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Abstract: COVID-19 is an acute respiratory disease caused by SARS-CoV-2 that has spawned a
worldwide pandemic. ADAM17 is a sheddase associated with the modulation of the receptor ACE2
of SARS-CoV-2. Studies have revealed that malignant phenotypes of several cancer types are closely
relevant to highly expressed ADAM17. However, ADAM17 regulation in SARS-CoV-2 invasion
and its role on small molecules are unclear. Here, we evaluated the ADAM17 inhibitory effects
of cordycepin (CD), thymoquinone (TQ), and N6, N6-dimethyladenosine (m6

2A), on cancer cells
and predicted the anti-COVID-19 potential of the three compounds and their underlying signaling
pathways by network pharmacology. It was found that CD, TQ, and m6

2A repressed the ADAM17
expression upon different cancer cells remarkably. Moreover, CD inhibited GFP-positive syncytia
formation significantly, suggesting its potential against SARS-CoV-2. Pharmacological analysis by
constructing CD-, TQ-, and m6

2A-based drug-target COVID-19 networks further indicated that
ADAM17 is a potential target for anti-COVID-19 therapy with these compounds, and the mechanism
might be relevant to viral infection and transmembrane receptors-mediated signal transduction.
These findings imply that ADAM17 is of potentially medical significance for cancer patients infected
with SARS-CoV-2, which provides potential new targets and insights for developing innovative drugs
against COVID-19.

Keywords: ADAM17; cancer; SARS-CoV-2; cordycepin (CD); thymoquinone (TQ); N6; N6-Dimethyla-
denosine (m6

2A); network-pharmacological analysis

1. Introduction

Since December 2019, SARS-CoV-2 has caused the global spread of COVID-19 (Corona
Virus Disease 2019), which seriously affects people’s healthy lives [1]. SARS-CoV-2 is
an enveloped virus that has caused approximately 300 million infections and more than
5 million deaths worldwide. Multiple receptors that may be associated with SARS-CoV-2
have been identified, such as transmembrane serine protease 2 (TMPRSS2), transmembrane
serine protease 4 (TMPRSS4), angiotensin-converting enzyme 2 (ACE2), aminopeptidase
N (APN), cathepsin L (CTSL), heparan sulfate proteoglycans (HSPGs), furin, neuropilin-1
(NRP1), heat shock protein A5 (HSPA5), O-acetylated sialic acid (O-Ac-Sia), etc. [2–7].
Studies have shown that ACE2 is expressed broadly on the membrane of epithelial cells in
the apical region, and especially on the cilium [8]. Coronavirus host cell entry is attributed to
ACE2 receptors on the alveolar surface [9,10]. Specifically, the S protein is a very important
surface protein of SARS-CoV-2 and exists as a trimer with more than 300 amino acids in
each monomer forming a receptor-binding domain that binds tightly to ACE2 and facilitates
viral entry of lung cells [11]. ACE2 was found to potentiate cell invasion by the COVID-
19-spike (S) protein spseudovirus, but no similar phenomenon was observed in ACE2
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mutant cells [12]. Therefore, it seems that cells/tissues expressing ACE2 are susceptible
to invasion by this virus. Conversely, in ACE2 mutant mouse models, peak coronavirus
injection aggravated acute lung injury and even lung failure, whereas recombinant ACE2
treatment dramatically attenuates acute lung injury [13,14]. On this basis, the researchers
proposed the dubious hypothesis that an increase in plasma membrane-bound ACE2 may
lead to higher infection rates, although the critical function of ACE2 within COVID-19
infection remains unknown.

A disintegrin and metalloproteinase 17 (ADAM17; OMIM: 603639), also known as
TNFα converting enzyme (TACE), CD156B, NISBD1, and CSVP are mainly present in
two forms: precursor and activated ADAM17 [15]. ADAM17 facilitates EGF receptor-,
TNF-α receptor-, and IL-6 receptor-mediated signal transduction by cleavage/hydrolysis
of the ectodomains of more than 80 membrane proteins (e.g., pro-inflammatory cytokines,
adhesion molecules, receptors, and growth factors) and regulates multiple pathophysiolog-
ical processes, including tumor, inflammation, immunity, growth, and metastasis [16–18].
Furthermore, ADAM17 activity is also regulated by posttranslational modifications, pro-
domain removal, conformational changes, and glycosylation [19]. The proteins iRhom1
and iRhom2 are required for ADAM17 trafficking and enzyme activation [20,21]. ADAM17
is a newly identified SARS-CoV-2-related protein. It is highly expressed in nasopharyngeal,
bronchial, and lung tissues [22]. As a type I transmembrane protein and sheddase, ADAM17
probably contributes to the ectodomain shedding of ACE2 [23], leading to the formation
of soluble ACE2 and the induction of SARS-CoV-2 virus fusion with host cells [24,25].
Evidence for ADAM17-mediated infection of SARS-CoV-2 in human lung cells suggests
that ADAM17 triggers SARS-CoV-2 invasion by cleaving the S protein of the virus [26].
Suppression of ADAM17 by reducing the shedding of ACE2 may reduce viral load and
protect host cells from viral infection [27]. In addition to affecting membrane protein
shedding, ADAM17 also induces local tumor metastasis and invasion through degradation
of the cellular basement membrane and extracellular matrix. The fact that ADAM17 has
been reported to be expressed in diverse malignancies, but minimally in normal cells [28],
implies its role in tumors. In this regard, ADAM17 inhibition might alleviate the severe
infections that occur in patients with malignant tumors. Previously, it was found that
ADAM17 expression was higher in tumors than in normal tissues, and that it reduced the
prognosis of patients with malignant tumors [22]. Interestingly, ADAM17 was also associ-
ated with immune cell infiltration and immunomodulators in tumor and paired normal
tissues [22]. These results implicate the importance of ADAM17 in COVID-19-infected
cancer patients and provide a new thread for developing anti-COVID-19 drugs.

Chinese herbal medicines and their active ingredients are characterized by multi-
targets, multi-pathways, and low toxicity, and are widely used in antiviral and anti-tumor
therapy. Cordycepin (CD), N6, N6-dimethyladenosine (m6

2A), and thymoquinone (TQ)
are nucleoside analogues with a wide range of pharmacological functions. CD is a natural
ingredient originally found in traditional Chinese medicine (TCM) as a medicinal mush-
room [29,30]. Our previous studies showed that CD inhibited the malignant progression of
drug-resistant non-small cell lung cancer through regulation of the AMPK signaling path-
way [29] and repressed triple-negative breast cancer (TNBC) cell migration and invasion
by the down regulation of epithelial-to-mesenchymal transition inducible transcription
factors (EMT-TFs) [31]. TQ is a biologically active phytochemical component in the seed
oil of Panicola nigra [32]. Numerous studies have shown that TQ can protect against
cardiovascular diseases [33] and viral infections [34]. Our results suggested that TQ or its
analogs synergistically enhanced the antitumor effects of chemotherapeutic agents [35] and
repressed the metastasis and invasion of distinct tumor cells [36,37]. m6

2A is a modified
ribonucleoside in rRNA and an endogenous A3 adenosine receptor ligand [38,39]. It is
also a marine-derived AKT inhibitor [40], and its analogues showed enhanced antitumor
effects [41]. CD, TQ, and m6

2A showed anticancer roles both in cells and animals. However,
the regulatory effects of CD, TQ, and m6

2A on ADAM17 expression and their potential
anti-COVID-19 mechanisms remain unclear.
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In this study, we evaluated the ADAM17 inhibitory effects of CD, TQ, and m6
2A on

cancer cells and constructed a visual drug-target-disease network to predict prospective
targets and mechanisms of the anti-COVID-19 drugs using network pharmacology.

2. Results
2.1. The Mutation and Methylation of ADAM17 in Pan-Cancer

Previously, we studied the expression of ADAM17 in cancer patients and/or normal
subjects using bioinformatics analysis. Hereby, we further explored epigenetic modification
and gene mutation and their impact on prognosis. Oncogenic mutations may lead to
malignant phenotypes of tumors, recurrence, and drug resistance. Through the analysis
of mutations in 32 types of cancers, we revealed that ADAM17 expression exhibited the
highest mutation frequency, accounting for 10.53% of 57 cases of Uterine Carcinosarcomas,
followed by Uterine Corpus Endometrial Carcinoma, accounting for 6.62% of 529 cases,
whereas Kidney Renal Clear Cell Carcinoma had the lowest mutation rate, with 0.39% of
511 cases (Figure 1A). ADAM17 mutations were not observed in Adrenocortical Carcinoma,
Thyroid Carcinoma, Acute Myeloid Leukemia, Cholangiocarcinoma, and Uveal Melanoma.
The detailed landscape of ADAM17 mutations appears to be distributed across the whole
AMAD17 region, with missense being the dominant mutation type. We further explored
the survival rates, but there was no significant difference between the two groups, although
the median monthly survivals (overall, progression-free, disease-specific, and disease free)
were longer in the altered group than in the unchanged group (Data not shown).
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Figure 1. The mutation and methylation of ADAM17 in pan-cancer. (A) Summary of ADAM17
mutations across pan-cancerous tissues. Distinct colors show differing mutation types. (B) The hot
spots of ADAM17 mutations across pan-cancer tissues. (C) The methylation of ADAM17 in BLCA.
(D) The methylation of ADAM17 in READ. (E) The methylation of ADAM17 in THCA. (F) The
methylation of ADAM17 in BRCA. (G) The methylation of ADAM17 in KIRC. (H). The methylation
of ADAM17 in KIRP. (I) The methylation of ADAM17 in LUSC. (J) The methylation of ADAM17
in PAAD. (K) The methylation of ADAM17 in PRAD. (L) The methylation of ADAM17 in SARC.
(M) The methylation of ADAM17 in SKCM. See Figure 2 for the full name of the cancer types. The
p < 0.05 was considered with statistical significance.
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Figure 2. CD, TQ, and m6
2A inhibit ADAM17 expression in distinct cancer cells. (A) CD-treated lung

cancer cell line H460 was measured for alterations in ADAM17 protein (upper panel) and mRNA
(lower panel) levels. (B) CD-treated breast cancer cell line BT549 was measured for alterations in
ADAM17 protein (upper panel) and mRNA (lower panel) levels. (C) CD-treated breast cancer cell
line MDA-MB-231 was measured for alterations in ADAM17 protein (upper panel) and mRNA (lower
panel) levels. (D) CD-treated breast cancer cell line MCF7 was measured for alterations in ADAM17
protein (upper panel) and mRNA (lower panel) levels. (E) m6

2A-treated lung cancer cell line H1975
was measured for alterations in ADAM17 protein (upper panel) and mRNA (lower panel) levels.
(F) m6

2A-treated breast cancer cell line BT549 was measured for alterations in ADAM17 protein
(upper panel) and mRNA (lower panel) levels. (G) m6

2A-treated breast cancer cell line MDA-MB-231
was measured for alterations in ADAM17 protein (upper panel) and mRNA (lower panel) levels.
(H) TQ-treated breast cancer cell line MCF7 was measured for alterations in ADAM17 protein (upper
panel) and mRNA (lower panel) levels. (I) TQ-treated lung cancer cell line H460 was measured for
alterations in ADAM17 protein (upper panel) and mRNA (lower panel) levels.

DNA methylation regulates gene expression. The methylation profiles of 23 types of
cancers were analyzed by the DNMIVD database. We found that the methylation status
of the ADAM17 promoter in BLCA, THCA, and READ tumor tissues was significantly
lower than correlated normal tissues (Figure 1C–E). The methylation status of the ADAM17
promoter was markedly higher in BRCA, KIRC, KIRP, LUSC, PAAD, PRAD, SARC, and
SKCM tumor tissues than in paired normal tissues (Figure 1F–M). The hypomethylation
of ADAM17 in PAAD tumor tissues appeared to be positively correlated with the higher
expression shown in our previous report, implying that hypomethylation of the ADAM17
promotor may be responsible for its increased expression in PAAD tissues. However,
promoter methylation in other cancer types may not be the only mechanism regulating
ADAM17 overexpression.

2.2. Treatment with m6
2A, TQ, and CD Represses ADAM17 Expression in Distinct Cancer Cells

CD, m6
2A, and TQ are nucleoside analogues that have broad pharmacological effects,

such as anti-tumor, anti-virus, etc. In this regard, we analyzed the effects of CD, m6
2A,

and TQ on ADAM17 levels in different cancer cells. Interestingly, CD, m6
2A, and TQ

dose-dependently reduced ADAM17 protein levels in different cancer cells (Figure 2A–I,
upper panels), but mRNA levels were not reduced (Figure 2A–I, bottom panels), implying
the potential of the three compounds in improving viral susceptibility in patients with
malignant tumors.
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2.3. Treatment with m6
2A or CD Inhibits ADAM17 Translation but Prevents Its Degradation

The stability of the ADAM17 protein was detected in CHX-treated BT549 cells in the
presence/ absence of m6

2A. In CHX-treated cells, ADAM17 protein had a half-life of less
than 2.3 h, whereas the addition of m6

2A significantly extended the half-life of ADAM17
protein to 4 h (Figure 3A,B). Further, quantitative analysis showed that the combination of
m6

2A and CHX markedly decreased the degradation rate of ADAM17 protein by nearly
50% compared to CHX treatment alone (Figure 3C). Such results were then observed in
cells treated with CD or CHX alone and their combination (Figure 3D–F). Overall, these
results indicate that m6

2A or CD treatment inhibits ADAM17 translation, but prevents
its degradation.
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Figure 3. Treatment with m6
2A or CD inhibits the translation, but prevents the degradation of

ADAM17 in BT549 cancer cells. (A) Stability of the ADAM17 protein was detected in CHX-treated
cells in the presence or absence of m6

2A. (B) The quantitative results of A. (C) Quantitated the
ADAM17 protein levels with m6

2A, but without CHX treatment. (D) Stability of the ADAM17 protein
was detected in CHX-treated cells in the presence or absence of CD. (E) The quantitative results of (D).
(F) Quantitated the ADAM17 protein levels with CD, but without CHX treatment. 40 µg/mL was
used for the final concentration of CHX.

2.4. Network Pharmacology Analyzes Potential Targets of m6
2A, TQ, and CD

Based on the databases, we collected a total of 100, 100, and 82 potential targets for
m6

2A, TQ, and CD, respectively. The interactions of these targets for different compounds
analyzed in the STRING database were visualized with Cytoscape software (version 3.6.1).
In Figures 4A, 5A and 6A, we found that ADAM17 is a potential target for m6

2A and TQ,
but not CD. To further explore the relationship between the three compounds and their
targets, KEGG analysis was performed. A total of 134 pathways of m6

2A, 75 pathways of
TQ, and 71 pathways of CD were enriched by KEGG analysis (adjusted p < 0.01). Based
on the GeneRatio values and p-value, the top 20 pathways of these compounds were
selected, e.g., pathways in cancer, human cytomegalovirus infection, lipid and atherosclero-
sis, chemical carcinogenesis-receptor activation, neuroactive ligand-receptor interaction,
purine metabolism, calcium signaling pathway, glucagon signaling pathway, and ABC
transporters, and were shown in Figures 4B, 5B and 6B.
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2.5. Construction of the Compounds-Targets-COVID-19 Network

To elucidate the mechanism of the compounds against COVID-19, we collected the
common differentially expressed genes of the three constructed compound-target networks
and 1145 COVID-19-associated target gene networks retrieved from the databases. Protein-
protein interactions were obtained by uploading the above described candidate targets
to the STRING database and assigning p-values less than 1, 10, and 16. We found that
ADAM17 is also one of the larger nodes, indicating that ADAM17 may play a very impor-
tant role in the anti-COVID-19 effect of the three compounds (Figures 7A, 8A and 9A). We
further conducted GO enrichment/KEGG analysis to investigate the potential mechanism
of the three compounds in COVID-19, using the DAVID database.
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Figure 8. Establishment of an ingredient-target-disease network for TQ in COVID-19. (A) The Venn
diagram exhibited a total of 25 TQ targets for COVID-19 were extracted. ADAM17 was one of the
key targets. Enrichment analysis of pathways for the 25 hub genes. (B) The top 3 terms of BP, CC,
and MF enrichment. (C) Enrichment analysis of pathways for the 25 DEGs.
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Figure 9. Establishment of an ingredient-target-disease network for CD in COVID-19. (A). The Venn
diagram exhibited a total of 16 CD targets for COVID-19 were extracted. Enrichment analysis of
pathways for the 16 hub genes. (B) The top 3 terms of BP, CC, and MF enrichment. (C) Enrichment
analysis of pathways for the 16 DEGs.
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For GO-term analysis, key terms of BP enrichment include: (1) m6
2A: peptidyl-serine

phosphorylation, cellular response to the drug, positive regulation of cellular protein lo-
calization; (2) TQ: response to lipopolysaccharide, multicellular organismal homeostasis,
response to molecule of bacterial origin; (3) CD: peptidyl-tyrosine modification, protein au-
tophosphorylation, peptidyl-tyrosine phosphorylation (Figures 7B, 8B and 9B). MF analysis
was mainly enriched in (1) m6

2A: ubiquitin-like protein ligase binding, endopeptidase activ-
ity, ubiquitin protein ligase binding; (2) TQ: steroid hormone receptor activity, transcription
factor activity, nuclear receptor activity, direct ligand regulated sequence-specific DNA
binding; (3) CD: transmembrane receptor protein kinase activity, non-membrane spanning
protein tyrosine kinase activity, protein tyrosine kinase activity (Figures 7B, 8B and 9B).
CC terms revealed that: (1) m6

2A was associated with membrane region, membrane
microdomain, and membrane raft; (2) TQ was associated with the early phagosome, tran-
scription factor complex, and endolysosome; (3) CD was associated with transferring
phosphorus-containing groups, transferase complex, protein kinase complex, and ser-
ine/threonine protein kinase complex (Figures 7B, 8B and 9B). For KEGG analysis, multiple
candidate genes have interacted with COVID-19-related pathways. Among them, virus in-
fection and protein phosphorylation were considered 2 of the top 12 enrichment pathways
associated with these compounds (Figures 7C, 8C and 9C). Additionally, the anti-COVID-
19 mechanism may also be related to ubiquitin-like protein ligase binding, membrane
microdomain, membrane raft, direct ligand-regulated sequence-specific DNA binding,
endolysosome, and transmembrane receptor protein kinase activity.

2.6. CD Is Able to Inhibit Syncytia Formation

Emerging evidence indicates that a large number of multinucleated cells characteristic
of syncytial pathology are present in patients with COVID-19 [42], which is a pathological
hallmark of SARS-CoV-2 infection. Syncytium formation is required for the participation
of the SARS-CoV-2 Spike protein and the host cell ACE2 [26]. Here, SARS-CoV-2-Spike
plasmids with GFP fluorescence were transfected into 293T-ACE2 cells and co-incubated
with untransfected 293T-ACE2 cells for 24 h, followed by the addition of 20 µM CD for
another 24 h. We observed many larger syncytia with GFP green fluorescence in control
cells, indicating SARS-CoV-2 cell invasion (Supplementary Figure S1A). However, the area
of fluorescence of GFP-positive syncytia was significantly reduced upon treatment with
CD (Supplementary Figure S1A). Further, quantitative analysis revealed that the mean
fluorescence area of CD-treated syncytia was reduced to 44.34% ± 25.54 compared to the
control group (Supplementary Figure S1B).

3. Discussions

COVID-19 has become a global public health problem. It is of great help to understand
the expression of potential SARS-CoV-2 receptors (e.g., ACE2 and ADAM17) in host
cells/tissues to reduce the replication and transmission of the virus and the severity of
COVID-19. Studies have shown that ACE2 is involved in the viral invasion of host cells,
leading to infection by binding to the B domain of the COVID-19 virus’s S protein [43–45].
Similar to ACE2, ADAM17 is another newly identified virus recognition receptor [46],
and its distributed and expressed levels may mirror the susceptibility of the virus, its
replication, and its invasion. Inhibition of ADAM17 expression protects the body from
COVID-19 infection [47]. Increasing evidence indicates that ADAM17 is expressed in
multiple malignancies at higher levels than in paired normal tissues [28,48], suggesting
its specificity in tumors. Moreover, invasion and metastasis of distinct malignancies can
be attributed to ADAM17-mediated degradation of the cellular basement membrane and
extracellular matrix [48]. However, the underlying role of ADAM17 in cancer patients
infected with COVID-19 remains unknown.

In a previously published paper [22], we explored ADAM17 protein or its mRNA
expression in pan-cancer and adjacent normal tissues. It was found that ADAM17 was
significantly higher in multiple human tumor tissues than in adjacent tissues, and that can-
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cer patients with high ADAM17 expression had a poor clinical prognosis. Gene mutations
favor the progression, recurrence, and chemo-resistance of malignant tumors, and DNA
methylation can provoke structural changes in chromosomes that lead to tumorigenesis by
turning off tumor suppressor genes. Actually, point mutations of the ADAM17 catalytic
domain have been identified in tumor samples from cancer patients, which are associated
with tumor-related dysfunction [49]. Meanwhile, protein posttranslational modifications
have been found to be closely relevant to the regulation of ADMA17 activation [50,51]. We
speculate that both may probably be related to tumor progression. In this study, ADAM17
was found to be expressed in 57 cases of uterine carcinosarcoma with the highest muta-
tion frequency (10.53%), while it was barely expressed in 511 cases of kidney renal clear
cell carcinoma with a mutation rate of 0.39%. By analyzing the methylation profiles, the
methylation status of the ADAM17 promoter in BLCA, READ, and THCA tumor tissues
was distinctly lower than in adjacent normal tissues, whereas its methylation status was
higher in BRCA, KIRC, KIRP, LUSC, PAAD, PRAD, SARC, and SKCM tumor tissues. Our
previous study indicated that hypomethylation of ADAM17 in PAAD tumor tissues was
positively correlated with high ADAM17 expression, indicating that hypomethylation of
the ADAM17 promoter may be responsible for its increased expression in PAAD tissues.
However, promoter methylation in other tumor types may not be the only mechanism
regulating ADAM17 overexpression. In addition, the catalytic domain of ADAM17 is
required for the cleavage of the substrates [50]. The cleavage and release of some substrates,
including ACE2, directly drive viral invasion [11]. Hence, it is not difficult to speculate
about the effect of site-specific mutations or post-translational modifications of the catalytic
domain on the shedding activity of ADAM17 and viral invasion.

Alterations in ADAM17 expression affect susceptibility to viral infection and the
severity of COVID-19, implying the importance of targeting ADAM17 in patients with ma-
lignant tumors infected with COVID-19 [47]. CD is a nucleoside derivative extracted from
Cordyceps Sinensis with a wide-range of biological activities, including antiviral replica-
tion, anticancer, anti-inflammatory, antidepressant, hepatic, neuroprotective, etc. [29,52,53].
Recent studies have shown that CD is able to conjugate to the S protein and Mpro protein
of SARS-CoV-2. In vitro SARS-CoV-2 invasion assay supports the antiviral effect of CD [54].
In this study, CD suppressed ADAM17 expression, especially in lung cancer, which sup-
ports the possibility of developing anti-SARS-CoV-2 drugs and suggests a role for CD in
anti-SARS-CoV-2 therapy in cancer patients by inhibiting ADAM17 expression. m6

2A,
another nucleoside derivative, exhibited an inhibitory effect on CTSL protein expression.
TQ, a major component of N. Sativa, has been reported to potentially suppress the develop-
ment of COVID-19 by binding to TMPRSS2 [32,55]. TQ exerts a suppressive effect on the
malignant progression of cancer cells [36,56]. Chase assays confirmed that treatment with
m6

2A or CD increased the stability of ADAM17 protein, but significantly decreased its total
protein levels, suggesting that m6

2A/CD treatment alone inhibits ADAM17 translation,
but prevented its degradation. The different mechanisms may be connected with the action
of m6

2A. Collectively, our results showed that CD, m6
2A, and TQ remarkably reduced

ADAM17 protein levels in distinct tumor cells. A large number of multinucleated cells
characteristic of syncytial pathology are present in COVID-19 patients [42], which is a
pathological hallmark of SARS-CoV-2 infection. Syncytium formation is required for the
participation of SARS-CoV-2 Spike protein and ACE2 protein of the host cells [26]. Our
results showed many large syncytia with GFP green fluorescence in control cells, whereas
the area of fluorescence of GFP-positive syncytia was significantly reduced upon addition
of CD. The above results suggest a potential for these drugs against SARS-CoV-2, although
further studies are needed.

Network pharmacology is an approach based on systematic biological theory to pre-
dict underlying molecular mechanisms through high-throughput virtual computing and
database retrieval, as well as the establishment of the drug (compound)-target-disease-
pathway network. Recently, a large number of studies have employed this approach to
explain the complex interrelationships between drugs and diseases. Herein, the relationship
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between anti-COVID-19 treatment and m6
2A/TQ/CD treatment was fully explored by

network pharmacology. These data suggested that 100, 100, and 82 targets were respectively
associated with m6

2A, TQ, and CD on COVID-19, in which (GAPDH, MMP9, SRC, EGFR,
EZH2, MAPK1, PRMT1), (IL-6, PTGS2, PPARG, SLC6A4, PPARA, ACHE, NR3C1), and
(ADK, MTR, AKT1, MTHFR, MTRR, MUT, MAT1A, DCK) were considered as core targets,
respectively. It has been reported that SRC [57], EGFR [58], EZH2, IL-6 [59], PTGS2 [60],
PPARG [61], SLC6A4 [62], PPARA [63], ACHE [64], NR3C1 [65], ADK [66], AKT1 [67],
and MTHFR [68] are closely related to the pathogenesis of COVID-19. Interestingly, we
found that ADAM17 is a potential target for m6

2A and TQ, rather than CD, which may
be related to the number of articles published in these years. Further, 134 m6

2A-related
pathways, 75 TQ-related pathways, and 71 CD-related pathways were enriched by KEGG
enrichment analysis, among which 20 pathways were significantly enriched, including
pathways in cancer, human cytomegalovirus infection, lipid and atherosclerosis, chemical
carcinogenesis-receptor activation, purine metabolism, calcium signaling pathway, neu-
roactive ligand-receptor interaction, glucagon signaling pathway, ABC transporters, etc.
In recent years, evidence has shown that COVID-19 is implicated in neuroactive ligand-
receptor interactions [69], and calcium signaling pathways conduce to the shedding of
ACE2 catalytic outer domains during COVID-19 infection [70]. Purine metabolism is found
to be associated with COVID-19 infection [71]. According to the findings of the network
pharmacology analysis, we identified the regulatory mechanisms of m6

2A, TQ, and CD
in COVID-19 disease involving multiple pathways and multiple targets. Protein-protein
interaction results indicated that ADAM17 might play critical roles in the anti-COVID-19
activity of these three compounds. Further studies revealed that multiple candidate genes
interact with COVID-19-related pathways, with the viral infection and protein phosphory-
lation identified as 2 of the top 12 enrichment pathways associated with these compounds.
In addition, sequence-specific DNA-binding endolysosome and transmembrane receptor
protein kinase activity directly regulated by ligands in the ubiquitin-like protein ligase
membrane microdomain may also be the mechanism of its resistance to COVID-19. Pos-
sible explanations for the mechanism may be as follows: ADAM17 is involved to some
extent in the potential antiviral effects of small molecule compounds of traditional Chinese
medicine. ADAM17 also is a shedding enzyme that helps shed and activate nearly 100
substrates and, thus, possesses a wide range of biological effects. Some core targets (such as
EGFR, IL-6, ACE2, etc.) in the “drug-target” network are the direct substrates of ADAM17.
Although it does not play a primary role in the network, ADAM17 probably mediates the
shedding and activation of substrates EGFR [72], IL-6 [73–75], and ACE2 [76] and then
causes inflammation and immune responses, which further demonstrates the multi-target
and versatility of the active molecules of traditional Chinese medicine.

4. Materials and Methods
4.1. Online Databases

ADAM17 promoter DNA methylation analysis was conducted with the DNA Methy-
lation Interactive Visualization Database (DNMIVD) [77]. The ADAM17 mutation was
analyzed by the cBioPortal for Cancer Genomics [4,78].

4.2. Cell Culture and Drug Treatments

Human lung adenocarcinoma cells (H1975 and H460) and breast cancer cells (BT549,
MDA-MB-231, and MCF7) were supplied by ATCC (American Type Culture Collection)
(VA, USA). BT549 cells and H1975 were cultured in RPMI1640 medium containing 10%
FBS (fetal bovine serum) and 1% penicillin/streptomycin (PS). The remaining 3 cells were
maintained in DMEM mediums with 10% FBS and 1% PS. All the cells were incubated at
37 ◦C in a 5% CO2 incubator. For the following in vitro experiments, cells were seeded
into 12-well plates and treated with distinct concentrations of cordycepin (CD, 10–40 µM),
thymoquinone (TQ, 5–20 µM), and N6, N6-Dimethyladenosine (m6

2A, 10–40 µM) for 24 h.



Molecules 2022, 27, 9044 12 of 17

The whole protein lysates were gathered and analyzed by Western blotting. Total RNA was
extracted and reverse transcription was conducted.

4.3. Western Blotting and Chase Assays

Western blotting was performed as described previously [79]. The PVDF membranes
with quantified protein samples were blocked with 5% non-fat milk and incubated with
a primary antibody to ADAM17 (cat #: HPA051575, Sigma-Aldrich), β-actin, or tubulin
in 2% fat-free milk at 4 ◦C and blotted with a secondary antibody at ambient temperature.
Protein bands were exposed and photographed using the Syngene G: BOX Imaging Sys-
tem (Cambridge, UK). Chase assays for ADMA17 protein stability were performed with
indicated cycloheximide (CHX) and m6

2A or CD in BT549 cancer cells.

4.4. Semi-Quantitative RT-PCR

For the detection of ADAM17 mRNA, the total RNA of different tumor cells was
extracted, as per instructions from the manufacturer, using a Total RNA Extraction Kit.
Synthesized cDNAs were subjected to semi-quantitative RT-PCR with forward primer
5′-cccaccagagactcgagaag-3′ and the reverse primer 5′-caaccacgtgtccagtgaag-3′ [80]. The
product size is 279 bp. ACTB was used as the internal control.

4.5. Establishment of Small Molecule Compounds-Target Interaction

TQ, m6
2A, and CD were searched for in the Traditional Chinese Medicine Systems

Pharmacology (TCMSP, http://tcmspw.com/tcmsp.php, accessed on 15 January 2022),
Herbal Ingredients’ Targets Database (HIT, http://lifecenter.biosino.org/hit/, accessed on
15 January 2022), Traditional Chinese medicine integrative database for herb molecular
mechanism analysis (TCMID, http://www.megabionet.org/tcmid/, accessed on 15 January
2022), TCM@Taiwan (http://tcm.cmu.edu.tw, accessed on 15 January 2022), CancerHSP
(http://ibts.hkbu.edu.hk/LSP/CancerHSP.php, accessed on 15 January 2022), Naturally
occurring Plant based Anticancerous Compound-Activity-Target DataBase (NPACT, http:
//crdd.osdd.net/raghava/npact/, accessed on 15 January 2022), Natural Product Activity
and Species Source Database (NPASS, http://bidd2.nus.edu.sg/NPASS, accessed on 15
January 2022) system network-pharmacological databases. Drug likeness (DL) of greater
than 0.18 and oral bioavailability (OB) of greater than 30% were employed as criteria for
screening potential compounds. Cytoscape software (version 3.6.1) for the construction
and visualization of the interactions between the three compounds and the target was used.

4.6. Gene Ontology and Pathway Enrichment Analysis

COVID-19-related gene expression data were obtained from the GeneCards®: The
Human Gene Database (https://www.genecards.org/, accessed on 12 September 2021)
and Gene Expression Omnibus Database (https://www.ncbi.nlm.nih.gov/geo/, accessed
on 12 September 2021). The genes that correlate with SARS-CoV-2 infection and negative
control in the gene expression profile of this dataset were analyzed using the GEN2R online
tool. A total of 1145 differentially expressed genes (DEGs) were obtained based on p ≤ 0.05
and fold change (FC) ≥ 1.5. Protein-protein interaction (PPI) analyses were performed
using the STRING database (https://cn.string-db.org/, accessed on 16 January 2022) to
obtain common genes. The Kyoto Encyclopedia of Genes (KEGG) and Gene Ontology
(GO) analyses were carried out by the DAVID database (http://david.abcc.ncifcrf.gov/,
accessed on 16 January 2022). Go annotations were used to analyze the following three
terms: cellular composition (CC), biological processes (BP), and molecular function (MF).

4.7. Syncytia Formation Assay

Syncytia formation is the hallmark event in SARS-CoV-2 cellular infections [26]. In
this study, SARS-CoV-2-Spike plasmids with GFP fluorescence pCDH-CMV-HnCoV-S-
EF1-copGFP purchased from Shanghai HedgehogBio Science and Technology Ltd. were
transfected into 293T-ACE2 cells and co-incubated with untransfected 293T-ACE2 cells for

http://tcmspw.com/tcmsp.php
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http://www.megabionet.org/tcmid/
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http://ibts.hkbu.edu.hk/LSP/CancerHSP.php
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24 h, followed by the addition of 20 µM CD for another 24 h. Syncytia formation in each
group was observed and analyzed using a ZOE Fluorescent Cell Imager (Bio-Rad, Hercules,
CA, USA).

5. Conclusions

In conclusion, hypomethylation of ADAM17 was positively correlated with high
ADAM17 expression in PAAD tumor tissues, suggesting that hypomethylation of the
ADAM17 promoter may be responsible for the increased ADAM17 expression in PAAD
tissues. In addition, ADAM17 protein levels were significantly reduced in lung and breast
cancer cells treated with nucleoside compounds, such as CD, TQ, and m6

2A. CD signifi-
cantly decreased the area of fluorescence of GFP-positive syncytia compared to the control
group. Further, a network pharmacology approach was employed to establish a drug-
disease-target network and analyze the potential molecular pathways by GO and KEGG
enrichment analysis. Overall, this research not only insinuates the medical significance of
ADAM17 for COVID-19 cancer patients, but it also sheds potential light on the treatment
of COVID-19.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27249044/s1, Figure S1: CD significantly inhibits syncytia
formation.
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Abbreviations

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
COVID-19 Coronavirus Disease 2019
ADAM17 A disintegrin and metalloproteinase domain 17
ATCC American Type Culture Collection
CD Cordycepin
TQ Thymoquinone
m6

2A N6, N6-Dimethyladenosine
CHX Cycloheximide
TCMSP Traditional Chinese Medicine Systems Pharmacology
TCMID Traditional Chinese medicine integrative database
HIT Herbal Ingredients’ Targets Database
NPACT Naturally occurring Plant based Anticancerous Compound-Activity-Target DataBase
NPASS Natural Product Activity and Species Source Database
DL Drug likeness
OB Oral bioavailability
DEGs Differentially expressed genes
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KEGG Kyoto Encyclopedia of Genes
GO Gene ontology
PPI Protein-protein interaction
CC Cellular composition
BP Biological processes
MF Molecular function
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