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Abstract: In this study we aimed to investigate the effect of heat treatment on the spectral pattern of
honey using near infrared spectroscopy (NIRS). For the research, sunflower, bastard indigo, and acacia
honeys were collected from entrusted beekeepers. The honeys were not subject to any treatment
before. Samples were treated at 40 ◦C, 60 ◦C, 80 ◦C, and 100 ◦C for 60, 120, 180, and 240 min. This
resulted in 17 levels, including the untreated control samples. The 5-hydroxymethylfurfural (HMF)
content of the honeys was determined using the Winkler method. NIRS spectra were recorded
using a handheld instrument. Data analysis was performed using ANOVA for the HMF content and
multivariate analysis for the NIRS data. For the latter, PCA, PCA-LDA, and PLSR models were built
(using the 1300–1600 nm spectral range) and the wavelengths presenting the greatest change induced
by the perturbations of temperature and time intervals were collected systematically, based on the
difference spectra and the weights of the models. The most contributing wavelengths were used to
visualize the spectral pattern changes on the aquagrams in the specific water matrix coordinates. Our
results showed that the heat treatment highly contributed to the formation of free or less bonded
water, however, the changes in the spectral pattern highly depended on the crystallization phase and
the honey type.

Keywords: honey; heat treatment; NIRS; chemometrics; aquagram; PCA; PCA-LDA; PLRS;
WAMACs; HMF

1. Introduction

Honey, as a natural sweetener used since ancient times [1], is a perfect candidate for
the increasing demand for unprocessed, natural, and “healthy” products. According to the
literature, honey is produced by honeybees (Apis mellifera) from the nectar and sap of living
plants or honeydew [2,3]. Owing to its valuable nutritional composition and relatively
high price on the market, it represents an important value for the consumers. Honey
is composed of sugars (95% of the dry matter content [4]), water (<20%) and numerous
nutritious compounds, such as minerals, amino acids, vitamins, and phytochemicals [5,6].
The composition of honey is highly influenced by both botanical and geographical origin [6].
However, there are other factors—for example storage conditions or processing—that can
have an impact on the composition and sensory characteristics (e.g., aroma, color) of
honey [7,8]. The processing of honey includes heat treatment, which is often applied for
the elimination of the crystals or to delay crystallization.

Honey crystallization is a naturally occurring process, depending mainly on the ratio
of fructose and glucose and the water/glucose fraction. Other factors, such as the pres-
ence of pollen and other particles can also influence the crystallization process. Honeys
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with a higher glucose content (28–30 g/100 g), fructose/glucose ratio < 1.14 and/or glu-
cose/moisture ratio ≥ 2.1 crystallize faster. The crystals are usually not preferred by the
consumers due to the unpleasant organoleptic properties of the (rough) crystals [9,10].
Moreover, the crystallized state makes the handling of honey more difficult for the produc-
ers and beekeepers. Therefore, heat treatment can be applied for the liquefaction of honey,
for which numerous methods are available [11]. The most common techniques are the
treatment in chambers by hot air or water bath. Nowadays, different types of honey heater
equipments are also available [12,13]. According to Hungarian regulations, the core temper-
ature of honey cannot exceed 40 ◦C during the processing of honey [14], because at higher
temperature levels the composition of honey changes significantly [15]. Other adverse
aspects are also noticeable, including, but not limited to, changes of taste/aroma [16–18],
decay of vitamins [19], changes of the color [9,10,20,21], Maillard-reaction-induced decrease
or increase of antioxidants [9,22,23], decrease of enzyme activity (diastase, invertase), and
formation of hydroxymethylfurfural (HMF) [7,10,13,18,19,24]. These attributes also change
during long-term normal storage, but heating, especially above 50 ◦C, highly accelerates
these processes. One of the most important indicators of heat treatment is the HMF content,
which cannot be higher than 40 mg/kg in honeys (except honeys from tropical regions,
where the limit is 80 mg/kg) [2,3,25]. Nevertheless, even at temperatures lower than 60 ◦C,
significant changes can occur in terms of the composition and sensory properties of honey.
However, based on the literature, the detection of heat treatment below 60 ◦C can be
challenging when based on HMF content as the sole indicator [16,18,26–28].

Currently, multivariate, correlative techniques can offer fingerprint-like information
on the analytes, thus representing powerful alternatives to conventional methods. As one
of these techniques, near infrared spectroscopy (NIRS) has already been applied to detect
the changes deriving from heat treatment [18,29,30]. A new application field of NIRS, called
aquaphotomics, aims to check the changes in the water structure of the samples as a result
of different perturbations [31]. As honey is a supersaturated solution of sugars in water,
the aquaphotomics approach could be a perfect choice for the detection of overheating or
other mishandling of honey. Previously, aquaphotomics has been applied to detect changes
in honey resulting from adulteration with sugar syrups [32–35]. However, to the best of the
authors knowledge, the aquaphotomics approach has never been applied to evaluate the
effect of heat treatment on the compositional changes of honey.

Therefore, this study intends to investigate the effect of heat treatment on the spectral
pattern of unifloral honeys using aquaphotomics.

2. Results
2.1. HMF Content of the Honeys

The initial HMF contents of the three investigated honey types were different: sun-
flower honeys had an average HMF content of 18.55 ± 0.28 mg/kg, bastard indigo honeys
presented 14.68 ± 1.61 mg/kg, and acacia honeys contained 6.96 ± 0.38 mg/kg (Table 1.).
These all fulfill the requirements of the legislation (maximum 40 mg/kg) [2,3]. Based on
the two-way ANOVA test, the effect of time interval, temperature, and their interaction
was found to significantly affect the HMF content of all of the studied honey samples.

No significant difference was found among time intervals within the 40 ◦C group in
sunflower, bastard indigo, and acacia honeys. In the case of the 60 ◦C group, no clear trend
was observed. However, in the case of the honeys heated to 80 ◦C and 100 ◦C, the samples
heat treated for 60 min had significantly lower HMF content compared to honeys heat
treated for 120, 180, and 240 min. Moreover, an increasing trend can be observed in the
80 ◦C and 100 ◦C groups with the increase of the treatment time.

In the case of the honeys heat treated for 60 min, the sunflower and acacia honeys
treated at 100 ◦C had higher HMF contents compared to the lower temperatures when the
effect of temperature within time intervals was evaluated. Honey samples heat treated for
120 min showed different results in the case of the three honey types. The HMF values
of the sunflower honey (120 min group) showed that all the samples were significantly
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different from each other and the HMF value increased with the increase of the temperature.
Results of the bastard indigo honey showed that only the honeys heat treated at 100 ◦C
showed significantly higher HMF contents compared to the lower temperature groups.
Acacia honey showed no significant differences between 40 ◦C and 60 ◦C, while the 80 ◦C
group had significantly higher HMF contents than the honeys heated at lower temperature
levels; the same applied for the 100 ◦C treated group. The same trend was found in the
case of acacia honey for 180 min and 240 min treated honeys. The groups of the 180 min
and 240 min treatment of sunflower honey showed that only the 80 ◦C and 100 ◦C treated
honeys differed significantly from the other temperature levels. In the case of the bastard
indigo honey samples heated for 180 min, only the honeys heated at 100 ◦C showed a
significantly higher HMF compared to the honeys heated at lower temperatures. The
sunflower honeys heated for 240 min showed the same trend as the bastard indigo and
acacia honeys.

Table 1. Results of the HMF content of the honey samples from the heat treatment experiment.

Hydroxymethylfurfural Content, mg/kg

Control 40 ◦C 60 ◦C 80 ◦C 100 ◦C

Sunflower

Control 18.5 ± 0.3
60 min 20.2 ± 1.5 aA 16.2 ± 1 aA 17.6 ± 0.2 aA 40.3 ± 0.8 aB*
120 min 17.3 ± 1.3 aA 20.5 ± 0.7 bB 31.8 ± 1.3 bC* 155.1 ± 2.7 bD*
180 min 18.4 ± 1.6 aA 19.9 ± 1.8 bA 37.2 ± 0.6 cB* 241.5 ± 7.4 cC*
240 min 17.5 ± 1.4 aA 19.5 ± 2 abA 52 ± 2.7 dB* 463.6 ± 28.3 dC*

Bastard indigo **

Control 14.7 ± 1.6
60 min 14.1 ± 2.8 aAB 18 ± 2.3 abB 11.9 ± 1.1 aA 16.7 ± 0.9 aAB

120 min 15.1 ± 3.5 aA 15.8 ± 0.6 abA 14.3 ± 1 bA 81.4 ± 4 bB*
180 min 15.7 ± 1.1 aA 21.1 ± 3.5 bA 19.8 ± 0.6 cA 146.4 ± 2.3 cB*
240 min 12.9 ± 1.4 aA 13.7 ± 1.3 aA 28.2 ± 1.1 dB 306 ± 17.8 dC*

Acacia

Control 7.0 ± 0.4
60 min 9.1 ± 1.3 aA 7.7 ± 0.3 aA 8 ± 0.4 aA 16.1 ± 1.7 aB*

120 min 8 ± 0.6 aA 8.8 ± 1.4 aA 13.3 ± 0.9 bB* 44.7 ± 4.3 bC*
180 min 8.6 ± 1 aA 9.6 ± 0.3 aA 12.2 ± 0.8 bB* 89.1 ± 2.8 cC*
240 min 10 ± 1.1 aA 9.6 ± 0.9 aA 18.8 ± 2.4 cB* 211.6 ± 5 dC*

Letters represent the significant differences between the samples based on the results of an ANOVA test and
pairwise comparisons at p < 0.05: lowercase letters (a,b,c,d) stand for the differences between time intervals
(columns) within a temperature level; capital letters (A,B,C,D) are for the differences between temperature levels
within time intervals (rows); * are for a significantly different level compared to the control sample. ** Results of
bastard indigo were previously presented at a conference [29].

Sunflower and acacia honey samples heat treated at 80 ◦C for 120 min or longer, and
the samples heated at 100 ◦C (all time intervals) showed significantly higher HMF contents
compared to control. In the case of the bastard indigo honey, only the samples heated
at 100 ◦C for 120, 180, 240 min had a significantly higher HMF than that of the control.
Moreover, it should be highlighted that the limit (40 mg/kg) was reached only in the case
of the 100 ◦C treatment of the bastard indigo and acacia honeys, whereas for sunflower
honey, the temperature level of 80 ◦C and duration of 240 min induced a higher value than
the limit. This shows that longer low-level heat treatments and even higher temperatures
are not detected by this conventional method, however, even at these lower temperatures
(from 60 ◦C) irreversible changes occur in honeys. Our results are in line with the work
of Romanian researchers who also found that more intense HMF formation occurred at
higher temperatures, such as 100 ◦C [24]. Bogdanov [36] also showed that the HMF limit
of 40 mg/kg could be reached after one or two days at 60 ◦C or after a month at 40 ◦C.
However, in a Hungarian study it has been shown that the sensory properties of honey
such as the flavor, color, consistency, and odor changed at lower temperatures [37]; the
global taste was already affected at 40 ◦C and 60 ◦C, based on the results obtained by the
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potentiometric electronic tongue. Moreover, the group also found that the color changed
significantly at 50 ◦C and 60 ◦C [18].

The differences in the formation of HMF and the trends observed could originate
from the fact that the initial pH, free acidity, amino acid, and sugar composition (especially
fructose ratio) of the three honey types are different, which could have a significant impact
on the formation of HMF [38].

The obtained results demonstrate the poor ability of HMF to indicate heat treatments
of honey samples and thus the need for additional or alternative methods that can pro-
vide a higher sensitivity in the detection of such processes that may be misleading to
consumers. As such, NIRS and specifically aquaphotomics may be involved in the quality
authentication of honeys.

2.2. Models of the Botanical Origin of Honey Types

The NIRS-based models built for the discrimination of the three types of honey (acacia,
sunflower, and bastard indigo) not subjected to any heat treatment (control samples)
showed that all the three groups can be separated from each other with 100% accuracy using
principal-component-analysis-based linear discriminant analysis (PCA-LDA) (Figure 1a).
The aquagram of the honeys also showed completely different spectral patterns for the three
honey types. While sunflower honey was mainly characterized by high absorbances at the
wavelengths attributed to highly hydrogen-bonded water (1511 nm and 1489 nm), the most
abundant water molecular structures for acacia honey consisted of water shells (1363 nm),
combinations of antisymmetric and symmetric stretching modes of water and V1- and V2-
bonded water [39]. Similar to sunflower honey, bastard indigo honey also presented peaks
located at the water matrix coordinates (WAMACs), associated with strongly hydrogen-
bounded water molecules, but also at regions attributed to free water (1412 nm), thus
attesting the complexity of the physicochemical composition and the crystallization phase
of each of the studied honeys (Figure 1b).
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Figure 1. Differentiation of the botanical origin of the three control honeys: (a) PCA-LDA score plot
for the discrimination of the botanical origin and (b) aquagrams of the honey samples of different
botanical origins.

2.3. Results of the Principal Component Analysis

Principal component analysis calculated separately for the three honey (acacia, sun-
flower, bastard indigo) types showed similar results. In the case of the sunflower honey
(Figure 2), there was a discrimination pattern through PC1 that described 99.40% of the
variance. The group of control samples was completely separated from the scores of honey
samples treated at different temperatures (40, 60, 80, 100 ◦C) and showed a slight overlap-
ping with the honey samples treated at 40 ◦C. The higher treatment levels overlapped with
each other. In this case the 1347 nm, 1446 nm, 1527 nm, and 1576 nm values contributed
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to the formation of PC1. The PCA model of heating time separation also showed a dis-
crimination tendency through PC1 that described 97.57% of the variance. Values obtained
at 1316 nm, 1405 nm, 1446 nm, 1489 nm, 1524 nm, 1553 nm, and 1585 nm contributed to
the formation of PC1. In this case, the control slightly overlapped with the honeys treated
for 60 min. However, it can also be seen that there are separated subgroups in each time
treatment group, which shows the higher effect of the temperature on the spectra of honey.
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Figure 2. Principal component analysis of the control and heat-treated sunflower honeys: (a) PCA
score plot for temperature pattern visualization with a Savitzky–Golay smoothing (window size 13)
and SNV pretreatment; (b) the respective PCA loading plot; (c) PCA score plot for the time pattern
visualization with a Savitzky–Golay smoothing (window size 13) and Savitzky–Golay 2nd derivative
(window size 13, 2nd order derivative) pretreatment; (d) the respective PCA loading plot.

In the case of the bastard indigo honey, the trends were similar to the sunflower
honeys, where the 1534 nm and 1582 nm values contributed to PC1 with the highest weight.
The model built to visualize the effect of time intervals showed that the values obtained at
1335 nm, 1448 nm, 1531 nm, and 1579 nm had the highest contribution to PC1, however, in
this case, there was no obvious separation trend based on the time intervals.
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In the case of acacia honey, the trends were not as obvious as in the case of the other
two honey types. The PCA model presenting the temperature pattern showed only a slight
separation tendency through the first two principal components. PC1 was mainly obtained
by the wavelengths at 1405 nm, 1454 nm, 1524, and 1565 nm. The model depicting the time
pattern did not show any clear trend for the separation of the time intervals.

The wavelengths contributing to the model illustrating the temperature level pat-
terns showed that in the case of all the honey types, the regions at 1524–1534 nm and
1582–1585 nm were the most affected ones. The region at 1524–1553 nm can be assigned to
the ionic hydrogen bonding vibration in OH−(H2O)2-4 [40], while the 1582–1585 nm region
is characteristic of fructose, sucrose, and glucose [32].

The models showing the pattern of time interval discrimination were also similar
where 1316 nm and 1335 nm could be assigned to the weakly H-bonded water. The dom-
ination of the free -OH is related to this region. The peaks at 1405 nm, and 1432 nm and
1446 nm are related to the free water and water molecules with one hydrogen bond, respec-
tively, while the region at 1448–1454 nm can be assigned to the OH-(H2O)4,5 water solvation
shell. The assigned wavelengths also revealed that water molecules with four hydrogen
bonds were also formed by the heat treatment (1489 nm) [32,41].

Similar results were obtained in a Hungarian study investigating low-level heat
treatment of honeys (at 40, 50, and 60 ◦C for 30, 60, and 120 min) using near-infrared
spectroscopy in the range of 950–1630 nm. In this research, the sunflower honeys showed a
similar trend based on the PCA, the separation of the control sample was clear and a slight
overlapping was found with the 40 ◦C treated samples, however, the 60 ◦C treated honeys
separated completely from the control honey [18]. However, no clear separation tendency
was observed for the acacia honeys.

2.4. Results of the PCA-LDA Analysis

The general (including all the sublevels of time and temperature treatments) PCA-LDA
models, built separately for each honey type, did not provide strong classification accuracies
in the case of the different honey types. The general model built for the classification of the
different temperature levels showed average training (recognition) and cross-validation
(prediction) accuracies of 80.18% and 68.79%, 82.24% and 75.95%, and 64.82% and 48.44%
for the sunflower, bastard indigo, and acacia honeys, respectively. The models of the time
interval classifications weren’t effective with 52.70% and 35.29%, 63.78% and 41.33%, 47.38%
and 25.93% accuracies for the sunflower, bastard indigo and acacia honeys, respectively.
However, the detailed (i.e., built for the classification of time intervals within temperature
levels, or built for the classification of temperature levels within time intervals) models
provided better classification accuracies.

In Figure 3a,b, an example of the PCA-LDA score plot for the discrimination of the
temperature or time interval of the applied heat treatment within the time or temperature
groups, respectively, is showcased (detailed models). Loadings on the plot show the
20 wavelengths that contributed the most to the separation of the groups.

In each of the models, the presented results were chosen from 41 pretreatment combi-
nations after a leave-one-sample-out cross-validation, based on the best validation accuracy.

Detailed temperature-level PCA-LDA models (Table 2 upper part) provided the best
results in the case of the sunflower honey. Honeys heated for 240 min showed a 100%
classification accuracy of the temperature levels. The models of the honeys heated for
60 min showed a slightly lower accuracy (97.47%) after validation. The temperature groups
60 ◦C and 80 ◦C also provided worse results; however, in the case of all the models,
the control was classified correctly. The classification models of bastard indigo weren´t
accurate, but similarly, the honeys heated for four hours showed the best classification of
temperature. In this case, all the models provided 100% correct classification of the control.
Models of the acacia honey weren´t as performant as those of the other two groups, where
the control classification accuracy was higher in the honeys heated for longer time intervals.
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(a) temperature classification model of honeys treated for 60 min with a Savitzky–Golay smoothing
(window size 21) and SNV pretreatment; (b) time classification model of honey heated at 40 ◦C with
Savitzky–Golay smoothing (window size 13), MSC and detrending pretreatment.

Table 2. PCA-LDA classification accuracies of the detailed temperature level and time interval
classification models.

Temperature Classification within Time Group
Honey Subgroup Pretreatment Training % Validation % Control %

Sunflower

within 60 min sgol@2-21-0_snv 99.93 97.47 100
within 120 min sgol@2-13-0_sgol@2-13-2 97.74 87.55 100
within 180 min sgol@2-17-0 99.82 91.37 100
within 240 min sgol@2-13-0_sgol@2-17-2 100 100 100

Bastard indigo

within 60 min sgol@2-17-0_deTr 81.11 62.38 100
within 120 min sgol@2-17-0_deTr 88.99 78.56 100
within 180 min sgol@2-17-0_deTr 92.74 83.71 100
within 240 min sgol@2-13-0_sgol@2-21-1 97.92 93.22 100

Acacia

within 60 min sgol@2-21-0_deTr_msc 85.74 66.30 51.28
within 120 min sgol@2-13-0_sgol@2-17-1 91.11 59.94 69.23
within 180 min sgol@2-13-0_msc 91.56 72.17 76.92
within 240 min sgol@2-13-0_sgol@2-17-1 84.69 66.10 76.92

Time Classification within Temperature Group
Honey Subgroup Pretreatment Training % Validation % Control %

Sunflower

within 40 ◦C sgol@2-13-0_deTr_msc 98.63 96.36 100
within 60 ◦C sgol@2-17-0_sgol@2-21-1 90.58 72.47 100
within 80 ◦C sgol@2-21-0_sgol@2-13-1 84.80 57.27 100

within 100 ◦C sgol@2-13-0_sgol@2-13-2 89.95 72.21 100

Bastard indigo

within 40 ◦C sgol@2-17-0_deTr 97.05 95.16 100
within 60 ◦C sgol@2-17-0 76.15 47.94 100
within 80 ◦C sgol@2-13-0_sgol@2-13-2 82.80 55.40 100

within 100 ◦C sgol@2-17-0 89.52 61.66 100

Acacia

within 40 ◦C sgol@2-21-0_sgol@2-13-1 71.19 42.99 56.41
within 60 ◦C sgol@2-21-0_deTr_msc 62.21 31.96 71.79
within 80 ◦C sgol@2-17-0_msc 82.77 58.66 82.05

within 100 ◦C sgol@2-13-0_sgol@2-17-2 94.79 72.64 79.49

Each row represents the best model chosen from the 41 pretreatment combinations, the average classification
accuracies for the training, validation, and the control correct classification are computed from the leave-one-
sample-out cross validation confusion tables. sgol@x-y-z means Savitzky–Golay smoothing, where x denotes the
polynomial order, y the window size and z the order of derivation; msc denotes multiplicative scatter correction;
snv denotes standard normal variate; detr denotes detrending.
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The detailed models for the classification of the time levels within temperature groups
(Table 2 lower part) provided the best training and validation accuracies in the case of
the sunflower honey, followed by bastard indigo, and acacia samples. In general, these
models were worse than the models of the temperature classification within time intervals.
The validation accuracies of the sunflower and bastard indigo honeys showed similar
trends, where the best models were obtained for the time interval classification within
40 ◦C, followed by the model at 100 ◦C, while the models of the other two temperatures
were weaker. In the case of acacia honey, the best model was achieved for the time interval
classification within 80 ◦C, while similarly to bastard indigo, the worst model was obtained
for the 60 ◦C treated group. The control was classified correctly in all the models of
sunflower and bastard indigo. The models of the acacia honey provided the best results for
the control: a correct classification for the models with 80 ◦C, followed by 100 ◦C, 60 ◦C,
and 40 ◦C.

Poor results were also obtained for acacia samples in a Hungarian study [18]. This
could be due to the lower nutritional content and the different crystallization phases of
the honey samples. These results support the findings of Segato et al., 2019, who also
found that the changes in NIR spectra as a result of heat treatment are highly phase-related,
which could come from the fact that the scattering of the crystals is different in the different
crystallization phases [42].

2.5. Results of the Partial Least Square Regression of Honeys

The results presented here were chosen from 41 pretreatment combinations after
leave-one-sample-out cross-validation, based on the best R2CV.

Results of the general (including all the temperature levels or time intervals) PLSR
models of the three honey types provided the best results in the case of the sunflower
honeys, followed by bastard indigo, and acacia honeys. The prediction of temperature
provided a R2CV of 0.81 and RMSECV of 10.70 ◦C, R2CV of 0.76 and RMSECV of 11.82 ◦C,
R2CV of 0.36 and RMSECV of 19.00 ◦C for the sunflower, bastard indigo, and acacia
honeys, respectively.

The prediction model of time intervals was much worse where in all the honey
types, the R2CV was lower than 0.26 and the error RMSECV was higher than 60 min.
Therefore, more detailed models were calculated, their corresponding parameters are
shown in Supplementary Table S1.

The detailed temperature level PLSR models built for the prediction of the applied
temperature within the four studied time intervals (Supplementary Table S1 upper part)
provided the best results in the case of sunflower honey. The residual prediction deviation
(RPD) values were between 2.35 and 3.96 while the R2CV was higher than 0.80 in all four
models. The best prediction accuracy was obtained for the 240 min group. The model
parameters of the bastard indigo honey were worse than in the case of the sunflower honey,
however, the RPDCV values were >2.0 in all cases and the R2CV values were between 0.76
and 0.88. Similarly, the 240 min group provided the best results. The prediction models
of the acacia honey were worse than the results of the two other honey types. The RPD
values were below 2.0 and the R2CV values ranged between 0.29 and0.68. The best models
were obtained in the case of the 60 min group, while those built for the 180 min group were
less effective.

The detailed time interval PLSR models (Supplementary Table S1 lower part) also
provided better results in the case of the sunflower honey compared to the bastard indigo
and acacia honeys. The best results were obtained for the 40 ◦C group with an R2CV value
of 0.97 and RPDCV > 5.0. Lower prediction accuracies were obtained for the 80 ◦C group
with an R2CV of 0.83 and RPDCV of 2.45. In the case of the bastard indigo honey, the model
of the 40 ◦C group provided the best results (R2CV = 4.13 and RPDCV = 4.13). The 60 ◦C
and 80 ◦C groups models weren´t as accurate with R2CV < 0.5. For acacia honey, the most
accurate prediction was achieved in the case of the 100 ◦C group with R2CV and RPDCV
values of 0.83 and 2.45, respectively.
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Summarizing, similar to the results of PCA-LDA, the best results were achieved in the
case of the sunflower followed by the bastard indigo and acacia honeys.

2.6. Results of the Aquagrams Visualizing the Effect of Temperature and Time Intervals

The aquagrams plotted at the water matrix coordinates for each honey type as prede-
fined based on the subtraction spectra, the PCA loadings of the temperature (Figure 2a)
and time visualization models (Figure 2b), as well as the most contributing wavelengths
of the previously presented PCA-LDA models (Figure 3a,b) and PLSR regression mod-
els (Supplementary Figure S1b,d), are presented in Figure 4 (sunflower honey), Figure 5
(bastard indigo honey), and Figure 6 (acacia honey).

To better understand the effect of the heat treatment parameters (time and temperature)
on the water spectral pattern of each honey type, their respective aquagrams were inspected
while fixating one parameter and changing the other.

As portrayed in Figure 4, across the different temperature levels (Figure 4 upper part)
and time intervals (Figure 4 lower part), the control group for sunflower honey is markedly
distinguished from the heat-treated samples.

Within each time interval, and as the applied temperature increases, lower absorbances
at the highly hydrogen-bonded bands (1489 nm to 1513 nm) and higher ones at the free
water conformations are observed. This pattern is particularly pronounced at the 60 min
time frame (Figure 4e), where exceeding the temperature of 40 ◦C (maximum allowed) to
reach 60 ◦C translates into a larger scale change of the spectral pattern.

As can be seen from the aquagrams, at the lowest applied temperature of 40 ◦C, the
heating period can have a significant influence on the water structure (Figure 4a). This
influence can still be noticed at 60 ◦C (Figure 4b), but this change towards the less hydrogen-
bounded water structure is not that prominent anymore when higher temperatures are
considered (Figure 4c,d).
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Following the same rationale when analyzing the bastard indigo honey samples
(Figure 5), the impact of the temperature (Figure 5 upper part) and time interval (Figure 5
lower part) of the heat treatment is reflected in the aquagram through the liquefaction of the
initially bonded water into more free water structures (Figure 5). Again, the time interval
can be considerably impactful when it comes to affecting the existing water structures at
40 ◦C (Figure 5a), but not as much when the honey was heated up to 60 ◦C, 80 ◦C, and
100 ◦C (Figure 5b–d).

Explanation of the heat treatment effect on acacia honey (Figure 6), on the other hand,
was less manageable. While the alteration of the water conformation is clearly reflected
in the corresponding aquagram (Figure 6), these changes do not follow a logical pattern
either along the varying time intervals (Figure 6 upper part), nor on the basis of the applied
temperatures levels (Figure 6 lower part).

Such a behavior can be justified by the inherent differences in terms of the crystalliza-
tion state and the physicochemical features of acacia honey compared to sunflower and
bastard indigo honey samples [43]. This peculiar state has already been proven when the
water spectral patterns of the three studied honey types were investigated in the absence
of heat treatment (control group), where acacia, unlike the other two honey types, had
abundant free water and less hydrogen-bonded water molecules. Segato et al. [42] also
found that the changes of the spectral pattern in honeys are phase-related, and he also
found that honey that was initially in liquid state (such as acacia in this study) showed
less changes compared to the completely crystallized (like sunflower in our case) and less
crystallized samples (like bastard indigo honey in our case). The HMF content of the honeys
also showed similar trends: the HMF formation was the most intense in the sunflower
honey, followed by bastard indigo and acacia honeys (Table 1). However, it should be noted
that the NIRS seemed to be more sensitive to the changes from the effect of heat treatment,
as the aquagrams, PCA-LDA, and PCA models showed the changes even at lower levels,
while in the case of the HMF, only honeys heated at 80 ◦C for at least 120 min and 100 ◦C
showed significant changes compared to the control honeys.

These findings do illustrate that the potential adulteration of honey by means of
heat processing can be reflected in the respective aquagrams. Not only can this approach
indicate—to some extent—the differences induced by the temperature levels at different
time periods but it can also confirm the complexity of detecting such instances that are not
only dictated by the thermal treatment parameters but can highly depend on the initial
crystallization state of the honey.

3. Materials and Methods
3.1. Honey Samples

Three types of unifloral honey were collected from reliable beekeepers. The honeys
were not processed or heat treated after the collection from the beehive. Sunflower (He-
lianthus annuus), bastard indigo (Amorpha fruticosa), and acacia (Robinia pesudoacacia) honeys
were used in the study. Three bottles per honey type, each of 1 kg, were collected from the
three honeys (nine bottles in total). The three individual bottles were used as replicates (R)
in the experiments.

The samples were portioned out to 100 mL glass sample holders with a closing
polyethylene cap; 50 g of honey was weighed into the glasses. After portioning, the
samples were processed by heat treatment. The samples were heated to 40 ◦C, 60 ◦C,
80 ◦C, or 100 ◦C and kept at temperature for 60, 120, 180, or 240 min each. This resulted in
17 heat treatment levels (including the untreated control), where 3 samples were created
for each treatment level (the three replicates originated from the three bottles), resulting
in 51 samples per type and 153 samples in total. The heat treatment was performed in a
drying chamber.
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3.2. Hydroxymethylfurfural Measurements of Honey

HMF determination of honey was performed according to the guideline of the Interna-
tional Honey Commission [44], using the spectrophotometric Winkler method. A Thermo
Helios Alpha (Thermo Fischer Scientific Inc., Waltham, MA, USA) UV–VIS spectropho-
tometer (±0.001 units of absorbance, 1 cm light path) at 550 nm, using quartz cuvettes, was
applied for the HMF quantifications.

3.3. Near-Infrared Spectroscopy Measurements

The NIRS measurements were performed using a handheld NIR-S-G1 Spectrometer
(InnoSpectra Co., Hsinchu, Taiwan). Spectra were recorded in the range of 900–1700 nm,
with 3 nm wavelength step in a transflectance setup. The layer thickness of the sample in the
cuvette was 0.4 mm, which ensured that the maximum absorbance values did not exceed
two absorbance unit. Each sample was measured three times applying three different fills
with five consecutive scans, each resulting in 15 spectra per sample, and a total of 45 spectra
per heat treatment level (per unifloral honey). Samples were measured in randomized
order. After each five samples, a reference water sample was measured.

3.4. Statistical Analyis
3.4.1. ANOVA Analysis of the HMF Content

The HMF results of the honey samples were analyzed using ANOVA. Before the
building of the ANOVA models, assumptions such as the normality (using Shapiro–Wilk
test) and homogeneity of the variances (using Levene’s test) were checked. To calculate
which heat treatment levels differed significantly from the control, a one-way ANOVA test
was performed. Additionally, a two-way ANOVA was used to check if the temperature
level, time interval, and their interaction (time interval*temperature level) have a significant
effect on the HMF formation in honeys. In case of a significant interaction, the significant
differences within temperature and within time intervals were analyzed at the p < 0.05
significance level. Moreover, in the case of a significant ANOVA model, a post hoc test
was applied the following way: when the homogeneity of the variances was assumed,
Tukey’s test was used and if it was not assumed, then Games–Howell’s test was used for
the pairwise comparison [45].

3.4.2. Spectral Range and Spectral Pretreatments

The spectral range of 1300–1600 nm was applied throughout the analysis. The
evaluations were performed according to the protocol of aquaphotomics described by
Tsenkova et al., 2018 [39]. The three honey types were evaluated separately. Prior to the
data analysis, an outlier detection was applied on the dataset using the built-in outlier
detection function of the aquap2 package [46].

After the inspection of the raw spectra, spectral pretreatment optimization was
performed using 41 pretreatment combinations. A Savitzky–Golay (Sgol) smoothing
(2nd order polynomial) with different window sizes (21, 17, or 13) and derivation varieties
(no derivation, 1st, and 2nd derivative) was applied to reduce the noise in the spectra and
to reveal overlapping peaks. Standard normal variate or multiplicative scatter correction
was applied to reduce the baseline shift. Detrending and the aforementioned techniques
were tested in single, double, or triple variations.

3.4.3. Modellings of the NIR Dataset
Principal Component Analysis—PCA

Principal component analysis was performed on the three honey types separately to
reveal the patterns of time interval and temperature level. The PCA plots were colored
according to the temperature level and the time interval. The models of the PCA were built
using the best pretreatment obtained during the PCA-LDA of the general models (including
all the temperature or time intervals) built for the temperature and time discrimination. This
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resulted in two models per honey type—one model for the presentation of the temperature
pattern, and one for the time interval pattern.

PCA-Linear Discriminant Analysis—PCA-LDA

The hybrid PCA-LDA analysis was used to build the classification models. All the
models were built using the 41 pretreatment combinations. As a first step, a classification
model was built for the discrimination of the botanical types, then general models were
built for the classification of the temperature groups (general temperature model) and for
the classification of time groups (general time interval model), including all the sublevels of
time or temperature treatments. However, due to the high interaction of temperature and
time interval, models were also built for the classification of time intervals within each of the
temperature groups (detailed time interval models) and for the temperature levels within
each time interval (detailed temperature models). It resulted in a total of eight models
per honey type (four models for the time interval discrimination within the temperature
groups and four models for the temperature-level discrimination within the time intervals),
and 24 models in total after choosing the models with the highest validation accuracy. A
PC number optimization was also performed where the models with the highest validation
accuracy and at the same time lowest difference between training and validation accuracy
were chosen. The final models were validated using a leave-one-sample-out validation
(LOSO), where all scans of one replicate of the samples were left out in each iteration step
of the cross-validation.

Partial Least Square Regression (PLSR)

A partial least square regression was first performed on the three honey types sepa-
rately for the prediction of time intervals and temperatures. A PLSR was also performed to
regress on the time interval within each temperature level (detailed time interval models)
and temperature level within each time interval (detailed temperature-level models). This
also resulted in 8 models per honey type, and a total of 24 models, similarly to the PCA-
LDA analysis. The correlation between the actual and predicted values was reported by
the R2C and R2CV values. The error of the prediction was calculated using the root mean
square error of the training (RMSEC) and validation (RMSECV). Besides the RMSE values,
the residual prediction deviation (RPD) was also calculated for the training (RPDC) and
validation (RPDCV). All the models were validated with a leave-one-sample-out (LOSO)
cross-validation, where the spectra of one replicate of the samples were left out. In the case
of the PLRS models, the pretreatment optimization was also performed, where the models
with the best model parameters (based on the RMSECV, R2CV, and RPDCV) were chosen.

Subtraction Spectra

Subtraction spectra were calculated for the time interval subsets (detailed time interval
models) and temperature level subsets (detailed temperature level models), where the
control sample was subtracted from the others to reveal the wavelengths showing the
greatest changes occurring upon the heat treatment temperature or time, respectively. The
subtraction was performed on spectra that were pretreated with MSC and Savitzky–Golay
smoothing (2nd order polynomial, window size of 21) with a 2nd derivation separately.

3.4.4. Determination of the Water Matrix Coordinates for the Aquagrams

The wavelengths belonging to the water matrix coordinates were chosen from the
PCA loadings, PCA-LDA weights, PLRS regression vectors, and subtraction spectra. The
wavelengths presenting the highest change due to the temperature or the time interval
perturbation were collected. The assigned wavelengths were collected and grouped to the
12 water matrix coordinates (WAMACs) defined by Tsenkova [47] and the wavelengths
presented the most frequently (within one WAMAC) were chosen for the calculation of the
classic aquagrams.
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Calculation of the aquagrams was performed in such a way as to illustrate the spectral
pattern changes as a result of time intervals within one temperature level (detailed time
interval models) and also to illustrate the effect of temperature level within one time
interval (detailed temperature models). In total, 24 aquagrams were calculated, eight for
each of the three honey types.

4. Conclusions

In this study, three different honey types were analyzed in terms of the effect of the
heat treatment at different temperatures and different time intervals. The impact of the
applied processing was measured by determining the HMF content and by NIRS. The
temperatures and their interaction highly influenced the HMF formation of honey; however,
the temperature level had a higher effect than the time interval. The dynamics of HMF
formation differed for the three honey types, which underlines the importance of the initial
physicochemical composition, defined by the origin of the honey, in the HMF production.
However, only honeys heated at 80 ◦C and 100 ◦C provided significant changes in HMF
content, which shows the limited ability of HMF as a sole indicator of honey heat treatment.

The PCA-LDA models provided better results for the temperature-level classifications
than for the time interval. In general, sunflower honey provided better results on the
classification and prediction accuracies than the other two honey types. In all cases, the
worst model parameters were obtained for the acacia honeys. It can be concluded that the
NIRS was more sensitive than HMF in detecting the effect of heat treatment. Nevertheless,
these results indicate that the changes generated byheat treatment are related to the initial
crystallization phase (as the sunflower was completely crystallized, bastard indigo was mid-
crystallized and the acacia was in liquid form) and the composition of the samples; therefore,
it is not possible to set up general principles for the detection of heat processing in honeys.
On the other hand, our results prove that even at a low temperature treatment (40 ◦C),
measurable changes occur in the spectra of the honey, and that these spectral changes are
mainly related to the transformation of the highly bonded water to less H-bonded water or
free water. Besides the water structure, the sugar composition was also modified, which
could be concluded from the changes in the wavelength range of 1580–1590 nm.

Our research reveals the potential of NIRS and specifically aquaphotomics in the
detection of the changes induced in the water structure of honey by heat treatment. In the
future, it would also be important to see how the spectral pattern is affected as a result of
heat treatment after recrystallization and storage.

Supplementary Materials: The following are available online, Table S1: Results of the partial least
square regression models built for the prediction of time interval within temperature group and
temperature within time intervals. Figure S1: Partial least square regression plot of the sunflower
honeys: (a) regression plot of honeys heated for 60 min regressed on the temperature levels with
Savitzky–Golay smoothing (window size: 17) and detrending; (b) the respective regression vector;
(c) regression plot of honeys heated at 40 ◦C regressed on the time intervals with Savitzky–Golay
smoothing (window size: 17), detrending, and MSC; (d) the respective regression vector.
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25. Codex Alimentarius Hungaricus 1-3-2001/110 számú Előírás Méz (1-3-2001/110 Regulation Honey). In Codex Alimentarius
Hungaricus; Codex Alimentarius Hungaricus (Ed.) Magyar Élelmiszerkönyv Bizottság, 2002; pp. 1–7. Available online: http:
//www.hermanottointezet.hu/sites/default/files/dokumentumok/mez.pdf (accessed on 16 October 2017).

26. Dimins, F.; Kuka, P.; Kuka, M.; Cakste, I. The Criteria of Honey Quality and Its Changes during Storage and Thermal Treatment.
Proc. Latvia Univ. Agric. 2006, 16, 73–78.

27. Oroian, M. Physicochemical and Rheological Properties of Romanian Honeys. Food Biophys. 2012, 7, 296–307. [CrossRef]
28. Turhan, I.; Tetik, N.; Karhan, M.; Gurel, F.; Reyhan Tavukcuoglu, H. Quality of Honeys Influenced by Thermal Treatment.

LWT—Food Sci. Technol. 2008, 41, 1396–1399. [CrossRef]
29. Bodor, Z.; Ghdir, C.; Zaukuu, J.; Benedek, C.; Kovacs, Z. Detection of Heat Treatment of Honey with near Infrared Spectroscopy.

Hungarian Agric. Engin. 2019, 36, 57–62. [CrossRef]
30. Verdú, S.; Ivorra, E.; Sánchez, A.J.; Barat, J.M.; Grau, R. Spectral Study of Heat Treatment Process of Wheat Flour by VIS/SW-NIR

Image System. J. Cereal Sci. 2016, 71, 99–107. [CrossRef]
31. Muncan, J.; Kuroki, S.; Moyankova, D.; Morita, H.; Atanassova, S.; Djilianov, D.; Tsenkova, R. Protocol for Aquaphotomics

Monitoring of Water Molecular Structure in Leaves of Resurrection Plants during Desiccation and Recovery. Protocol. Exch. 2019.
[CrossRef]

32. Bázár, G.; Romvári, R.; Szabó, A.; Somogyi, T.; Éles, V.; Tsenkova, R. NIR Detection of Honey Adulteration Reveals Differences in
Water Spectral Pattern. Food Chem. 2016, 194, 873–880. [CrossRef]

33. Bodor, Z.; Zaukuu, J.Z.; Aouadi, B.; Benedek, C.; Kovacs, Z. Application of NIRS and Aquaphotomics for the Detection of
Adulteration of Honey, Paprika and Tomato Paste. In Proceedings of the SZIEntific Meeting for Young Researchers—Ifjú Tehetségek
Találkozója; University, S.I., Ed.; Szent Itsván University: Budapest, Hungary, 2019; pp. 76–91.

34. Yang, X.; Guang, P.; Xu, G.; Zhu, S.; Chen, Z.; Huang, F. Manuka Honey Adulteration Detection Based on Near-Infrared
Spectroscopy Combined with Aquaphotomics. LWT 2020, 132, 109837. [CrossRef]

35. Ferreiro-González, M.; Espada-Bellido, E.; Guillén-Cueto, L.; Palma, M.; Barroso, C.G.; Barbero, G.F. Rapid Quantification of
Honey Adulteration by Visible-near Infrared Spectroscopy Combined with Chemometrics. Talanta 2018, 188, 288–292. [CrossRef]

36. Bogdanov, S. Wiederverflüssigung Des Honigs; Bern. 1992. Available online: https://www.agroscope.admin.ch/dam/agroscope/
de/dokumente/themen/nutztiere/bienen/honverfl_d.pdf.download.pdf/honverfl_d.pdf (accessed on 15 April 2020).

37. Bodor, Z.; Zaukuu, J.-L.Z.; Benedek, C.; Kovacs, Z. Detection of Heat Treatment of Honey by Rapid Correlative Techniques.
Available online: http://www.ihc-platform.net/bodoretaloralpresentationmalta.pdf (accessed on 9 September 2019).

38. Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, M.I.; Gan, S.H. 5-Hydroxymethylfurfural (HMF) Levels in Honey and Other Food
Products: Effects on Bees and Human Health. Chem. Cent. J. 2018, 12, 1–18. [CrossRef] [PubMed]
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