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Abstract: The development of diversity-oriented synthesis based on fluorine-containing building
blocks has been one of the hot research fields in fluorine chemistry. β-CF3-1,3-enynes, as one type
of fluorine-containing building blocks, have attracted more attention in the last few years due to
their distinct reactivity. Numerous value-added trifluoromethylated or non-fluorinated compounds
which have biologically relevant structural motifs, such as O-, N-, and S-heterocycles, carboncycles,
fused polycycles, and multifunctionalized allenes were synthesized from these fluorine-containing
building blocks. This review summarizes the most significant developments in the area of synthesis of
organofluorine compounds based on β-CF3-1,3-enynes, providing a detailed overview of the current
state of the art.

Keywords: organofluorine compounds; fluorine-containing building blocks; β-CF3-1,3-enynes;
diversity-oriented synthesis (DOS)

1. Introduction

Increasing demands for organofluorine compounds in human life [1–12] prompt
chemists to develop many ingenious strategies to introduce the fluorine element into or-
ganic compounds [13–27]. Among these strategies, synthesis with fluorine containing
building blocks is a very important method for the introduction of fluorine atoms or
fluoroalkyl groups into target molecules [28–36]. β-CF3-1,3-enynes as one type of fluorine-
containing building blocks have attracted more attention in the last few years due to their
distinct reactivity. Numerous value-added fluorine-containing compounds which have
biologically relevant structural motifs, such as O-, N-, and S-heterocycles, carboncycles,
fused polycycles, and multifunctionalized allenes, were synthesized from these fluorine-
containing building blocks. With the strong electron-negative effect of CF3-group on the
C–C double bond, the electron density of conjugated enynes significantly changed, mak-
ing the molecules exhibit distinct reactivity which enables diversity-oriented synthesis of
organofluorine compounds. Within the remit of this review, β-CF3-1,3-enynes and their
derivatives will all be discussed. The content summarized in this review are organized on
the basis of the type of trifluoromethylated compounds obtained by using β-CF3-1,3-enynes
and their derivatives as fluorine-containing building blocks, i.e., construction of trifluo-
romethylated carboncycles, construction of trifluoromethylated heterocycles and further
subdivided according to the size of the ring, i.e., three-membered trifluoromethylated car-
boncycles, five-membered trifluoromethylated carboncycles, six-membered trifluoromethy-
lated carboncycles, five-membered trifluoromethylated heterocycles, six-membered trifluo-
romethylated heterocycles and other value-added trifluoromethylated or non-fluorinated
organic compounds.

2. Construction of Trifluoromethylated Carboncycles
2.1. Construction of Three-Membered Trifluoromethylated Carboncycles

In 2019, Wang and Liu reported highly diastereoselective cyclopropanation reactions
of β-CF3-1,3-enynes with sulfur ylides via a maneuverable one-pot, two-step procedure.
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β-CF3-1,3-enynes undergo cyclopropanation reactions with sulfur ylides under mild reac-
tion conditions without fluoride elimination, which affords the cis-isomer mainly. Inter-
estingly, a sequential TBAF-mediated deprotection of the triisopropylsilyl group results
in a diastereoenriched epimerization which gives rise to the transcyclopropanes as the
sole isomers (Scheme 1a) [37]. A base-triggered thermodynamic epimerization took place
during the process, resulting in stereoselectivity enrichment (Scheme 1b). This newly
developed protocol was then applied to 2-CF3-3,5-diyne-1-enes for synthesis of diverse
1,3-diyne-tethered cyclopropanes [38].
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Scheme 1. (a) Synthesis of trifluoromethylated cyclopropanes. (b) The mechanism of thermodynamic
epimerization.

Recently, a highly efficient solvent-controlled synthesis of bis(trifluoromethyl) cyclo-
propanes and bis(trifluoromethyl)pyrazolines via a [2 + 1] or [3 + 2] cycloaddition reaction
of β-CF3-1,3-enynes with CF3CHN2 was developed by Cao and co-workers. The distri-
bution of cyclopropanes and pyrazolines is remarkably dependent on the polarity of the
solvent used. Less polar solvents, such as DCE, were suitable for the [2 + 1] cycloaddition re-
action, whereas polar solvents, such as DMAc, were found to favor the [3 + 2] cycloaddition
reaction [39] (Scheme 2).
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2.2. Construction of Five-Membered Trifluoromethylated Carboncycles

In 2011, Jeong and coworkers reported Pd-catalyzed intramolecular carbocyclization
of 2-trifluoromethyl-1,1-diphenyl-1,3-enynes to afford 2-trifluoromethyl-1-methylene-3-
phenylindene derivatives via electrophilic hydroarylation by the use of 10 mol% Pd(OAc)2
in the presence of CF3CO2H and CH2Cl2. It was postulated that this reaction proceeds
via ortho-palladation of enynes to give a corresponding intermediate, which undergoes
the insertion to a triple bond to give the vinylpalladium species. Protiodepalladation of
vinylpalladium species affords 1-methylene indenes. The substrates were synthesized
from pentafluoroethyl phenyl dithioketal in several steps. Both aryl and alkyl-substituted
1,3-enynes are tolerated, however, the stereoisomer ratios of 5/4 of 1-methylene indenes were
afforded in this 5-exo-dig carbocyclization. In the case of carbocyclization of trimethylsilyl-
or triisopropylsilyl-substituted 1,3-enynes, reduced product was obtained [40] (Scheme 3).

In an elegant piece of work, The Trost group reported palladium-catalyzed trimethylen-
emethane cycloadditions with α-trifluoromethyl-styrenes, trifluoromethyl-enynes, and
dienes under mild reaction conditions. The trifluoromethyl group serves as a unique
σ-electron-withdrawing group for the activation of the olefin toward the cycloaddition.
This method allows for the formation of exomethylene cyclopentanes bearing a quaternary
center substituted by the trifluoromethyl group (Scheme 4) [41]. Diaminophosphite ligand
was employed in this reaction to afford desired cycloaddition product in moderated to
excellent yields (45–93%). The obtention of the cycloadduct unaccompanied by fluoride
elimination may be suggestive of a concerted mechanism.
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In 2017, we developed a concise approach to access ring-trifluoromethylated cyclopen-
tene frameworks, utilizing silver-catalyzed double hydrocarbonation reaction of β-CF3-1,3-
enynes with bisnucleophiles 1,3-dicarbonyl compounds [42] (Scheme 5). β-CF3-1,3-enynes
possessing electron-withdrawing aryl groups on the alkyne moiety smoothly underwent
the cyclization reaction with 1,3-dicarbonyl compounds to give ring-trifluoromethylated
cyclopentene in moderate to excellent yields. A series of β-diketones, malonate derivatives
as well as β-ketoesters could be employed as reaction partner to afford the correspond-
ing ring-trifluoromethylated cyclopentenes in good to excellent yields. Unsymmetrical
1,3-diketone or β-keto esters afford the desired cyclopentenes as a mixture of two diastere-
omers in excellent yields with moderate to good diastereoselectivity. The use of organic
base effectively suppressed the defluorination process.

Interestingly, Chang and Zhang recently revealed that inorganic base K3PO4 can
effectively promote synthesis of CF3-substituted cyclopentenes when using malononitrile as
carbon nucleophile to react with β-CF3-1,3-enynes. Their developed protocol disclosed that
the fluorine retention of β-CF3-1,3-enynes did not rely on organic base and the additional
patterns did not depend on electron-deficient β-CF3-1,3-enynes. The reasons may mainly be
due to the stability of in situ formed carbon anion intermediates containing the cyano group
and CF3-substituted cyclopentenes with double bond migration formed [43] (Scheme 6).
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Scheme 6. Synthesis of CF3-substituted cyclopentene derivatives.

In 2020, Liu’s group reported the phosphine-catalyzed [3 + 2] cycloadditions of tri-
fluoromethyl enynes/enediynes with allenoates to form cyclopentenes containing a CF3-
substituted quaternary carbon center with great regioselectivity [44] (Scheme 7). This
reaction occurs with excellent regioselectivity under mild conditions, affording alkyne- and
diyne-tethered cyclopentene derivatives containing a CF3-substituted quaternary carbon
center in moderate to good yields.

2.3. Construction of Six-Membered Trifluoromethylated Carboncycles

In 2013, the Gevorgyan group demonstrated the synthesis of trifluoromethylated ben-
zene derivatives via chemo- and regioselective Pd-catalyzed [4 + 2] cross-benzannulation of
β-CF3-1,3-enynes with diynes [45] (Scheme 8). Both β-F-1,3-enynes and β-perfluoroalkylated
1,3-enynes also are good reaction partners in these Pd-catalyzed [4 + 2] cross-benzannulation
reaction affording corresponding trifluoromethylated and perfluoroalkylated benzene
derivatives. This cycloaddition strategy proved to be effective for the rapid construction of
aromatic fluorides from easily available acyclic starting materials.

In 2014, the Zhang group disclosed an iron-promoted electrophilic annulation of
trifluoromethyl-containing aryl enynes with disulfides or diselenides affording polysub-
stituted naphthalenes in moderate to excellent yields. The reaction proceeded with high
selectivity to provide the 6-endo-dig cyclization product and showed good functional group
tolerance. The authors observed that the aryl groups bearing electron-withdrawing sub-
stituents in these substrates results in lower yields. The utilization of inexpensive ferric
chloride and commercially available disulfides and diselenides as electrophiles are signifi-
cant advantages for the usefulness of this reaction [46] (Scheme 9).

Based on their experimental results, a plausible mechanism was outlined, as shown
in Scheme 9b. The reaction of disulfide with iodine may take place to produce the active
RSI in situ. The presence of BPO promotes the generation of free radical RS• which
subsequently reacted with I2 to form RSI. The electrophilic addition of RSI to the triple bond
of enyne affords intermediate A (Path 1). The Lewis acid (FeCl3)-catalyzed intramolecular
electrophilic attack on the neighboring aryl group provides intermediate B, and subsequent
deprotonation yields the desired products. However, a free radical pathway cannot be
ruled out (Path 2), in view of the fact that the product can be isolated in the absence
of I2. The addition of RS• to enyne produces a vinyl radical C, which then undergoes
an intramolecular cyclization to form radical D. The following oxidation by I2 or FeCl3
produces the corresponding carbocation, which loses a H+ to yield desired products.
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3. Construction of Trifluoromethylated Heterocycles
3.1. Construction of Five-Membered Trifluoromethylated Heterocycles

Recently, Hanamoto and co-workers developed a convenient method for the synthesis
of 4-CF3-3-iodo-2-substituted thiophene from (Z)-2-bromo-2-CF3-vinyl benzyl sulfide in
two steps. The Sonogashira cross-coupling reaction of (Z)-2-bromo-2-CF3-vinyl benzyl sul-
fide with various terminal acetylenes afforded the corresponding (E)-2-CF3-1-buten-3-ynyl
benzyl sulfides in good to high yields. Subsequent iodocyclization afforded the correspond-
ing 4-CF3-3-iodo-2-substituted thiophenes in good to high yields. It is noteworthy that the
substrate bearing a triisopropylsilyl group was intact under optimal reaction conditions
due to the bulky silyl group hindering the approach of electrophilic iodine [47] (Scheme 10).
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Other methods to construct thiophene derivatives from β-CF3-1,3-enynes were also
reported. In 2020, Song group developed a divergent strategy for the construction of
3-SCF2H-4-CF3-thiophenes from readily available 1,3-enynes and S8 via a tandem thiophene
construction/selective C3 thiolation/difluoromethylthiolation under a ClCF2H atmosphere
with excellent substrate compatibility. Experiments had shown that the construction of the
thiophene ring may be a radical annulation process with S3

•− generated in situ, and freon
is used as a cheap difluoromethylation reagent. A series of 3-SeCF2H-4-CF3-selenophenes
can also be constructed by similar strategies [48] (Scheme 11).

In their subsequent work, they developed a divergent method for precise constructions
of cyclic unsymmetrical diaryl disulfides or diselenides and polythiophenes from β-CF3-
1,3-enynes and S8 when the ortho group is F, Cl, Br, and NO2 on aromatic rings. However,
when the ortho group is H, disulfides (diselenides) were constructed These transformations
undergo a cascade thiophene construction/selective C3-position thiolation process. A novel
plausible radical annulation process was proposed and validated by DFT calculations [49]
(Scheme 12).

In 2014, we developed novel divergent cyclizations of N-(2-(trifluoromethyl)-3-alkynyl)
hydroxylamines which are easily prepared from the corresponding β-CF3-1,3- enynes and
the salt of hydroxylamine under basic reaction conditions via simple nucleophilic addition
by subtle choice of the catalyst system, leading to two important trifluoromethylated ni-
trogen containing heterocycles, such as 4-trifluoromethyl cyclic nitrone and pyrrole. The
IPrAuNTf2/HNTf2 co-catalyzed cyclization of N-(2-perfluoroalkyl-3-alkynyl) hydroxy-
lamines produces pyrroles in moderate to excellent yields, whereas the AgOTf-catalyzed
reaction affords cyclic nitrones in high yields. The notable features of the method are its
easily accessible starting materials, mild reaction conditions and divergent synthesis [50]
(Scheme 13).
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Following the above work, we subsequently developed a novel NIS-mediated oxida-
tive cyclization of N-(2-trifluoromethyl-3-alkynyl) hydroxylamine under mild conditions,
which provides a facile route to various 4-trifluoromethyl-5-acylisoxazoles. It was found
that the NIS acts as both an oxidant and an electrophile for this sequential transforma-
tion. The key intermediate oxime formed by oxidation of hydroxylamine by NIS could
be isolable, which underwent I+-induced O-selected 5-exo-dig cyclization and subsequent
cascade reaction to afford 4-trifluoromethyl-5-acylisoxazoles. It is also noteworthy that no
desired product was obtained when alkyne bearing TMS group or terminal alkyne was
used as substrate [51] (Scheme 14a). Control experiments indicated that the oxygen atom
of the ketone originated from water rather than from molecular dioxygen (Scheme 14b).
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Scheme 12. Synthesis of diaryl disulfides or diselenides and polythiophenes derivatives.

The exclusive O-selected 5-exo-dig cyclization of oxime in the above transformation
conditions have aroused our interest because oximes can be employed as N-selective nucle-
ophiles or as O-selective nucleophiles in many chemical transformations. We deduced that
the Brønsted acid (HI) in situ formed in the above transformation conditions decreases the
nucleophilicity of oxime nitrogen and destroys the inter- or intramolecular hydrogen bond
between oxime oxygen and trifluoromethyl group, thus facilitating O-selective 5-exo-dig
cyclization. We envisioned that with a proper choice of transition metal catalysts, the iso-
lated oximes might undergo N-selective 5-endo-dig electrophilic cyclization owing to their
inter- or intramolecular hydrogen bond between oxime oxygen and the trifluoromethyl
group, which decreased the nucleophilicity of the oxime oxygen [52]. Thus, another type
of interesting nitrogen containing heterocycle i.e., fluorinated N-hydroxypyrroles, could
be obtained (Scheme 15, path a). Furthermore, if excess NIS and molecular iodine (I2)
formed in situ in the reaction were reduced with a proper reductant, the in situ formed
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Brønsted acid would catalyze the O-selective 5-exo-dig or 6-endo-dig electrophilic cyclization
of oximes; thus, an easy two-step, one-pot-synthesis of 4-trifluoromethyl-5-alkylisoxazoles
(Scheme 15, path b) would be developed. Based on the above considerations, we devel-
oped the divergent regioselective cyclizations of N-(2-trifluoromethyl-3-alkynyl) oximes
by subtle choice of gold(I) or Brønsted acid catalyst system, leading to 4-trifluoromethyl
N-hydroxypyrroles or 5-akylisoxazoles. In order to avoid the tedious separation of un-
stable N-(2-trifluoromethyl-3-alkynyl) oximes, an easy two-step, one-pot synthesis of
4-trifluoromethyl-5-alkylisoxazoles from N-(2-trifluoromethyl-3-alkynyl) hydroxyl-amines
is realized. This two-step, one-pot procedure is a complementary method for the synthesis
of 4-trifluoromethyl-5-alkyl isoxazoles from those unstable N-(2-trifluoromethyl-3-alkynyl)
oximes [53] (Scheme 15).
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After we studied the chemistry of β-CF3-1,3-enynes with the bisnucleophile hydroxy-
lamine and subsequent transformations, we then studied the reaction of β-CF3-1,3-enynes
with the bisnucleophile 2-aminomalonates. A dramatic substituent effect was observed
in the reaction of β-CF3-1,3-enynes with the bisnucleophile 2-aminomalonates. When
N-tosylated 2-aminomalonate was used as bisnucleophile, the reactions proceeded smoothly
to afford 2-fluoro-2-pyrrolines via double direct C-F substitutions [54]. In contrast, either
4-trifluoromethyl pyrrolidines or gem-difluoro-1,3- conjugated enynes were delivered when
N-acetylated 2-aminomalonate was used as reaction partner. β-CF3-1,3-enynes show an
interesting substituent effect on the product diversity. β-CF3-1,3-enynes bearing electron-
donating or weak electron-withdrawing groups, such as Me, MeO, Cl and Br, on the aryl
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substituent of the alkyne moiety afford functionalized gem-difluoro-1,3-conjugated enynes
in moderate to good yields, whereas 4-trifluoromethyl pyrrolidines are isolated as the
predominant product in moderate to good yields from those β-CF3-1,3-enynes with strong
electron-deficient aromatic substituent. Various functionalized 4-(difluoromethylene)-
1,2,3,4-tetrahydropyridines could be obtained in good yields via the gold(I)-catalyzed
intramolecular 6-endo-dig cyclization of the corresponding gem-difluoro-1,3-conjugated
enynes under mild conditions [55] (Scheme 16).
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In 2017, we developed the first example of tandem intermolecular hydroamination
and cyclization reaction of β-CF3-1,3-enynes with bisnucleophile primary amines affording
4-trifluoromethyl-3-pyrrolines by employing a cheap silver catalyst under mild reaction
conditions. This new method is compatible with alkyl, aryl, and allyl primary amines, rep-
resenting an atom-economic protocol for the construction of 4-trifluoromethyl-3-pyrrolines
for the first time. It should be noted that the reaction also works well for aromatic primary
amines, albeit requiring a higher reaction temperature [56] (Scheme 17).

Following the above work, we subsequently developed a facile two-step, one-pot
method for the synthesis of a range of halogenated trifluoromethylated pyrroles from
β-CF3-1,3-enynes, readily aliphatic primary amines and halogenating agents, such as NBS
and NIS. By variation of the halogenating agents, ring trifluoromethylated monoiodo
pyrrole or dibromo pyrrole skeletons can be readily accessed in moderate to good yields.
The different outcome of the reactions with NIS and NBS may be due to their different
electrophilic properties towards pyrrole. This two-step, one-pot method employs a key
halogenating-agents mediating step to trigger a cascade process featuring an initial elec-
trophilic cyclization of the first intermolecular hydroamination product [57] (Scheme 18).
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More recently, in 2021, we developed the first example of a tandem double hydroam-
ination reaction of β-CF3-1,3-enynes with bisnucleophiles hydrazine derivatives under
mild reaction conditions. By variation of the substituents on the hydrazine nitrogen atom,
three types of trifluoromethylated pyrazolidines, pyrazolines and pyrazoles can be readily
accessed in moderate to good yields. The reaction with simple hydrazine monohydrate or
sulfonyl hydrazines as nucleophiles produces 1,3,4-trisubstituted pyrazolines, whereas the
reaction with acetyl hydrazine as nucleophiles affords 1,4,5-trisubstituted pyrazolidines.
Using phenylhydrazine or tert-butylhydrazine as reaction partners, the products are easily
oxidized to form 1,4,5-trisubstituted pyrazoles [58] (Scheme 19).
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3.2. Construction of Six-Membered Trifluoromethylated Heterocycles

In 2000, the Qing group first reported the synthesis of 4-trifluoromethyl-2H-pyrans
by palladium-catalyzed cyclization of (E)-3-alkynyl-3-trifluoromethyl allylic alcohols. The
6-endo-dig cyclization, not the 5-exo-dig cyclization, is favored due to the fact that the
trifluoromethyl group possesses powerful electron-withdrawing properties and (E)-3-
alkynyl-3-trifluoromethyl allylic alcohols bearing an aryl group adjacent to the hydroxyl
lead to dienone under same reaction conditions [59] (Scheme 20).
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Scheme 20. Synthesis of 4-trifluoromethyl-2H-pyrans derivatives.

A straightforward and efficient approach to alkyne-functionalized ring-monofluorinated
4H-pyrans via a simple base-mediated cascade reaction of β-CF3-1,3-enynes with
1,3-dicarbonyl compounds or monocyano- substituted carbon nucleophiles, such as
3-oxo-3-phenylpropanenitrile, 3-oxo-butyronitrile was developed by our group [60] and
Chang [10]. Substituted alkynyl group was used as an activating group. The key events
of this reaction involve two consecutive C-F substitutions under very mild conditions
(Scheme 21).
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Very recently, we developed the first example of a tandem intermolecular hydrocarbon-
ation/intramolecular heterocyclization reaction of β-CF3-1,3-enynes with bisnucleophiles
β -ketothioamides under mild reaction conditions. By variation of the substituents linked
to the carbonyl or on the β-ketothioamides nitrogen atom, ring trifluoromethylated pyrans,
or thiopyrans, can be readily accessed in moderate to good yields. Enynes possessing
electron-withdrawing aryl groups on the alkyne moiety are generally good candidates for
present transformation and β-ketothioamides bearing a piperidine substituent on the amide
moiety, and (hetero)aryl groups on the keto moiety would mainly afford pyran, whereas
β-ketothioamides bearing pyrrolidine substituent on the amide moiety and (hetero)aryl or
alkyl groups on keto moiety lead to the formation of thiopyrans. Other substituted forms
of N,N-disubstituted β-ketothioamides would give mixtures of pyrans and thiopyrans.
We think that the formation of the oxygen enol or sulfur enol intermediate Int-B could be
affected by electronic and spatial effects of substituents on either the keto moiety or the
nitrogen atom of the β-ketothioamide from the reaction of Int-A under basic conditions,
which results in pyrans or thiopyrans. β-ketothioamides bearing a piperidine substituent
on the amide moiety and (hetero)aryl groups on the keto moiety would mainly form
oxyenols, leading to the formation of pyran, whereas sulfur enol would predominantly
form β-ketothioamides bearing a pyrrolidine substituent on the amide moiety and (het-
ero)aryl or alkyl groups on the keto moiety, leading to the formation of thiopyrans. Other
substituted forms of N,N-disubstituted β-ketothioamides would give mixtures of oxygen
enol and sulfur enol which result in mixtures of pyrans and thiopyrans. The salient features
of this tandem include atom-economical, mild reaction condition, ease of operation and
product diversity [61] (Scheme 22).
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4. Construction of Other Value-Added Trifluoromethylated or Non-Fluorinated
Organic Compounds

The divergent synthesis of thioether-functionalized trifluoromethyl-alkynes, 1,3-dienes
and allenes from the regioselective nucleophilic addition reactions of β-CF3-1,3-enynes with
sulfur nucleophiles was discovered by our group in 2018. The addition patterns depend on
the type of enynes, sulfur nucleophiles and reaction conditions used. 1,4-addition leading
to thioether-functionalized trifluoromethyl-allenes was realized when enynes possessing
electron-withdrawing aryl groups on the alkyne moiety were used as reaction partners
and alkanethiols were used as nucleophiles, whereas solvent-controlled construction of
thioether-functionalized 1,3-dienes and alkynes were realized, respectively, via 3,4-addition
pattern or 1,2-addition pattern if thiophenols were applied as nucleophiles. The three
types of compounds containing both sulfur and fluorine elements are valuable building
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blocks for synthesis of multifunctional trifluoromethylated vinyl sulfides and thiophenes
derivatives [62] (Scheme 23).
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In 2020, Song and coworkers reported three unprecedented Cu-catalyzed regio- and
stereo-divergent chemoselective sp2/sp3 1,3- and 1,4-diborylation of β-CF3-1,3-enynes,
affording a broad array of diborylated compounds containing CF3 group in simple and
efficient ways. Homopropargylic boronates and homoallenyl boronates as the key inter-
mediates for the above three transformations were obtained after carefully modifying the
reaction conditions. DFT calculations explain the reactivity, regioselectivity, as well as the
stereoselectivity in these transformations in detail [63] (Scheme 24).

In the same year, a regio-divergent boroprotonation of β-CF3-1,3-enynes controlled by
ligand for divergent synthesis of CF3-substituted homopropargyl boronates and homoal-
lenyl boronates was reported by Cao and coworkers They found that XantPhos promoted
the 1,2-boroprotonation of β-CF3-1,3-enynes in good yields and with complete regiocon-
trol. Conversely, 1,4-boroprotonation products were accessed with high selectivity and in
moderate yield upon switching to the bidentate, nitrogen-based ligand 4,4′-di-tert-butyl-
2,2′-bipyridine (dtbpy) [64] (Scheme 25).
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In their subsequent work, base-catalyzed nucleophilic additions of TMSCN to
β-CF3-1,3-enynes, affording 1,2-hydrocyanation or 1,4-hydrocyanation products in good to
excellent yields with high regioselectivity, were developed. When the reaction of β-CF3-
1,3-enynes with TMSCN was carried out in the presence of 20 mol% DBU, the reactions
afforded the 1,4-hydrocyanation products i.e., cyanated CF3-substituted 1,3- butadienes in
fair to excellent yields, whereas the reaction provided the 1,2-hydrocyanation products by
using 5 mol% Cs2CO3 instead of DBU [65] (Scheme 26).
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The Cu-catalyzed 1,4-protosilylation and protoborylation of β-CF3-1,3-enynes to access
functionalized homoallenyl silanes and homoallenyl boronates were developed by Xu and
co-workers. This protocol also provides a general method to synthesize optically active
homoallenyl silanes and homoallenyl boronates in moderate to excellent yields with high
enantiomeric excess by using new designed chiral bisoxazoline ligands [66] (Scheme 27).
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In their subsequent work, an interesting selective and diverse defluoromethoxylation
reactions of β-CF3-1,3-enynes with potassium methoxide affording enynic and allenyl or-
thoesters under mild reaction conditions was developed. The transformations of enynic or-
thoesters proved that this class of compounds are efficient and flexible “platform molecules”
for the synthesis of various functionalized allenes [67] (Scheme 28).

Recently, Liu and coworkers reported the first 1,2-dicarbofunctionalization of β-CF3-
1,3-enynes with pyridinium salts via a cascade process involving a base-promoted [3 + 2]
cycloaddition followed by a visible-light-mediated Norrish-type-II fragmentation. This
protocol allows for the formation of pyridines bearing a trifluoromethyl-substituted qua-
ternary center in moderate to excellent yields under mild conditions. Besides β-CF3-
1,3-enynes, other trifluoromethyl alkenes, such as α-CF3-(hetero)aryl alkenes, and N-[(α-
trifluoromethyl)vinyl]imides, are good candidates for this transformation [68] (Scheme 29).Molecules 2022, 27, x FOR PEER REVIEW 29 of 33 
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5. Conclusions

In this review, we have summarized recent efforts to develop new diversity-oriented
synthesis based on β-CF3-1,3-enynes in one type of fluorine-containing building blocks.
The distinct reactivity of β-CF3-1,3-enynes and their variants allow these reactions to deliver
numerous value-added fluorine-containing compounds which have biologically relevant
structural motifs, such as O-, N-, and S-heterocycles, carboncycles, fused polycycles, and
multifunctionalized allenes. While the advances made to date are remarkable, further
inventing novel and efficient transformations of β-CF3-1,3-enynes to synthesize diverse
trifluoromethylated cyclic molecules, such as furan and acyclic molecules, is still interesting
and urgent.
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