer that owes its electrical conductivity to
the presence of a π-type electronic conjugation in its structure. One of the most studied
polymers in the last 20 years, it can be employed for the detection of CO and other gas
molecules such as NH3, H2S, and H2 having been integrated in both electronic and optical
sensors [22–24]. While displaying a relatively low conductivity value (30–200 S·cm−1)
when compared to other CPs such as doped polyacetylene or doped polyphenylene, PANI
is preferable to those alternatives due to its high stability and multiple fabrication paths.
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Chemically, PANI consists of repeating units of benzene and quinoid rings. PANI can
be employed in several of its redox forms, such as leucoemeraldine, emeraldine, and
pernigraniline, with differences between the homologous forms being given by their
oxidation state, which are expressed by using the value of m, as shown in Figure 2.

The conductive structures of PANI are predominantly composed of imine groups,
although amine groups can also appear when the polymer is protonated in the presence
of an acid or a dopant. This leads to the formation of polarons and bipolarons that are
responsible for preserving the conductivity of PANI on substrates. Gas sensors based on
PANI have shown high specificity for the detection of acidic and basic gases, such as NH3,
H2S, and H2, for which they display a high sensitivity due to chemical reversibility of
the acid–basic reaction being possible on the surface of the sensor. An overview of the
performance of PANI-based sensors for the detection of CO can be seen in Table 2.

Table 2. Overview of the PANI-based sensors for CO detection.

Sensing
Materials

Doping
Agents

Concentration
Range (ppm)

Response
Time Sensitivity Operating

Temp (◦C)
Response
Formula References

Nanocrystalline
PANI HCl 0.02–30 ppm 8–10 s 400–600 RT S * = Ie/Io, [25]

PANI HCl/Fe and Al 0–150 ppm 5 s 800 RT S = (Ie − Io)/Io [26]

PANI Maleic acid 100–500 ppm 1.1 min 0.01—0.03 RT S =
|∆Rg|

Rg
[27]

PANI CSA ** 1–100 ppm - −24% - ∆R
R0

(%) [28]

PANI
horizontal
nanofiber

HCl 1–100 ppm - −18% for
1ppm - ∆R

R0
(%) [28]

PANI/PI CSA
HNO3

1–1000 ppm
1–1000 ppm

36.8 min for
1000 ppm

0.338 cm−1;
1.040 S·cm−1

25 ◦C–55 ◦C at
1 atm

∆σ
σN2

*** [29]

PANI/ Nafion NA 0–20 ppm 5 ppm in
synthetic air

34 ◦C;
42 ◦C ∆F [Hz] [30]

* = sensitivity, ** = camphorsulfonic acid, *** σ=conductivity (S·cm−1); σN2 = the electrical conductivity value
when exposed sensor to N2; ∆σ = average values obtained from two to four different samples at a specific value
of temperature.

3.2. PANI Sensing Mechanism on CO Exposure

On exposure to CO, the response of a PANI-coated sensor consists of a decrease in
the electrical resistance of the sensing layer due to the partial charge transfer between the
amino nitrogen (–NH) structure in the polymer and the carbocation present in CO. Then,
the transferred charge extends along the polymer chain, thus leading to an increase in the
conductivity of the layer. A diagram of the sensing mechanism for the exposure of PANI to
CO can be seen in Figure 3.

While most chemosensors based on PANI layers quantify the concentration of a
target gas based on resistive measurements, forays have been made into other metrics
such as current flow on CO exposure [23,24]. For such sensors, the current flow between
the intercrystallite grain boundaries of PANI is linked to the gas concentration, with the
polymer layer requiring deposition through vacuum-deposited nanocrystalline polyaniline
for this functionality to be enabled. While such sensors show a rapid response at room
temperature, the low contact area with CO molecules leads to saturation occurring rapidly,
thus limiting the maximum measurable concentrations of CO to 150 ppm. The limit on
saturation can be improved through the doping of the polymer, one example being maleic
acid (MA)-doped PANI [27]. Then, the addition of carbon nanotubes (CNTs) to the sensing
solution can lead to significant rises in sensitivity, due to an increase in the surface to
volume ratio created by structures such as CNTs.
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To investigate the conduction mechanisms of PANI blend with polyimide (PI),
Watcharaphalakorn et al. employed in situ FTIR spectrometry to investigate the response
of such sensors to CO and N2 exposure by comparing sensors with and without exposure
to CO [29]. According to some research, PANI blends with other non-conducting polymers
can lead to some improvements in the mechanical, thermal, and in some cases electrical
properties [32]. After optimizing the type of dopant, the dopant concentration, the PI
content, and the temperature of the sensors, they have an improvement of the electrical sen-
sitivity and a strengthening of the fragility of the PANI layer due to the introduction of PI.
Interestingly, CO was not observed to form a chemical bond with PANI in this experiment.
The proposed mechanism consists of a stable +C≡O− interaction between CO and PANI,
where the negative charges of the oxygen atoms replace the negatively charged counter
ions A− at the positive polaron amine forms. Thus, the +C≡O− has the capacity to remove
the lone pair electron at the amine nitrogen, leading to the formation of neutral carbon and
the positive charging of amine nitrogen. Hence, electrical conductivity increases because of
the increase in charge carriers within the polymeric structure. A diagram of this mechanism
is presented in Figure 4.
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Sensing layers using PANI are not restricted to the monitoring of a single gas species,
with Liu et al. proposing a system for the simultaneous detection of CO and hydrogen (H2)
in fuel cells [28]. This mechanism is possible due to CO and H2 being able to separately
react with the amine groups in PANI in a double reaction. Thus, as can be seen from
Figure 5, H2 reacts with the protonated amine nitrogen atoms within the PANI chain,
whereas CO react with the unprotonated ones. While such sensors can be used to prevent
catalyst poisoning in fuel cells, their application space is limited by the interference of
atmospheric gases leading to the perturbation of the resistive signals.
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A further sensing mechanism is shown by the sensor proposed by Hejczyk et al.,
which employs a surface acoustic wave mechanism for the detection of CO [30]. In such
structures, gas molecules are bound within the polymer layer, leading to an increase in
mass and thus in a shift in the resonant peak of the sensor. While such sensors can reach low
limits of detection, the implementation of such mechanisms is limited by the requirement
of high operation temperatures, 35 ◦C in synthetic air. Moreover, the sensor is prone to
interference from other gases, such as oxygen, nitrogen, and water vapors in the air.

Recent research has shifted from the use of simple PANI sensing layers for the de-
tection of CO with the use of NCMs composites being employed to address some of the
weaknesses of simple layers. Thus, using carbon structures in the functionalization of the
sensing layer can address issues with the low sensing area, interference of other gases,
and humidity effects that lower the obtainable sensitivities and specificities of simple CP
sensors. Moreover, improvements in formulation strategies and deposition techniques
have also led to improvements in the performance of the sensors and need to be addressed
in further sections.

3.3. PANI–NCM Structure Sensing Mechanism on CO Exposure

Current technologies functionalizing CPs with NCMs are restricted to the resistive
measurements of changes in a target gas’s concentration. For polymeric structures that
include insertions of CNTs, a drop in resistance is detected upon exposure to CO. A selection
of sensors that employ either SWCNTs or MWCNTs for the detection of monoxide can be
seen in Table 3, with the performance of each sensor being annotated in terms of range,
sensitivity, response time, and operating temperature. While the increased area provided
by the inclusion of CNTs leads to an increase in performance as opposed to polymers that
simply undergo a doping process, the increase in sensitivity is dependent on the choice of
deposition of the carbon nanostructures. Thus, deposition techniques such as drop casting
and solvent casting lead to more sensitive sensors than the simple dispersion of the carbon
elements in the polymer. For example, the PANI/CNT/PVA nanofibers (PVA, polyvinyl
alcohol) developed by Wanna et al. display increases in sensitivity of up to two orders
of magnitude due to added PVA [33]. The nanofibers were fabricated by electrospinning
a MA-PANI/CNT compound with PVA, the result being then deposited on a series of
aluminum (Al) interdigitated electrodes set on a glass substrate. Hence, it is important to
analyze the effect of formulation strategies and deposition techniques on the performance
of resistive chemosensors. Due to their high inherent sensitivity to hydrogen-containing
gases, multifunctional sensors, for the detection of several species of gases, can be created if
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a sufficiently large sensing area is available. One such resistive sensor was proposed by Kim
et al., who employed a SWCNT functionalized PANI layer for the simultaneous detection
of NH3 and CO [34]. Such measurements are possible due to the different mechanisms of
sensing employed in the detection of the two gases. While for CO, a resistive decrease is
generated by the exchange of electrons between the PANI layer and the gas, for ammonia,
an increase in resistance is generated via a reversible doping–undoping process. The sensor
has been shown to achieve a limit of detection for CO of 5 ppm in gas mixtures with
hydrogen gases, thus highlighting the importance of sensing mechanism in the selective
detection of gases. Roy et al. make use of MWCNTs to obtain faster response times
and higher absorption areas for the detection of CO with their PANI/MWCNT resistive
sensor [31]. Measured CO is quantified using the Langmuir adsorption model, with the
model being employed both for the calculation of the response to gas exposure and the
identification of the recovery time of the sensor. Such models assume that only the top
layer participates in the gas adsorption and CO molecules are adsorbed by the nitrogen
atoms from the amide group of PANI [31]. Due to this physisorption, a charge transfer
occurs in the PANI-MWCNT composite, leading to a decrease in the resistance of the sensor.
The added MWCNT increases the surface area of the reaction with the CO molecules;
however, the complexity of the carbon structure hinders the sensitivity of the structure
when exposed to low concentrations of the target gas, making such sensors usable only in
high-concentration environments of 500–1000 ppm. The detection of low concentrations
of CO (<300 ppm) was enabled by Savin et al. by adding ferrocene (Fc) as a mediator to
their PANI/SWCNT substrate [35]. Such structures have been observed to come with the
additional benefit of limiting the effect of humidity on the sensor’s response. For this type
of sensor, Fc mediates the electron transfer between the CO molecules and PANI, with
the electrocatalytic properties of the sensor being enhanced by the strong π–π interaction
between Fc and the SWCNTs [36]. The diagram of the mechanism of interaction between
PANI, Fc, and CO molecules is presented in Figure 6.
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Table 3. Overview of the NCMs with PANI and carbon nanomaterials used for CO detection.

Sensing Materials Doping Agents Concentration
(ppm) Response Time Sensitivity Operating Temp

(◦C)
Response
Formula References

PANI/PVA/fiber/CNTs MA 100 ppm–500 ppm NA 1.5–3.5 RT S =
|Rg−Ra|

Ra
[33]

PANI/dispersed CNTs MA 100–1000 ppm 0.6 min 0.04–0.12 RT S =
|Rg−Ra|

Ra
[27]

PANI/SWCNTs HCl 5 ppm;
80 ppm NA NA RT S(%) =

|Rg−R0|
R0

× 100 [34]

PANI/MWCNT HCl 500–1000 ppm 76 s 6.8–26.7% RT S =
|Rg−Ra|

Ra
[31]

PANI:PSS/SWCNT/Fc H2SO4 0–300 ppm 33 s for >100 ppm
30 s for <100ppm 6–55% RT S =

|Rg−Ra|
Ra

× 100 [35]
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3.4. PPy Structure and Conductivity

PPy is an attractive alternative to PANI as a CP for gas sensing, displaying excellent
sensitivity to gas molecules, tunable conductivity, a low production cost, and the ability to
function at room temperature [37]. However, the use of PPy is not widespread due to its
poor stability, the oxidation of PPy being highlighted in Figure 7. During oxidation, the
removal of π electrons in the conjugated bond leads to a local relaxation of the benzenoid
structure into a quinoid structure, thus creating a pair of radicals. This, together with
the appearance of a positive charge, leads to the formation of bipolarons, leaving only
two cations in the PPy ring. Those cations can move through the π electronic cloud, thus
generating the conduction of electron through the sensing layers. Thus, unlike PEDOT and
PANI, when PPy reacts with gases that possess electron acceptors, the electrons from its
aromatic ring are removed and the conduction is enhanced [38–40].
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3.4.1. PPy Sensing Mechanism on CO Exposure

When a gas possesses electrons donors, such as in the case of CO, PPy takes electrons
from the gas, leading to a decrease in the electrical resistance [38–40]. The reaction process
of PPY with CO is shown in Figure 8 [42].
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Table 4 presents the sensing performance of PPy on CO exposure. Compared to other
CPs, there are few studies where PPy is employed for CO detection. Moreover, due to its
poor stability, it is recommended to only use PPy as a component in composite materials.

Table 4. Sensor’s performance based by the PPy layer.

Sensing
Materials

Concentration
Range (ppm) Response Time Sensitivity Operating Temp

(◦C)
Response
Formula References

PPy 100–500 ppm 8–10 s 6.5% for 500 ppm 300 ◦C ∆R
R0

(%) [43]

PPy:PSS 9 ppm - ≈1% for 9 ppm RT ∆R
R0

(%) [44]

PPy-FeTPPCl 100–300 ppm 500 s 12% for 100 ppm RT ∆R
R0

(%) [45]

PPy-Fc 300 ppm t50 = 96s 25.8% for 300 ppm RT ∆R
R0

(%) [46]

PPy-Fc derivates 300 ppm t50 = 0.43 s 12% for 300 ppm RT ∆R
R0

(%) [47]

Moreover, when used without carbon structures, PPy displays a drop in sensitivity
when the operating temperature decreases, with an optimal operating temperature at which
the PPy is stable being determined to be 300 ◦C [43]. One such sensor developed by Lee
et al. for the dual gas detection of CO and NH3 uses a combination of acid-doped PPy and
PSS to address the stability issue. While the sensor was validated for concentrations of CO
and NH3 as low as 9 ppm, the system is proposed to preserve its performance even for
sub-ppm limits of detection [44]. Thus, to preserve stability and show enhanced sensitivity
and selectivity for CO detection, it is necessary for a PPy layer to be doped with dopants
such as ferrocene derivates or to be chemically functionalized with porphyrin iron chloride
derivates. Another such example is given by Santhosh et al., where they employed a PPy
layer that was chemically functionalized with 1 mol% of 5,10,15,20-tetraphenyl-21H,23H-
porphyrin iron chloride (FeTPPCl) for the detection of CO in the ppm level. Such CO
sensing mechanisms are anchored around three reaction steps for the generation of a fast
response signal: CO molecules interact very fast with iron metals from the center of the
porphyrin complex, the Fe (III) reduction to Fe (II), and the conjugated system transferal of
electrons into the PPy chains. The diagram of this mechanism is presented in Figure 9 [45].
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Radhakrishnan and Santhosh also make use of a Fc-modified PPy layer to increase CO
detection performance, with the Fc being set into the PPy layer by direct incorporation dur-
ing polymerization [46]. A primary mechanism involves the formation of polarons through
the interaction of the lone free electron of the nitrogen and the electron-withdrawing nature
of the CO molecule. This combined with the formation of a ferrocenium ion donor–acceptor
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complex with FeCl3, due to the incorporation of Fc into PPy in the presence of FeCl3, led
to an enhancement of the resistance signal. The scheme of this mechanism is presented in
Figure 10.
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Another rapid CO detection system was developed by Radhakrishnan et al. using a
PPy layer chemically modified with ferrocenylmethyltrimethylammonium iodide, which
achieved limits of detection of 300 ppm within 1 s of exposure to CO [47]. While the sensors
using PPy and Fc-doped PPy show both excellent CO sensitivity and response time, further
studies are necessary to assess the stability of such sensing layers. Thus, carbon structure
functionalized PPy remains the main technique for employing PPy in gas sensing.

3.4.2. PPy-NCM Structure Sensing Mechanism on CO Exposure

Both MWCNTs and SWCNTs have not been shown to function well for the detection
of CO when used in combination with PPy due to their inherently high sensitivity to
NH3. Such sensors would experience high increases in resistance on exposure to NH3,
due to it being an electronic donating gas and the sensing system behaving as a p-type
semiconductor. However, this is not true when the carbon structure of the NCMs is
graphene oxide, with the performance of sensors using this combination being shown in
Table 5.

Table 5. Sensors performance for CO detection using PPy-NCMs.

Sensing
Materials

Concentration
Range (ppm) Response Time Sensitivity Operating Temp

(◦C)
Response
Formula References

Zeolite-
X/rGO/PPy 5–1000 303 s–600 s 14.9–77.4% RT ∆R

R0
(%) [48]

PPy/rGO 50–300 89s 45% RT ∆R
R0

(%) [42]

Graphene-based polymer composites have been shown to display both higher me-
chanical properties and higher electrical properties when compared with other carbon-
based polymer composites while at the same time not biasing them toward a subset of
gases [42,48]. In one such study, Naikoo et al. developed a sensing layer consisting of
hybrid zeolite X/rGO in combination with PPy for the sensing of CO [48]. Zeolite insertion
was responsible for both a decrease in PPy degradation and an increase in the sensitivity to
CO, while the reduced graphene was the main factor in increasing the performance of the
sensor [42]. Zeolite content has also been determined to affect the response of the sensor
to CO, with increases of 34.61% to 65.34% being recorded when taking measurements at
100 ppm CO. The sensing mechanism on CO exposure in the case of PPy combined with
graphene oxide (GO) is based on replacement of the anions at the lone pair of the nitrogen
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of pyrrole –N•+H– [42]. The interaction between CO and the lone pair on the nitrogen
would lead to the formation of a polaron and thus increase in resistance. The mechanism
has the same diagram as that presented in this review in Figure 8.

3.5. PEDOT-Sensing Mechanism on CO Exposure

PEDOT is a very stable polymer, and in its oxidated state, shown in Figure 11, displays
a high conductivity. Typically employed in combination with PSS, the compound is also
soluble in water. The two cations of the oxidized PEDOT combine with the negatively
charged PSS anions to yield a compound polymer that has high conductivity (10 S·cm−1),
transparency to visible light, and great stability [49].
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Figure 11. The oxidation state of PEDOT.

Most studies on the use of PEDOT:PSS as a gas detection layer focus on either the
detection of NO2 or ammonia [50–52] due to the ease of oxidizing PEDOT with those gases.
NO2 in particular is an oxidizing gas, that, when in contact with the π electron of polymers,
results in the transfer of electrons from the polymer to the gas. However, PEDOT:PSS is
very sensitive to changes in humidity with the studies of interest focusing on the removal
of the interference of both perturbing gases and water vapor. Javadpour et al. proposed the
creation of a CO sensor by adding Fe, Al, and morpholine to the polymer solution before
the deposition process [49]. Morpholine three has shown to provide some robustness to
interference, with stable morpholine forming a bridge between PEDOT and PSS, as shown
in Figure 12.

Thus, the bonding of stable morpholine provides robustness to interference from
water vapors, as water molecules compete for the same bonding site. While doping the
PEDOT:PSS polymer with Fe-Al-morpholine showed both an increase in CO selectivity
and reaction time when compared to other compounds such as PANI with Fe-Al (10 s) [25]
or PPy with Fc (100 s), the sensitivity to CO was not measured. A similar sensing layer,
PEDOT:PSS with polyvinylpirolidone (PVP), was used by Hong-Di-Zhang et al. for the
development of a quartz crystal microbalance for the detection of CO. The proposed system,
while reaching low limits of detection, saturates more quickly when compared to chemosen-
sors, despite using PVP to improve the contact area. The addition of PVP to the sensing
layer in chemosensors leads to the sensitization of the layer to the interference of chemical
vapors of ethanol, methanol, and acetone, thus reducing the specificity of the sensor to CO
detection, when using PEDOT:PSS/PVP nanofibers for such a purpose [53]. Thus, increases
in the sensing area, the addition of organic cycling molecules in the polymer mixture, and
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the addition of CO-affinity molecules are all techniques for increasing the sensitivity of a
PEDOT sensor to CO. Table 5 presents the sensing performance of a number of PEDOT
sensors on CO exposure. Memarzadeh et al. use cobalt (Co)-modified PEDOT:PSS as a
layer for CO detection, the salen complex of Co being reported to improve the response and
selectivity to CO [54]. Fe(salen)-based complexes were employed in a further two studies
for improving the selectivity of PEDOT:PSS to CO [55,56]. The first study, by Arballoo
et al., reports a high CO response of 31.32 ± 0.88% at room temperature (RT) in dry air
and a low response time (38 s), while preserving the reversibility of the reaction. When
comparing the reversibility of this sensor with the Co(salen)-doped PEDOT:PSS sensors,
they concluded that their Fe(salen) showed an increase in reversibility, with less relative
deviation being observed throughout the cycles. The desorption rate was also improved by
using Fe(salen)-doped PEDOT:PSS. Typically, iron complexes have low tendencies to react
with Co; however, they are prone to react with oxygen. So, for the system to react with CO,
FeIII(salen) passes to FeIV (salen) in the presence of O2, with CO reaching a stable state
CO2 due the interaction with the dioxygen Fe complex. Then, the oxygen that interacts
with CO will be replaced by O2 from air, and reactions will continue repeating following
the same reaction cycle. A diagram of this mechanism is present in Figure 13. The second
instance of using a Fe(salen) system was employed by the same group in a study using
Least Square Support Vector Machines (LSSVMs) to predict the response characteristics
of the FeIII(salen)PEDOT:PSS under different conditions. The modeling results showed
satisfactory agreements with the experimental results [57]. The performances of those
sensors are shown in Table 6.
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PEDOT-NCMs Structure Sensing Mechanism on CO Exposure

While two-dimensional polymer layers such as those of PEDOT:PSS have been shown
to be selective to the detection of CO, the low density of adsorbed gas molecules leads to
poor sensing responses [57]. Thus, by moving into the 3D domain through the addition
of carbon structures can lead to both an increase in sensing area and an improvement
in the charge-carrier transport between the gas molecules and the polymer, as holes in
the conductive layer, a p-type semiconductor can be occupied by electrons donated by
the CO molecules. One such sensing layer was proposed by Hyojae et al., where the
introduction of MWCNTs resulted in an increased performance in the CO detection [58].
Thus, the PEDOT:PSS:MWCNT layer achieved detection ranges of 250–1000 ppm at room
temperature, with results being comparable with those shown in previous sections [31].
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Table 6. Sensors performance for CO detection using PEDOT:PSS.

Sensing
Materials

Concentration Range
(ppm) Response Time Sensitivity Operating Temp

(◦C)
Response
Formula References

PEDOT:PSS/
Morpholine - 5 s - Vacuum/mixing air and CO

Percent of resistance variation
relative to the base (in vacuum)

resistance of thin film
[49]

PEDOT:PSS/Co (salen) - - - RT ∆R
R0

(%) [54]
PEDOT:PSS/Fe (salen) 10–100 ppm 38 s 1.50 RT Rair

Rgas
[55]
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4. Formulation Strategies

The use of CPs, with and without carbon materials, has two disadvantages: poor
solubility in common solvents and mechanical instability, especially for PANI, due to
changes during the oxidation and reduction reactions occurring during the doping process.
One approach to improving solubility is to combine CPs with various hydrophilic polymers
(or polyelectrolytes) such as PSS, PAA, PVP, and PEG, resulting in composite solutions such
as PANI:PSS, PANI:PEG, PANI:PVP, PEDOT:PSS, and PPy:PSS [59–64].

Phongphut et al. presented the role of PSS, a co-solvent and dopant polyelectrolyte, in
making a nanocomposite inkjet solution with PEDOT:PSS on carbon electrodes, with the
resulting compound showing improved solubility of the polymer in aqueous media [65].
These electrolytes were also used for NCMs dispersions. For example, PSS was employed
as a non-covalent method of carbon nanotube functionalization, with functionalization
being followed by the polymerization with 3,4-ethylenedioxythiophene (EDOT). The role
of PSS was not only to solubilize and disperse CNTs in aqueous solutions but also to bind
the EDOT monomer to the CNTs surface, facilitating the achievement of a uniform coating
with PEDOT. In their study, Biswas et al. used PSS as a supporting polyelectrolyte during
the synthesis of various conjugated polymers, finding improvements in their processability
and electrical transport properties [66]. PANI doped with PSS has received considerable
attention due to its advantages in terms of easy synthesis, low cost, good thermal sta-
bility, and adequate electrical conductivity. Improving the mechanical stability of PANI
and the PANI:PSS composite solution can be achieved by combining it with other carbon
nanomaterials such as NCM (SWCNT/MWCNT) or graphene. NCMs has new proper-
ties such as good electrical conductivity, high electrical load-carrying capacity, and high
chemical stability. In general, PANI has a stratified structure, but with the incorporation
of carbon nanotubes, an interconnected mesoporous network structure is formed. This
conductive nature of the PANI/carbon nanotube composite can increase the rate of trans-
port of electrical charge carriers. As a result, the number of active sites will increase, which
effectively increases the intra- and interlink charge mobility in the presence of electron
donor or acceptor gases. The challenge of using carbon materials remains the obtaining of
a good dispersibility of NCMs. For example, for SWCNTs, a series of hydrophobic carbon
structures insoluble in most solvents, this dispersibility problem can be solved by finding
dispersion enhancement methods such as SWCNT/MWCNT surface functionalization, the
addition of surfactants (S27000 for Inkjet printing ink), ultrasonication, and association
with other polymers, biomolecules, and organic acids. Ionic surfactants such as SDS and
SDSB are also used for inhibiting the tendency of CNTs to aggregate in water [67–69].
Nonionic surfactants such as Triton X-100, Tween-80, Tween-60, and Tween-20 can also be
used, but they lack Coloumb repulsion to prevent the aggregation of CNTs. The presence
of long PEG chains increases the dispersion efficiency in solution with their molecular
weight, with surfactant molecules entering the spaces between the tubes, preventing their
regrouping. The more hydrophobic the surfactants, the less they prevent the aggregation
of CNTs. Graphene dispersion is also dependent on the exfoliation procedure, and when
obtained by exfoliating the liquid phase of graphite in water, the graphene obtained can be
dispersed with the following surfactants: SDS, SDBS, LDS, cetyltrimethyl ammoniumbro-
mide (CTAB), TTAB, SC, sodium deoxycholate (DOC), sodium taurodeoxycholate (TDOC),
IGEPAL CO-890, Triton X-100, Tween 20, and Tween 80 [70,71].

5. Conclusions and Future Perspectives

In this review, an analysis on the performances and sensing mechanisms of CO de-
tectors based on CPs and carbon composites has been conducted. Most of the sensors
analyzed in the review showed CO absorption sites in their structure, with the Langmuire
adsorption model offering a good description of their reaction mechanism. While sensors
using NCMs based on metal oxides showed a non-uniformity in their resistive change to
the presence of CO, with either an increase or decrease being possible, CP-based sensing
layers have been found to consistently be characterized by a decrease in resistance. This
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consistency is due to the physical expansion of the polymer layer as well as due to the
enhancement of the electron transfer properties resulting from the functionalization with
CNTs. Thus, the advantages of using CPs have been determined to include higher selectiv-
ity, shorter response and recovery times, and operation at room temperature. However,
research still needs to be conducted on the interferences of other gases and the effect of
humidity. Based on the presented data, we can conclude that hybrid materials formed by
conductive organic polymers combined with carbon nanostructures are desirable materials
for use in gas detection, especially in CO detection. Although chemoresistive sensors have
been extensively studied in recent decades, there are some aspects that can be improved:
methods of preparation and deposition of the sensitive film, both in terms of cost and
technology, sensitivity to non-intrinsic gas species, selectivity to a chosen gas, and the
degree of miniaturization of sensors and their control devices.
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