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Abstract: Two structurally dissimilar 3d-4f cages having the formulae [(CoIII)3Gd4(µ3-OH)2(CO3)
(O2CtBu)11(teaH)3]·5H2O (1) and [(CoIII)3Dy3(µ3-OH)4(O2CtBu)6(teaH)3]·(NO3)2·H2O (2) have been
isolated under similar reaction conditions and stoichiometry of the reactants. The most important
factor for structural diversity seems to be the incorporation of one µ3-carbonate anion in 1 and not
in 2. Co atoms are in a +3 oxidation state in both complexes, as shown by the Bond Valence Sum
(BVS) calculations and bond lengths, and as further supported by magnetic measurements. Co3Gd4

displays a significant magnetocaloric effect (−∆Sm = 25.67 J kg−1 K−1), and Co3Dy3 shows a single
molecule magnet (SMM) behavior.

Keywords: coordination cluster; single molecular magnet; magnetic refrigerant; cages

1. Introduction

The study of nanoscopic paramagnetic metal-ion aggregates has excelled in the last
decade or so, not only because of aesthetically pleasing structures but also because of
their potential technological applications such as quantum computing [1–3], ultra-high-
density data storage [4–9], molecular spintronics [10] and magnetic refrigeration [11–15].
In the field of magnetochemistry, molecular nanomagnets based on Gadolinium show
magnetic refrigeration based on the magnetocaloric effect (MCE) [16–19]. Some of the
molecular magnetic aggregates that are particularly based on Dysprosium are also useful
as single-molecule magnets (SMMs) [20–30].

Polymetallic 3d-4f systems have developed as a fascinating sub-area of research
in magnetism [31–45]. Accordingly, a large number of multinuclear 3d-4f cages have
been reported in the literature, mainly with carboxylate, tripodal alkoxides and related
ligands [31,35–40]. The inclusion of 4f ions (e.g., Dy3+, Tb3+, etc.) with 3d metals in
nanosized systems (3d–4f approach) has been used to incorporate a large number of
unpaired f electrons and high intrinsic magnetic anisotropy to obtain SMMs. SMMs based
on DyIII exceed those of other LnIII-based SMMs, most likely due to their larger mJ state
(mJ = ±15/2), which could lead to an appreciable magnetic moment. Further, DyIII is
a Kramer’s ion (it has an odd number of f-electrons), indicating that the ground state
will always be bistable irrespective of the crystal field symmetry. Gd3+ ions are suitable
for the MCE, as they have a high isotropic spin, quenched orbital momentum and weak
superexchange interactions. Therefore, 3d-Ln cages comprised of GdIII ions are suitable as
magnetic refrigerants [11–15,46–48], and those with DyIII ions (anisotropic) are ideal for
SMM behaviour [31–45].

Alkoxo ligands such as N-substituted diethanolamines have been widely used in the
synthesis of 3d-4f cages with different numbers of metal centers and magnetic
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properties [49–52]. Recently, we have reported a series of complexes based on the N-n-
butyldiethanolamine ligand [53]. With the intention of obtaining new heterometallic cages
with an increased magnetic density by decreasing the content of non-metallic elements, we
used an alkoxo ligand containing more hydroxyl groups (triethanolamine).

2. Results
2.1. Synthesis and Structural Analysis

In this work, we have employed triethanolamine (teaH3) with the aim of obtaining
new heterometallic cages. The use of the said ligand for such systems is rare [54–57].
We have reacted it with a small dimer, [Co2(µ-OH2) (O2CtBu)4]·(HO2CtBu)4 (hereafter:
Co2), and lanthanide salts, and have successfully isolated two complexes with differ-
ent structural features under similar reaction conditions and stoichiometry of the re-
actants. The reaction of Co2 and teaH3 with Gd(NO3)3·6H2O in a 1:1:1 molar ratio in
CH3CN gave the compound [(CoIII)3Gd4(µ3-OH)2(CO3) (O2CtBu)11(teaH)3]·5H2O (1),
whereas a similar reaction with Dy(NO3)3·6H2O led to the compound [(CoIII)3Dy3(µ3-
OH)4(O2CtBu)6(teaH)3]·(NO3)2·H2O (2).

X-ray crystallography reveals that complex 1 crystallises in the P-1 space group and
is a heterometallic heptanuclear cage primarily composed of three cobalt centres and
four GdIII ions (Figure 1). All three cobalt centres are in a +3 oxidation state, as shown
by the Bond valence sum (BVS) calculations and bond lengths [58]. Two µ3-hydroxo
groups and oxygen atoms of one carbonate anion interconnect the metal centres of this
heptanuclear core (Figure 2). Peripheral ligation is provided by three doubly deprotonated
triethanolamine ligands (teaH). One can observe that N atoms coordinate to the cobalt ions
and that oxygens coordinate to the GdIII ions. The central portion is also enveloped by a
hydrophobic covering of eleven pivalate ligands bridging in the 2.11 mode. Therefore, all
the cobalt ions end up with an octahedral geometry (with O5N coordination), and the GdIII

ions feature a distorted square antiprismatic geometry. The average CoIII−O and CoIII−N
bond lengths are 1.90 (5) and 1.98 (6) Å, respectively, and the average Gd−O bond length is
2.37 (5) Å.
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Complex 2 crystallises in the monoclinic space group P21/c and is another example of
a mixed metal system comprising three CoIII and three DyIII ions (Figure 3).
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Figure 3. Molecular structure of 2 in the crystal. Colour code: purple, CoIII; green, DyIII; red, oxygen;
blue, nitrogen; grey, carbon; Hydrogen atoms are omitted for clarity.

The metal centres and oxygen atoms in the central hexanuclear unit are interlinked in a
hemicubane-like fashion by four µ3-hydroxo groups (Figure 4). Three doubly deprotonated
triethanolamine ligands (teaH) are also part of this structural aggregation, coordinating
via the N atom to the CoIII ions and then bridging the CoIII centres to the DyIII ions via
their two µ2-alkoxo groups. Six pivalate groups bridging in the 2.11 mode and three water
molecules, one each coordinating to the DyIII ions, also surround the basic unit. With
all these coordinating atoms of the ligands, the CoIII ions end up being six-coordinated
with an octahedral geometry having average Co−O and Co−N bond distances of 1.90 (1)
and 1.97 (2) Å, respectively. All the DyIII ions are eight-coordinated, having a distorted
square antiprismatic geometry and average Dy−O bond length of 2.36 (6) Å. The average
Co−O−Dy and Dy−O−Dy bond angles are 102 (3)0 and 110 (3)0, respectively.
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The careful study of the two structures (1 and 2) shows some interesting features.
Although the number of chelating teaH ligands is the same in both complexes, the number
of pivalate groups is reduced to almost half from the former to the latter complex (from 11
in 1 to 6 in 2). The incorporation of one µ3-carbonate anion seems the most important factor
for this structural diversity. The number of µ3-hydroxo groups is also doubled from two to
four from the former to the latter complex, respectively. One µ3-hydroxo group is found
bridging the three DyIII centres in complex 2 and is not present in complex 1. Another
difference is that each of the DyIII centres in the latter complex is coordinated to one water
molecule to complete the coordination sphere.

2.2. Magnetic Studies

Polycrystalline samples of 1 & 2 were used to collect the dc susceptibility data in the
temperature range of 1.8–300 K at 0.1 T. The DC magnetic studies (Figure 5) reveal room
temperature χMT values of 30.56 and 42.41 cm3 mol−1 K for 1 and 2, respectively, which are
quite close to the estimated values of 29.24 (four uncoupled GdIII, g = 1.99) and 42.71 (2b,
three uncoupled DyIII, g = 4/3). Upon lowering the temperature, the χMT products stay
nearly constant for complex 1 up to 40 K, where an abrupt decrease is witnessed, reaching
a value of 22.89 cm3 mol−1 K at 0.1 T and 1.8 K. This behaviour can be ascribed to the
isotropic nature of the GdIII ions. For complex 2, upon lowering the temperature, the χMT
values are nearly constant up to 60 K, followed by an abrupt decrease, reaching a value of
15.75 cm3 mol−1 K at 0.1 T and 1.8 K. This fall could be due to the depopulation of the Stark
(mJ) sublevels of the ground J multiplet, with the likelihood of a feeble antiferromagnetic
exchange and dipolar interactions also backing the behaviour.

For complex 1, the field dependence of magnetisation shows a saturation value of
28.8 NµB at 7 T (Figure S1). This is compatible with the predicted value of 28 NµB. The
entropy variations (∆Sm) for 1 were estimated using the Maxwell equation ∆Sm(T)∆H
=
∫

[∂M(T,H)/∂T]HdH [59]. The −∆Sm vs. T plot gradually increases from 9 K to 2 K
(Figure 6), reaching a maximum of 25.67 J kg−1 K−1 at 3 K and 7 T. These results compare
well with the other Co−Gd cages in the literature [60–63].

The M/NµB vs. H plot for 2 (Figure S2) shows an abrupt increase with the increasing
field reaching a value of 17.28 NµB but not saturating, even at 7 T. This is usually due to
the presence of anisotropy and significant crystal field effects from the DyIII ions [54–57].
The non-superposition of the M/NµB versus H/T plot of complex 2 (Figure S3) confirms
the presence of significant anisotropy in the molecule.
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1, as obtained from magnetisation data.

Alternating current susceptibility data for 2 was collected at a zero dc field up to 1.8 K
at the 3.5 Oe ac field in the frequency range of 1–800 Hz. Both the in-phase and out-of-phase
susceptibilities show temperature-dependent ac signals below 10 K (Figures S4 and S5),
indicating the slow relaxation of magnetisation. Due to quantum tunnelling of the mag-
netisation (QTM), no full maxima were observed [64,65]. The data was remeasured in the
presence of an optimum static dc field of 2000 Oe to minimise the quantum tunnelling.
Peak maxima were observed under this field below 5 K in the out-of-phase (χ”) vs. T
plot (Figure 7 (left)), confirming the field-induced SMM behaviour [54–57]. The frequency-
dependent in-phase (χ′) and out-of-phase (χ”) susceptibility plots also confirmed this
behaviour (Figure S7 and Figure 7 (right)). The magnetic properties of this compound
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strongly resemble one of our previously reported compounds because of the similar core
structure [53].
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ac susceptibility for complex 2 under a 2000 Oe dc field.

The best-fitting results for the Arrhenius equation (Equation (1)) [66,67] gave an
energy barrier Ueff ≈ 17.5 K and a relaxation time τ0 ≈ 2.3 × 10−6 s from the frequency
dependencies of the ac susceptibility (Figure 8).

ln(1/τ) = ln(1/τ0) − Ueff/kt (1)

where k is the Boltzmann constant, and 1/τ0 is the pre-exponential factor.
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The Cole−Cole plot (χ” vs. χ′) is shown in the inset of Figure 8 as evidence of the
relaxation process occurring in complex 2.

3. Materials and Methods

Both complexes were synthesised from the starting material [Co2(µ-OH2)(O2CtBu)4]
·(HO2CtBu)4, Co2. All the reagents were used as received from Sigma Aldrich without any
further purification. The magnetic behaviour of the compounds was studied on a Quantum
Design SQUID-VSM magnetometer. Diamagnetic corrections were made with Pascal’s
constants for all of the constituent atoms [68]. Magnetic susceptibility measurements were
performed in 1.8–300 K with an applied field of 0.1 T. Infrared spectra were collected for
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the solid samples using KBr pellets on a Perkin Elmer Fourier-transform infrared (FTIR)
spectrometer in the range of 400–4000 cm−1. An Elementar vario Microcube elemental
analyser was used to get the elemental analysis data.

Single-crystal X-ray structural studies of 1 & 2 were carried out on a CCD Bruker
SMART APEX 2 CCD diffractometer under the cold flow of an Oxford device. Data were
collected using graphite−monochromated Mo Kα radiation (λα = 0.71073 Å). Structure so-
lution, refinement and data reduction were carried out by (SHELXTL-97), SAINT and SAD-
ABS programs [69–71]. Large solvent accessible voids are present in the structures, which
are probably filled with disordered solvent molecules. Therefore, SQUEEZE/PLATON was
used to remove or fix these disorders [72]. The CIF format of the data is available in CCDC
numbers 1,050,639 and 1,050,640 and is also summarized in Table S2.

4. Conclusions

Two structurally dissimilar heterometallic aggregates were successfully synthesised
from a preformed precursor and triethanolamine. The Gd analogue displays a significant
magnetocaloric effect, and the Dy-containing compound shows the slow relaxation of the
magnetisation. The results are a good addition to the 3d-4f heterometallic aggregates in
general and those obtained from polyalcohol-based ligands in particular. This work should
be useful to the sensible strategy and production of a library of heterometallic magnetic
materials employing different polytopic ligands.

Supplementary Materials: The following supporting information can be downloaded online, Figure S1:
Field dependencies of isothermal normalised magnetisations for complex 1 collected for temperatures
ranging from 2–10 K. Figure S2: Field dependencies of isothermal normalised magnetisations for
complex 2 collected for temperatures ranging from 2–10 K. Figure S3: M/NµB vs. H/T plots for
complex 2 at 2–10 K. Figure S4: Temperature dependence of the in-phase (χ′) ac susceptibility for
complex 2 under a zero dc field. Figure S5: Temperature dependence of the out-of-phase (χ”) ac
susceptibility for complex 2 under a zero dc field. Figure S6: Temperature dependence of the in-phase
(χ′) ac susceptibility for complex 2 under a 2000 Oe dc field. Figure S7: Frequency dependence of the
in-phase (χ′) ac susceptibility for complex 2 under a 2000 Oe dc field. Table S1: BVS calculations for
complexes 1 and 2. Table S2: Crystal data and structure refinement for complexes 1 and 2.
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