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Abstract: The hemp seed contains protein fractions that could serve as useful ingredients for food 
product development. However, utilization of hemp seed protein fractions in the food industry can 
only be successful if there is sufficient information on their levels and functional properties. There-
fore, this work provides a comparative evaluation of the structural and functional properties of 
hemp seed protein isolate (HPI) and fractions that contain 2S, 7S, or 11S proteins. HPI and protein 
fractions were isolated at pH values of least solubility. Results showed that the dominant protein 
was 11S, with a yield of 72.70 ± 2.30%, while 7S and 2S had values of 1.29 ± 0.11% and 3.92 ± 0.15%, 
respectively. The 2S contained significantly (p < 0.05) higher contents of sulfhydryl groups at 3.69 
µmol/g when compared to 7S (1.51 µmol/g), 11S (1.55 µmol/g), and HPI (1.97 µmol/g). The in vitro 
protein digestibility of the 2S (72.54 ± 0.52%) was significantly (p < 0.05) lower than those of the other 
isolated proteins. The intrinsic fluorescence showed that the 11S had a more rigid structure at pH 
3.0, which was lost at higher pH values. We conclude that the 2S fraction has superior solubility, 
foaming capacity, and emulsifying activity when compared to the 7S, 11S, and HPI. 

Keywords: hemp seed; globulins; albumin; amino acid composition; intrinsic fluorescence; circular 
dichroism; functional properties; protein digestibility 
 

1. Introduction 
The global demand for food proteins continues to grow and is expected to generate 

an estimated $76.48 billion in revenue by 2027 [1]. The reasons for increased demand for 
food-derived proteins have been associated with their nutritional and techno-functional 
properties and health benefits [2]. Thus, food proteins have become prominent ingredi-
ents in the food industry. Recently, there has been a growing interest in hemp seed pro-
teins due to their high nutritional properties such as high digestibility and contents of 
sulfur-containing amino acids and arginine [3–6]. The main storage protein in hemp seed 
is edestin (globulins), which accounts for 60–80% of the total protein, while albumins con-
stitute approximately25% [7]. Currently, the available hemp seed proteins in the market 
are mainly defatted flours and protein concentrates, which are produced from cold-
pressed seeds to remove the oil. Although hemp seed protein flours and concentrates have 
been successfully incorporated into a variety of products such as protein shakes, hemp 
milk, energy bars, and defatted meals, their use as ingredients in food applications is still 
limited due to poor functional properties [3,4,8]. 

Previous works have studied the potential use of hemp seed proteins as functional 
ingredients in food formulation. For example, Tang et al. [9] examined the functional 
properties of hemp seed protein isolate (86.9% protein content) obtained from defatted 
meal using alkaline solubilization followed by isoelectric precipitation at pH 5.0. With the 
exception of methionine and cysteine, the protein isolate contained levels of essential 
amino acids that satisfy human nutrition requirements. The effect of limited enzymatic 
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hydrolysis on the functional properties of hemp seed protein was carried out by Yin et al. 
[10]. Malomo and Aluko [11] compared the functional properties of a protein concentrate 
obtained by membrane ultrafiltration (after the digestion of the defatted meal using car-
bohydrase and phytase to remove non-protein materials) with those of a protein isolate 
obtained by isoelectric precipitation. A comparative study of the structural and functional 
properties of hemp seed albumin and globulin protein fractions was carried out by 
Malomo and Aluko [12]. Wang et al. [13] studied the physicochemical and nutritional 
properties of hemp seed 11S (legumin), which had an isoelectric point at pH 6.4 when 
compared to the 7S (Vicilin) with least solubility at pH 4.6. The 7S was limited in contents 
of methionine and cysteine in contrast to the 11S, which contained sufficient amounts of 
all the essential amino acids. Dapcevic-Hadnadev et al. [3] recently reported the effect of 
protein isolation method on the emulsifying properties of hemp seed proteins. However, 
to the best of our knowledge, information is scant on the comparative structural and func-
tional properties of a hemp seed fractions enriched in 11S, 7S, and 2S proteins. The present 
work presents new information on the physicochemical and functional properties of HPI, 
11S, 7S, and 2S hemp seed proteins, which could promote their use as ingredients to for-
mulate novel food products. Hence, the aim of this study was to determine the structural 
and functional properties of hemp seed extracts enriched with 11S, 7S, and 2S proteins in 
comparison to the protein isolate. 

2. Results 
2.1. Proximate Composition 

The proximate compositions of HPI, 11S, 7S, and 2S are shown in Table 1. The mois-
ture content was significantly higher in the 2S protein fraction, which could have contrib-
uted to the reduced fat level when compared to HPI, 11S, and 7S. The HPI and 11S had 
significantly higher crude protein content, which indicates greater protein purity when 
compared to the 2S and 7S protein fractions. Fat content was highest in the 11S followed 
by the 7S, while the lowest level was present in the 2S fraction. The 11S had the signifi-
cantly lowest ash content, which indicates the presence of lower amounts of mineral com-
pounds when compared to the HPI, 2S, and 7S proteins. In general, all the proteins had 
very low (<1.5%) fiber contents and the 2S was almost devoid of this non-nutrient poly-
saccharide. 

Table 1. Proximate composition of hemp seed protein isolate (HPI) and fractions (2S, 7S, 11S). 

Sample Moisture (%) Protein (%) Fat (%) Ash (%) Fibre (%) 
HPI 4.11 ± 0.01 d 87.14 ± 0.08 a 2.14 ± 0.01 c 8.63 ± 0.01 a 0.11 ± 0.13 b 
11S 4.84 ± 0.03 c 87.23 ± 0.04 a 6.46 ± 0.06 a 1.50 ± 0.17 c 1.12 ± 0.47 a 
7S 5.18 ± 0.06 b 57.70 ± 0.19 c 5.33 ± 0.42 b 8.66 ± 0.04 a 1.04 ± 0.12 a 
2S 8.45 ± 0.03 a 66.34 ± 0.01 b 0.67 ± 0.09 d 6.31 ± 0.06 b 0.01 ± 0.01 c 

Each value is the mean and standard deviation of duplicate determinations. Within the same col-
umn, mean values with different letters are significantly different (p < 0.05). 

2.2. Yield, Digestibility, Sulfhydryl Group, and Bound Carbohydrate 
Table 2 shows that the 11S globulin is the predominant protein in hemp seed, ac-

counting for approx. 73% of the total proteins while the 7S and 2S can be considered as 
minor proteins. In the present study, a combination of proteases was used to simulate the 
gastrointestinal enzymatic process that occurs in the normal human digestion of food pro-
teins. Results show that the 2S protein had significantly lower digestibility than the HPI, 
11S, and 7S proteins (Table 2). HPI and 11S had similar protein digestibility, though higher 
than that of 7S. However, the 2S protein had significantly higher levels of exposed and 
total sulfhydryl groups when compared to the HPI, 11S, and 7S. The 11S had the lowest 
number of exposed sulfhydryl groups as well as bound carbohydrates, but the 2S and 7S 
contained similar contents of bound carbohydrates, which were higher than that of the HPI. 
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Table 2. Yield, in vitro protein digestibility (IVPD), sulfhydryl groups (SH), and bound carbohy-
drates (CHO) of hemp seed protein isolate (HPI) and fractions (2S, 7S, 11S). 

Sample Protein Yield (%) IVPD (%) Exposed SH 
(µmol/g) 

Total SH 
(µmol/g) 

CHO 
(%) 

HPI 82.72 ± 4.36 a 88.10 ± 0.26 a 1.16 ± 0.02 c 1.97 ± 0.07 b 5.16 ± 0.95 b 
11S 72.70 ± 2.30 b 88.28 ± 0.17 a 0.57 ± 0.04 d 1.55 ± 0.22 c 2.07 ± 0.09 c 
7S 1.29 ± 0.11 d 84.48 ± 0.30 b 1.32 ± 0.07 b 1.51 ± 0.12 c 10.36 ± 0.53 a 
2S 3.92 ± 0.15 c 72.54 ± 0.52 c 2.39 ± 0.14 a 3.69 ± 0.05 a 10.05 ± 0.49 c 

Each value is the mean and standard deviation of duplicate determinations. Within the same col-
umn, mean values with different letters are significantly different (p < 0.05). 

2.3. Amino Acid Composition 
Table 3 shows that the amino composition of the 2S protein (albumins) differs from 

those of 7S, 11S, and HPI (mainly globulins). The 2S had lower contents of aspartic+aspar-
agine (Asx), phenylalanine, tyrosine, and branched-chain amino acids (valine, leucine, 
isoleucine) but higher contents of glutamic+glutamine (Glx) and cysteine. Except for a 
slightly higher level of sulfur-containing amino acids (SCAAs), the amino acid composi-
tion of the 11S was similar to that of the HPI. The 11S and HPI also had higher levels of 
Arg/Lys ratios when compared to the 2S and 7S protein fractions. The total level of aro-
matic amino acids (AAA), hydrophobic amino acids (HAA), and essential amino acids 
(EAA) were lower in the 2S than the 7S, 11S, and HPI. With the exception of threonine, 
histidine, and lysine, the 2S had essential amino acid levels that do not satisfy the mini-
mum requirement for children. In contrast, the 11S and HPI were deficient only in lysine, 
while the 7S had levels of essential amino acids that meet the FAO-suggested levels for 
children. 

Table 3. Percent amino acid composition of hemp seed protein isolate (HPI) and fractions (2S, 7S, 
and 11S). 

Amino Acids 2S 7S 11S HPI FAO-/WHO-Suggested Require-
ments (2–5 Years) 

Asx 7.50 9.15 11.04 11.60  
Thr 4.14 3.79 3.44 3.49 3.4 
Ser 5.01 5.04 5.61 5.36  
Glx 25.63 20.95 18.44 18.13  
Pro 3.93 3.87 3.74 3.64  
Gly 5.75 4.17 4.06 4.18  
Ala 5.86 5.46 5.18 5.19  
Cys 4.88 2.24 1.56 1.22  
Val 3.07 4.87 4.74 5.32 3.5 
Met 2.17 2.53 2.48 1.71  
Ile 1.99 3.70 3.81 4.36 2.8 

Leu 4.02 6.34 6.61 6.90 6.6 
Tyr 2.46 3.14 3.70 3.53  
Phe 1.43 3.67 4.49 4.78  
His 3.20 3.14 2.93 2.91 1.9 
Lys 6.36 6.45 3.44 3.28 5.8 
Arg 12.45 10.79 13.55 13.24  
Trp 0.18 0.70 1.19 1.14 1.1 

HAA 30.86 38.45 40.00 40.80  
AAA 4.07 7.51 9.38 9.45 6.3 

NCAA 33.13 30.1 29.04 29.73  
PCAA 22.01 20.38 19.92 19.43  
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SCAA 7.05 4.77 4.04 2.93 2.5 
EAA 26.56 35.19 33.13 33.89 32.8 

BCAA 9.08 14.91 15.16 16.58  
Arg/Lys ratio 1.96 1.67 3.94 4.04  
Asx = aspartic acid + asparagine; Glx = glutamic acid + glutamine; AAA = aromatic amino acids; 
BCAA = branched-chain amino acids; HAA = hydrophobic amino acids; NCAA = negatively 
charged amino acids; PCAA = positively charged amino acids; SCAA = sulfur-containing amino 
acids; EAA = essential amino acids. 

2.4. Gel Electrophoresis (SDS-PAGE) 
The SDS-PAGE profiles of the polypeptide components of HPI, 11S, 7S, and 2S in the 

presence (reduced) and absence (non-reduced) of mercaptoethanol are presented in Fig-
ure 1A and 1B, respectively. The 2S profile under non-reduced conditions had five major 
polypeptides that are <30 kDa while the 7S, 11S, and HPI consisted of additional polypep-
tides with up to 150 kDa in size. The 7S profile under non-reduced conditions confirmed 
the presence of four major polypeptides (150, 100, 49, and 15 kDa). The non-reduced 11S 
and HPI had a similar five polypeptide bands with a basic subunit (18 to 20 kDa) and an 
acidic subunit (30 to 40 kDa) and other polypeptides showing MW values of 47, 80, 120, 
and 160 kDa. The similarity of the polypeptide composition of 11S and HPI is consistent 
with the dominant role of 11S as the major (approx. 73%) hemp seed protein (Table 2). 
Moreover, the 7S, 11S, and HPI all contained polymeric proteins that could not enter the 
gel (PP) under non-reduced conditions (Figure 1B), which indicates protein aggregation 
and a hydrophobic character. In contrast, the 2S did not contain the polymeric aggregates 
(PP) and is an indication of a hydrophilic protein. Under the reduced condition, the 2S 
fraction had two major polypeptides (20 and 25 kDa) along with three minor bands, which 
present a different pattern when compared to the non-reducing condition and is an indi-
cation of the presence of disulfide bonds in the native protein. Similarly, the polypeptide 
profiles of 7S, 11S, and HPI under reduced conditions were different from those of non-
reducing conditions, which also confirm the presence of disulfide bonds in the native 
forms of these proteins. The protein aggregates (PP) observed for 7S, 11S, and HPI under 
non-reduced conditions disappeared under reduced conditions, which indicate conver-
sion into smaller monomeric polypeptides after the disruption of the disulfide bonds. 

 
(A) (B) 

Figure 1. SDS-PAGE of hemp seed protein isolate (HPI) and fractions (2S, 7S, and 11S) under reduc-
ing (A) and non-reducing (B) conditions. 

2.5. Intrinsic Fluorescence Emission 
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The fluorescence intensity (FI) of the hemp seed proteins was maximal (λmax) at 338-
344 nm at all the pH values (Figure 2). At pH 3.0, the 11S fraction exhibited a more com-
pact structure, which is reflected in the higher FI when compared to the 2S, 7S, and HPI. 
At pH 5.0 and 7.0, the 11S and HPI assumed disorganized structures, which increased 
interactions with the hydrophilic environment, as evident in their low FI values (indica-
tive of fluorescence quenching), while there was a slight increase at pH 9.0. In contrast, 
the 2S and 7S had less compact structures (lower FI) at pH 3.0 but were significantly en-
hanced (higher FI) at pH 5.0, 7.0, and 9.0. 

 
Figure 2. Intrinsic fluorescence intensity of hemp seed protein isolate (HPI) and fractions (2S, 7S, 
and 11S). 

2.6. Secondary and Tertiary Structure Conformations 
The effect of pH on the secondary structure conformations of hemp seed proteins are 

shown as changes in ellipticity values (Figure 3) and proportions of each structural type 
(Table 4). At pH 3.0, the 2S had a secondary structure dominated mostly (80%) by the α-
helix conformation (Table 2), as is also evident in the intense ellipticity between 200 and 
220 nm (Figure 3) when compared to 7S, 11S, and HPI. As the pH increased, the 2S lost 
most of the α-helix conformation accompanied by high levels of the β-sheet and unor-
dered conformations. In contrast, the secondary structure of 7S, 11S, and HPI proteins was 
dominated mainly by β-sheet and unordered conformations at all the pH values (Table 2). 
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Figure 3. Far-UV spectra of hemp seed protein isolate (HPI) and fractions (2S, 7S, and 11S) at differ-
ent pH values. 

Table 4. Circular dichroism-derived protein secondary structure composition of hemp seed protein 
isolate (HPI) and fractions (2S, 7S, and 11S) at different pH values. 

pH Samples α-Helix (%)  β-Sheet (%) β-Turns (%) Unordered (%) 

pH 3 

2S 80.40 ± 0.00 0.70 ±0.00 5.95 ± 0.01 1.53 ± 0.03 
7S 4.40 ± 0.00 31.18 ± 0.00 17.30 ± 0.00 46.66 ± 0.00 

11S 3.10 ± 0.01 37.45 ± 0.02 17.45 ± 0.01 43.65 ± 0.00 
HPI 2.20 ± 0.01 43.45 ± 0.03 19.45 ± 0.01 34.95 ± 0.00 

pH 5 

2S 18.60 ± 0.00 3.90 ± 0.01 12.50 ± 0.03 65.05 ± 0.04 
7S 1.40 ± 0.00 39.50 ± 0.00 20.35 ± 0.00 39.05 ± 0.00 

11S 1.55 ± 0.00 43.25 ± 0.02 21.30 ± 0.01 35.50 ± 0.00 
HPI 1.85 ± 0.00 41.50 ± 0.01 20.30 ± 0.00 36.35 ± 0.01 

pH 7 

2S 1.35 ± 0.01 37.55 ± 0.02 17.55 ± 0.00 47.05 ± 0.01 
7S 2.20 ± 0.00 40.80 ± 0.02 19.05 ± 0.03 38.85 ± 0.03 

11S 3.45 ± 0.00 44.25 ± 0.00 20.30 ± 0.00 32.20 ± 0.00 
HPI 17.40 ± 0.01 26.05 ± 0.01 20.20 ± 0.04 36.15 ± 0.04 

pH 9 

2S 4.55 ± 0.02 34.30 ± 0.00 17.30 ± 0.00 46.90 ± 0.00 
7S 3.30 ± 0.00 37.10 ± 0.00 17.05 ± 0.00 46.60 ± 0.00 

11S 0.00 ± 0.00 55.45 ± 0.02 23.60 ± 0.01 24.15 ± 0.00 
HPI 0.00 ± 0.00 45.95 ± 0.01 13.70 ± 0.00 39.99 ± 0.03 

The pH-dependent tertiary structure conformations of the hemp seed proteins, as 
analyzed by near-UV CD spectroscopy, are shown in Figure 4. At pH 3.0, the 2S and 7S 
had a more organized tertiary structure (increased ellipticity between 260 and 290 nm) 
when compared to 11S and HPI. At pH 5.0, there was a slight increase in the compactness 
of the 2S protein, as evident in the increased ellipticity, whereas the 7S lost a significant 
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part of the compact structure and hence had reduced ellipticity values when compared to 
pH 3.0. At pH 7.0, there was a significant increase in the ellipticity values of HPI, which 
reflects a more compact structure when compared to 2S, 7S, and 11S. 

 
Figure 4. Near-UV spectra of hemp seed protein isolate (HPI) and fractions (2S, 7S, and 11S) at dif-
ferent pH values. 

2.7. Protein Solubility Profiles 
Figure 5 shows the pH-dependent solubility of 11S, 7S, 2S, and HPI. The results indi-

cate that HPI and 11S had similar solubility profiles in which the proteins have moderate 
(30–60%) solubility at pH 3.0, which decreased significantly (P < 0.05) at pH 5.0–9.0. The 
PS profile of 7S shows that the protein is fairly soluble at pH 3.0 and 4.0, characterized by 
minimal solubility around the isoelectric point, and higher solubility at pH 5.0–9.0. The 2S 
fraction was highly soluble over a wide pH range, with values reaching 97–99% at pH 5.0–9.0. 
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Figure 5. pH-dependent changes in the solubility of hemp seed protein isolate (HPI) and fractions 
(2S, 7S, and 11S). 

2.8. Water Holding Capacity (WHC), Oil Holding Capacity (OHC), and Least Gelation  
Concentration 

The WHC of HPI was significantly (p < 0.05) higher than the values obtained for 7S 
and 11S (Table 5). The WHC of 2S was not reported due to complete solubility in water. 
The OHC is the ability of non-polar side chains of protein to interact with aliphatic chains 
of oil/fat and is usually expressed as the amount of fat/oil that can be absorbed per gram 
of protein. The 2S and HPI had similar OHCs, which were significantly higher (P < 0.05) 
than the values obtained for 7S and 11S. The LGC results show that the 7S has a higher 
ability to form a gel, hence a smaller amount of the protein is required when compared to 
2S, 11S, and HPI (Table 5). 

Table 5. Water holding capacity (WHC), oil holding capacity (OHC), and least gelation concentra-
tion (LGC) of hemp seed protein isolate (HPI) and fractions (2S, 7S, and 11S).* 

Sample WHC (g/g) OHC (g/g) LGC (%) 
HPI 5.81 ± 0.01 a 10.32 ± 0.01 a 22.00 ± 0.00 c 
11S 3.63 ± 0.03 c 5.97 ± 0.08 b 30.00 ± 0.00 d 
7S 4.09 ± 0.21 b 4.93 ± 0.51 b 10.00 ± 0.00 a 
2S  11.04 ± 0.01 a 14.00 ± 0.00 b 

* For each column, values with different letters are significantly different (p < 0.05). 

2.9. Foaming Capacity (FC) and Foam Stability (FS) of Hemp Seed Proteins 
The FCs of hemp seed proteins at different pH values indicate that the 2S fraction 

produced significantly (p ˂ 0.05) larger volumes of foam than those of 7S, 11S, and HPI at 
all the pH values (Table 6). In general, the FCs of HPI, 11S, and 7S were minimal at pH 
5.0, which is within the pH 4.5-5.0 isoelectric point range for the proteins. In contrast, the 
2S had high FC in the acidic pH 3.0 and 5.0 with a slight reduction at pH 7.0. Figure 6 
shows that the 2S has lower FS when compared to the 7S, 11S, and HPI, especially at pH 
3.0 and 5.0. Generally, all the proteins produced stable foams (85% stability) over the 30 
min measurement duration. 
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Table 6. Foaming capacity of hemp seed protein isolate (HPI) and fractions (2S, 7S, and 11S).* 

Sample pH 3.0 (%) pH 5.0 (%) pH 7.0 (%) 
HPI 75.00 ± 7.07 c 55.00 ± 7.07 c 75.00 ± 7.07 c 
11S 60.00 ± 0.00 d 60.00 ± 0.00 b 90.00 ± 0.00 b 
7S 95.00 ± 7.07 b 60.00 ± 0.00 b 60.00 ± 0.00 d 
2S 195.00 ± 7.07 a 185.00 ± 7.07 a 150.00 ± 0.00 a 

* For each column, values with different letters are significantly different (p < 0.05). 

 
Figure 6. Foam stability of hemp seed protein isolate (HPI) and fractions (2S, 7S, and 11S) at different 
pH values. Bars with different letters have significantly different values (p < 0.05). 

2.10. Emulsion Formation (Oil Droplet Size) and Stability 
The emulsifying capacities of 2S, 7S, 11S, and HPI were analyzed by measuring the 

mean oil droplet size (d3,2) of emulsions formed by these proteins at different pH values. 
The 2S fraction consistently formed smaller oil droplets when compared to the 7S, 11S, 
and HPI proteins at all pH values (Table 7). The results show that the 2S protein has better 
emulsifying properties (smaller oil droplet sizes) when compared to 7S, 11S, and HPI, 
which formed bigger oil droplet sizes. At pH 3.0 and 5.0, the 11S had a better emulsifying 
capacity (smaller d3,2 values) when compared to 7S and HPI, whereas at pH 7.0, the 7S was 
better. The emulsions formed with 2S, 7S, and 11S proteins exhibited better stability at all 
pH values when compared to those formed with HPI (Figure 7). 

Table 7. Oil droplet sizes (d3,2) of emulsions formed with hemp seed protein isolate (HPI) and frac-
tions (2S, 7S, and 11S).* 

Sample pH 3.0 (µm) pH 5.0 (µm) pH 7.0 (µm) 
HPI 12.65 ± 0.88 d 6.23 ± 0.36 a 4.90 ± 0.07 c 
11S 5.50 ± 0.13 b 6.06 ± 0.43 a 5.66 ± 0.27 d 
7S 7.62 ± 0.14 c 6.79 ± 0.22 a 4.45 ± 0.23 b 
2S 4.19 ± 0.17 a 4.29 ± 0.20 b 2.25 ± 0.01 a 

* For each column, values with different letters are significantly different (p < 0.05). 

 



Molecules 2022, 27, 1059 10 of 19 
 

 

 
Figure 7. Emulsion stability of hemp seed protein isolate (HPI) and fractions (2S, 7S, and 11S) at 
different pH values. Bars with different letters have significantly different values (p < 0.05). 

3. Discussion 
Knowledge of the physicochemical properties of food proteins is very important in 

providing a mechanistic understanding of how they may function as ingredients in food 
product formulations. In this work, we have provided new information on the chemical 
composition and structural properties of hemp seed protein fractions as a means of en-
hancing their utilization as food ingredients. The higher moisture content of the 2S, when 
compared to other fractions (Table 1), could be associated with the lower fat, which favors 
interactions with water molecules. The presence of attached carbohydrate molecules may 
have also enhanced the interactions with water molecules, as evident in the higher mois-
ture content of 2S and 7S proteins, both of which have higher carbohydrate contents when 
compared to HPI and 11S (Table 2). The 87% protein content obtained for HPI is the same 
as the value reported by Tang et al. [9]. Wang et al. [13] had reported 90% and 93% protein 
contents for HPI and 11S, which are slightly higher than the 87% obtained in the present 
study. In contrast, the ~58% protein content of the 7S is lower than the ~88% reported by 
Wang et al. [13], which may be due to differences in the raw materials used for the protein 
extraction. The lower protein contents observed in 7S and 2S may be due to the presence 
of higher levels of attached carbohydrate molecules (Table 2) when compared to the 11S 
and HPI proteins. The results are consistent with previous works that have reported that 
the 2S [14,15] and 7S [16] proteins of different legume seeds are glycoproteins with cova-
lently bound carbohydrate moieties. The 11S had the lowest ash content, which suggests 
the presence of lower amounts of mineral compounds when compared to the HPI, 2S, and 
7S proteins. The ash contents of the HPI and 7S are higher than the <0.4% values reported 
by Wang et al. [13]. 

Table 2 shows that the 11S globulin is the predominant protein in hemp seed, ac-
counting for approx. 73% of the total proteins while the 7S and 2S can be considered as 
minor proteins. This is in contrast to some legume seeds where the 7S is more abundant 
than the 11S [17,18]. Using a similar isoelectric protein precipitation method, Tang et al. 
[9] reported approx. 73% while Hadnadev et al. [4] and Shen et al. [6] obtained ~51% and 
~47% protein yields, respectively, for HPI, which are lower than the ~83% obtained in the 
current work. The higher HPI yield obtained in this work may be due to the lab-scale 
defatting at room temperature, which would have produced a meal with reduced protein 
denaturation when compared to the 40 °C meal used by Tang et al. [9]. The effect of raw 
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material quality is further demonstrated by the approx. 38% HPI yield reported by 
Malomo et al. [8], which was produced from a meal obtained by mechanical press-defat-
ted hemp seed meal. 

In the present study, in vitro protein digestibility was determined to estimate suscep-
tibility to gastrointestinal proteases and hence amino acid bioavailability during dietary 
consumption. The 2S had lower digestibility, which could be associated with its high con-
tent of total sulfhydryl groups (Table 2) when compared to HPI, 11S, and 7S proteins. The 
2S (albumins) contains proteins with a conserved skeleton of cysteine residues, which 
form several rigid intermolecular disulfide bonds that enhance stability to proteolytic at-
tack [19]. House et al. [5] reported protein digestibility that ranged from 83.50 to 97.50% 
for hemp products, which are consistent with the values obtained for HPI, 11S, and 7S in 
this work. HPI and 11S had similar protein digestibility, though higher than that of 7S, 
which is consistent with the work of Wang et al. [13]. 

The 2S had the highest level of SCAAs (Table 3), which suggests a potentially better 
antioxidative effect than 7S, 11S, and HPI because of the suggested role of the sulfhydryl 
group in enhanced iron-reducing and hydrogen peroxide scavenging [20]. The levels of 
SCAAs obtained in this work are higher than the values reported by Wang et al. [13], 
which may be attributed to differences in the source of the defatted meal used for protein 
extraction. HPI and 11S had arginine/lysine ratios of 4.0 and 3.9, respectively, which are 
higher than those of 7S (1.7) and 2S (1.9). A high ratio has been reported to have a benefi-
cial effect in lowering blood cholesterol and thereby contributing to overall cardiovascular 
health [21]. Therefore, the HPI and 11S may have better cardiovascular health benefits 
than the 2S and 7S proteins. The arginine/lysine ratios obtained in this work are consistent 
with the 1.74 and 4.37 reported for hemp seed albumin and globulin, respectively [12]. 
The HPI, 11S, and 7S (globulins) have higher contents of branched-chain amino acids 
(BCAAs) than the 2S (albumin), which has implications for human health. This is because 
BCAAs are part of indispensable amino acids and play remarkable metabolic and regula-
tory roles since about 40% of the total protein required by mammals and 35% of muscle 
protein essential amino acids are BCAAs [22]. BCAAs enhance protein synthesis, improve 
metabolic processes, improve immune functions, reduce oxidative stress, and improve 
gut health [23], which further emphasizes the higher nutritional value of HPI, 11S, and 7S 
when compared to the 2S. The total amount of essential amino acids (EAA) in HPI, 11S, 
and 7S are similar to the ~33% level suggested by the FAO/WHO for children’s health 
maintenance. In contrast, the 2S content of EAA is slightly below the minimum recom-
mended level. 

The polypeptide composition, as shown in Figure 1A and 1B, indicates similarities 
between 11S and HPI. The 49 kDa polypeptide in the present study is similar to the 47 
kDa reported for the 7S of hemp protein by Wang et al. [13]. A previous work has also 
shown similar HPI polypeptides as obtained in this work under reducing and non-reduc-
ing conditions [4]. The lack of polymeric forms (PP) of the 2S could be due to the presence 
of a high number of sulfhydryl groups (Table 2), which enhances the greater formation of 
disulfide bonds and confers a more rigid structure to make the protein more resistant to 
protein–protein interactions when compared to the 7S, 11S, and HPI proteins. 

The intrinsic fluorescence properties of a protein are determined by the location of 
its aromatic amino acid residues [24]. The 338-344 nm λmax obtained in this work is sim-
ilar to the 344 and 340 nm reported for the 7S and 11S of soybean proteins [25]. The higher 
FI of the 11S protein at pH 3.0 indicates a more hydrophilic surface, which led to the pack-
ing of aromatic residues into the interior while the opposite was the case with the other 
protein fractions. However, at higher pH values, the presence of greater numbers of at-
tached carbohydrate residues may have enhanced the surface hydrophilic properties of 
the 2S and 7S proteins, which influenced structural rearrangements that moved the aro-
matic residues into the non-polar interior, hence giving a higher FI when compared to the 
11S and HPI. The intrinsic fluorescence data obtained for 11S and HPI in this study are in 
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agreement with those reported for HPI by Malomo et al. [8], who observed the quenching 
of the FI of HPI at pH 5.0 and an increase in the FI at both acidic and alkaline pH values. 

The far-UV data for 7S, 11S, and HPI show pH-dependent variations in secondary 
conformation, which are in agreement with the work of Choi and Ma [26], who reported 
that buckwheat globulins possess higher contents of β-sheet strands than α-helix at pH 3–
11. This is important because high levels of β-sheet strands have been reported to be di-
rectly related to the ability of the protein to make strong gels [27]. The actual shape and 
magnitude of the near-UV spectrum of a protein in the region of 250 nm to 320 nm depend 
on the number of each type of aromatic amino acid residues, their mobility, and the nature 
of their environment, as well as their spatial disposition in the protein [28]. At pH 3.0, the 
more organized tertiary structure of 2S and 7S may be due to the presence of attached 
carbohydrates, which are not ionized and hence have fewer repulsions within the pro-
teins. In contrast, the lack of a defined tertiary structure (almost zero ellipticity) for the 
11S and HPI could indicate the presence of charged groups within the protein, hence 
strong protein–protein repulsions. At pH 7.0, the HPI had higher ellipticity values, which 
reflect increased interactions of the protein surface with the hydrophilic environment and 
the movement of the aromatic groups into the inner core of the protein when compared 
to the 2S, 7S, and 11S with looser structures. The 11S and HPI also had significant increases 
in a compact tertiary conformation at pH 9.0, which reflects increased protein surface in-
teractions with the hydrophilic environment. An increase in negative charges as the pH 
moves towards alkaline pH would produce a more hydrophilic environment, which fa-
vors structural rearrangements that relocate aromatic residues into hydrophobic environ-
ments away from the protein surface. 

The similar solubility profile of the HPI and 11S is consistent with their comparable 
polypeptide profiles and amino acid composition, which further confirms that the major 
proteins in hemp seed are the 11S globulins. The low solubility of 11S and HPI could be 
attributed to the high contents of hydrophobic amino acids, which enhance protein–pro-
tein interactions and result in protein aggregation and weak interactions with the water 
environment. The results are consistent with the detection of protein aggregates under 
non-reducing gel electrophoresis (Figure 1B), as well as previous reports that showed that 
hemp seed proteins exhibited poor solubility [8,9]. However, Hadnadev et al. [4] and Shen 
et al. [6] reported higher HPI solubility values than obtained in this work, which may be 
due to differences in the source of the defatted meal used for the protein isolate prepara-
tion. Moreover, the HPI used in this work was prepared through precipitation at pH 4.2, 
which may have led to greater protein aggregation (reduced solubility) than the pH 5.0 
used in previous reports [4,6]. The improved solubility of 7S at alkaline pH may be asso-
ciated with its smaller polypeptide sizes and the high content of attached carbohydrate 
residues, which could enhance net charge density. These structural features of the 7S pro-
tein will increase flexibility and interactions with the water environment when compared 
to the 11S and HPI proteins with bigger polypeptides and smaller numbers of attached 
carbohydrate residues. The high solubility of the 2S fraction over a wide pH range is con-
sistent with previous reports for albumin fractions of other plant proteins [12,29]. The 
presence of a high level of attached carbohydrate residues (Table 2), the low molecular 
weight of polypeptides (Figure 1), and the low level of hydrophobic amino acids coupled 
with high levels of positively and negatively charged amino acids (Table 3) may have 
contributed to the high solubility of the 2S protein. It has also been shown that the expo-
sure of the SH group could enhance protein interactions with water [15,30]. Hence, the 
higher content of exposed SH (Table 2) in the 2S could have contributed to the observed 
superior protein solubility when compared to the 7S, 11S, and HPI. 

The higher WHC of HPI suggests a higher degree of protein aggregation (enhances 
trapping of water molecules) than the 7S and 11S proteins, as previously reported for ag-
gregated soybean proteins [31]. Ajibola et al. [14] also obtained no value for the albumin 
fraction of African yam bean protein because of its complete solubility in water, a result 
that is similar to the 2S in the present work. This is consistent with a previous report 
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stating that proteins with high solubility exhibit minimal WHC [32]. The OHC obtained 
for HPI in this study is comparable to the 13.7 g/g value reported by Malomo et al. [8] but 
higher than the 5.27 g/g reported by Tang et al. [9] for hemp seed protein isolate. The OHC 
of a protein has been reported to be a function of several parameters, such as the physical 
entrapment of oil, protein surface area, size, charge, and hydrophobicity [14]. The high 
OHC of HPI and 2S suggest potential use in the food industry for the formulation of meat 
substitutes, ground meat, baked goods, extenders, and soups. 

A protein’s ability to form gels is traditionally measured by the LGC, which may be 
defined as the lowest protein concentration required to form a self-supporting gel that 
does not slide along the test tube walls in the inverted position [33]. The ability of the 7S 
and 2S to form gels at lower protein concentrations of 10 and 14% (w/v), respectively, 
could be associated with their higher solubility, smaller polypeptide sizes, increased 
structural flexibility, and a high percentage of attached carbohydrate residues [34]. In con-
trast, the poor gelling ability of 11S and HPI may be due to their poor solubility, which 
limits the ability of the proteins to unfold and form the required network. The results are 
consistent with a recent work, which showed that increased levels of the 7S pea protein 
(low 11S/7S ratio) produced gels at lower protein concentrations than the extract with a 
high 11S/7S ratio [18]. Therefore, the presence of 7S in the HPI could be responsible for 
the better gelling property when compared to the 11S. Likewise, the better gelling ability 
of the 2S may have been due to higher contents of sulfur groups, which have been shown 
to contribute to the formation of strong gels that are stabilized by disulfide bonds [27]. 

The most crucial requirement for foam formation during whipping is the ability of a 
surfactant to rapidly reduce the free energy (interfacial tension) and form a continuous 
and highly viscous film at foam interfaces [35]. The higher FC of the 2S fraction (albumin), 
when compared to the globulins (7S, 11S, and HPI), is consistent with previous reports for 
soy proteins [35] and African yam bean albumin [14]. The better FC observed in the 2S 
fraction might be due to its smaller polypeptides, flexibility, and high solubility index, 
when compared to the more globular and larger 7S, 11S, and HPI proteins. It has been 
reported that the higher the hydrophobicity of a protein fraction, the more stable the film 
that forms at the air/water interface [35]. Therefore, the high hydrophobic amino acid con-
tents of 7S, 11S, and HPI (Table 3) may have improved protein–protein interactions to 
form strong interfacial membranes that reduced the coalescence rate of air bubbles (higher 
FS) better than the more hydrophilic 2S. 

The results of the emulsion oil droplet size are in agreement with Tay et al. [35], who 
showed that the 2S fraction of soybean protein exhibited better emulsifying capacity when 
compared to 7S and 11S. The high emulsifying properties observed in 2S could be at-
tributed to its smaller polypeptide sizes, which may have enabled rapid or more efficient 
rearrangement at the oil and water interface when compared to the larger 7S, 11S, and 
HPI polypeptides. The higher level of sulfhydryl groups could have also contributed 
through increased disulfide bonding to form strong interfacial membranes that enhanced 
oil droplet encapsulation. This is supported by a previous work, which showed that elec-
trochemical modification of a soybean protein isolate led to an increased number of 
sulfhydryl groups and better emulsion formation ability [36]. Wang et al. [37] also re-
ported that a soybean protein isolate with a higher level of free sulfhydryl groups formed 
smaller emulsions than the avocado protein. Since the 2S has a lower content of hydro-
phobic amino acids than 7S, 11S, and HPI, the results obtained in this work contrast with 
those previously reported for Camellia oleifera proteins, where protein hydrophobicity was 
a strong contributor to the emulsion-forming ability [38]. The better emulsifying capacity 
observed for the 7S protein at pH 7.0 indicates the increased ability of the protein to unfold 
and encapsulate oil droplet particles in a neutral environment. On the other hand, the 11S 
fraction has a higher ability at acidic pH values to unfold and encapsulate oil droplets. 
The results are consistent with the higher protein solubility of 11S at pH 3.0, which could 
have enhanced protein unfolding and encapsulation of the oil droplets when compared 
to HPI and 7S with lower solubility values. The better stability of emulsions formed at pH 
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3.0 and 5.0 with 2S and 7S proteins indicates the greater ability of the proteins to form 
stronger interfacial membranes that reduced oil droplet coalescence better than the 11S 
and HPI. The presence of higher numbers of exposed sulfhydryl groups in 2S and 7S pro-
teins may also have enabled the formation of proteins with more disulfide bonds and, 
hence, stronger interfacial membrane integrity than those formed by the 11S and HPI. 

4. Materials and Methods 
4.1. Materials 

Hemp seed hearts (dehulled) were purchased from Manitoba Harvest Fresh Hemp 
Foods Ltd. (Winnipeg, MB, Canada) and stored at −20 °C. Other analytical-grade chemi-
cals and reagents were procured from Fisher Scientific (Oakville, ON, Canada) or Sigma 
Aldrich (Sigma Chemicals, St. Louis. MO, USA). 

4.2. Preparation of Defatted Hemp Seed Flour (DHF) 
Hemp seed flour was obtained by grinding the hemp seed hearts in a laboratory 

blender, which was followed by defatting using acetone extraction at 1:10 (w/v) for 1 h at 
room temperature [39]. The mixture was allowed to settle, after which the acetone was 
decanted. The defatting process was repeated once, after which the residual flour was air-
dried in a fume hood at room temperature (23 °C) for 16 h. The resultant defatted meal 
was milled using a laboratory blender to obtain DHF, which was stored at −20 °C. 

4.3. Preparation of Hemp Seed Protein Isolate (HPI) 
HPI was produced from the DHF as described by Tang et al. [9], with slight modifi-

cations. The DHF was dispersed in deionized water (1:20, w/v), adjusted to pH 10.0 using 
2 M NaOH, and mixed at 37 °C for 2 h; the mixture was then centrifuged (7000× g; 30 min, 
4 °C). The supernatant was collected, adjusted to pH 4.2 with 2 M HCl to precipitate the 
proteins, and thereafter centrifuged (7000× g; 60 min; 4 °C). The resultant precipitate was 
washed with water, adjusted to pH 7.0 with 2 M NaOH, freeze-dried to obtain the HPI, 
and stored at −20 °C. 

4.4. Preparation of 11S, 7S, and 2S Protein-Enriched Fractions 
Fractions rich in 11S, 7S, and 2S proteins were prepared according to the protocols 

developed by Wang et al. [13]. DHF (100 g) was dispersed in distilled water (1:20, w/v) 
and adjusted to pH 10.0 with 2 M NaOH to solubilize the proteins at 37oC for 2 h, followed 
by centrifugation (7000× g; 30 min; 4 °C) to obtain supernatant A. Then, NaHSO3 was 
added (0.98 g/L) to supernatant A, adjusted to pH 6.4 with 1 M HCl (to precipitate the 11S 
fraction), and kept overnight at 4°C. The resultant dispersion was centrifuged (7000× g; 30 
min; 4 °C) and the supernatant (B) saved while the precipitate (A) was adjusted to pH 7.0 
with 2 M NaOH followed by dialysis against water for 3 days at 4 °C (3 water changes 
daily) using a 6-8 kDa molecular weight cut-off membrane. After dialysis, the precipitate 
A was freeze-dried as the 11S protein. The saved supernatant B was further adjusted to 
pH 4.6 with 2 M HCl (to precipitate the 7S fraction) and thereafter centrifuged (6500× g; 
20 min; 4 °C) to obtain precipitate B and supernatant C. Precipitate B was adjusted to pH 
7.0 with 2 M NaOH, and then dialyzed, as above, followed by freeze-drying to obtain the 
7S protein. Supernatant C was also dialyzed, as above, and freeze-dried as the 2S protein. 
The dried 2S, 7S, and 11S enriched protein fractions were stored at −20 °C. 

4.5. Proximate and Amino Acid Composition Analysis 
The moisture, crude protein, and ash were analyzed using the relevant AOAC [40] 

methods. The fat and fiber contents were determined using AOCS methods [41]. The pro-
tein-bound carbohydrate content was determined as described by Mundi and Aluko [15], 
while the amino acid profiles were determined using previously described methods [42]. 



Molecules 2022, 27, 1059 15 of 19 
 

 

4.6. Determination of In Vitro Protein Digestibility 
The in vitro digestibility of the proteins was determined according to the method of 

Hsu et al. [43], with slight modifications, using an enzyme system consisting of trypsin 
and chymotrypsin. A 10 mL aliquot of aqueous protein suspension (6.25 mg protein/mL) 
in double-distilled water was adjusted to pH 8.0 with 0.1 M NaOH while stirring at 37 °C. 
The enzyme solution (containing 1.6 mg/mL trypsin and 3.1 mg/mL chymotrypsin) was 
maintained in an ice bath and 1 mL of the solution was added to the protein suspension. 
The pH drop was recorded over a 10 min period and the protein digestibility of each pro-
tein sample was calculated as follows: 

Protein digestibility (%) = 210.46 − 18.10Xf  (1)

where Xf is the final pH value of each sample after a 10 min digestion. 

4.7. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 
SDS-PAGE was performed according to the method of Ijarotimi et al. [42] using 8–

25% gradient gel for polypeptide separation and development on a Phastsystem Separa-
tion and Development unit according to the manufacturer’s instructions (GE Health Sci-
ences, Montréal, QC, Canada). 

4.8. Total and Exposed Sulfhydryl Contents 
Sulfhydryl and total cysteine contents were determined, as fully described [15]. The 

sulfhydryl concentration (total and exposed) in µmol/g of protein was calculated by using 
the extinction coefficient of 2-nitro-5-thiobenzoate at 412 nm (13,600 mol L−1 cm−1): 

µmol SH/g protein = 73.53A × D/C (2)

where A = the absorbance at 412 nm; C = the sample concentration in mg solids/mL; D = 
dilution factor; and 73.53 is derived from 106/(1.36 × 104). The molar absorptivity is 1.36 × 
104 and 106 is for conversions from the molar basis to the µM/mL basis and from mg solids 
to g solids. 

4.9. Intrinsic Fluorescence Emission 
The method described by Ijarotimi et al. [42] was used to record intrinsic fluorescence 

spectra on the FP-6300 spectrofluorimeter (Jasco Corp., Tokyo, Japan) at 25 °C with a 1 cm 
path length cuvette. Protein stock solution (10 mg/mL) was prepared in 0.1 M sodium 
phosphate buffer (pH 3.0, 5.0, 7.0, and 9.0), followed by centrifugation and the determina-
tion of the protein content of the supernatant. The supernatant was then diluted to 0.002% 
(w/v) and fluorescence spectra were recorded at an excitation wavelength of 275 nm (ty-
rosine and tryptophan) with emission recorded from 280 to 450 nm. The emission of the 
buffer was subtracted from that of the respective samples to obtain the reported fluores-
cence intensity (FI) spectra. 

4.10. Measurements of Circular Dichroism (CD) Spectra 
Far and near-UV CD spectra were measured as previously described by Ijarotimi et 

al. [42], using a J-815 spectropolarimeter (Jasco Corp., Tokyo, Japan) at 25 °C. Briefly, pro-
tein stock solution (10 mg/mL) was prepared in 0.1 M sodium phosphate buffer (pH 3.0, 
5.0, 7.0, and 9.0), followed by centrifugation and the determination of the protein content 
of the supernatant. The stock solutions were each diluted to 2 and 4.0 mg/mL for far-UV 
and near-UV CD spectra measurement at 190–240 nm (0.5 mm quartz cell path length) 
and 250–320 nm (1 mm quartz cell path length), respectively. All the CD spectra were 
obtained as the average of three consecutive scans with the automatic subtraction of the 
respective buffer spectra. Secondary structure fractions were calculated from the far-UV 
data using the SELCON3 (optimized for 190–240 nm) secondary structure determination 
algorithm, as previously described [42]. 
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4.11. Protein Solubility (PS) 
PS was determined according to the method described by Ajibola et al. [14]. Briefly, 

1 mg/mL protein dispersions were prepared in 0.1 M phosphate buffers, pH 3.0–9.0. The 
dispersions were vortexed for 2 min and then centrifuged (7000× g; 30 min; 25 °C). Protein 
contents in the supernatants were determined using the modified Lowry method [44] with 
bovine serum albumin as the standard. PS was expressed as a percentage ratio of super-
natant protein content to the total protein content. 

4.12. Water (WHC) and Oil (OHC) Holding Capacity 
The WHC and OHC were determined using the method of Mundi and Aluko [15], 

with some modifications. The protein sample (3 g) was dispersed in 25 mL distilled water 
(or pure canola oil) in a 50 mL pre-weighed centrifuge tube. The dispersions were vor-
texed for 1 min, allowed to stand for 30 min, and then centrifuged (7000× g; 30 min; 25 °C). 
The supernatant was decanted, excess water (or oil) in the upper phase was drained for 
15 min, and the tube containing the protein residue was weighed again to determine the 
amount of water or oil retained per gram of sample. 

4.13. Least Gelation Concentration 
The least gelation concentration was determined as previously described [45], by sus-

pending the protein samples in water at different concentrations. The mixtures were vor-
texed, placed in a water bath at 95 °C for 1 h, cooled under tap water, and left in the re-
frigerator (4 °C) for 14 h. The sample concentration at which the gel did not slip when the 
tube was inverted was taken as the LGC. 

4.14. Foaming Capacity (FC) 
Foams were formed as previously described [45], using 60 mg/mL samples prepared 

in 5 mL of 0.01 M phosphate buffer pH 3.0, 5.0, 7.0, and 9.0, followed by homogenization 
at 20,000 rpm for 1 min using a 20 mm generator on the Polytron PT 3100 homogenizer 
(Kinematica AG, Lucerne, Switzerland). The foam was formed in a 50 mL graduated cen-
trifuge tube, which enabled the determination of the foam volume (mL). The volume of 
foam remaining after standing for 30 min at room temperature was expressed as a percent 
value of the original foam volume to obtain the foam stability (FS). 

4.15. Emulsion Formation and Oil Droplet Size Measurement 
The oil-in-water emulsions were prepared and determined according to the method 

of Aluko et al. [45]. Briefly, protein samples at 50 mg/mL concentrations were prepared in 
5 mL of 0.1 M phosphate buffer pH 7.0 followed by the addition of 1 mL of pure canola 
oil. The oil/water mixture was homogenized at 20,000 rpm for 1 min, using the 20 mm 
shaft on a Polytron PT 3100 homogenizer. The mean oil droplet size (d3,2) of the emulsions 
was determined in a Mastersizer 2000 (Malvern Instruments Ltd., Malvern, UK) with dis-
tilled water as a dispersant. Emulsions were kept at room temperature for 30 min without 
agitation and the increase in oil droplet size was used to determine the emulsion stability 
(ES). 

4.16. Statistical Analysis 
Duplicate or triplicate determinations were used to obtain mean values and standard 

deviations. Statistical analysis was performed with SAS (Statistical Analysis Software 9.1) 
using one-way ANOVA and significant differences (p < 0.05) were determined using Dun-
can’s multiple range test. 
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5. Conclusions 
Hemp seed proteins were fractionated into the major globulins (7S and 11S) and al-

bumins (2S) enriched fractions, followed by a comparison with the protein isolate (HPI). 
The 11S was the major fraction in hemp seed, accounting for almost 73% of the total pro-
teins, which is responsible for the similarities to HPI with respect to the polypeptide and 
amino acid compositions, as well as solubility and in vitro protein digestibility. Gel elec-
trophoresis showed that the 2S protein had polypeptides of small sizes, which could have 
favored better interactions with water, in addition to stronger foaming capacity and emul-
sifying activities. Overall, the 2S protein had the best potential as an efficient ingredient 
that can be used in the formulation of various food products, such as beverages, emul-
sions, and foams. However, the nutritional quality of the 2S is inferior to those of the 7S, 
11S, and HPI. In contrast, the 7S had the highest nutritional quality and provides the best 
hemp seed protein choice as an ingredient to produce food gels. 
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