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Abstract: The crystallization of the poorly soluble drug nitrofurantoin (NFT) with 4-aminopyridine
(4AmPy) resulted in three multicomponent solid forms with different hydration levels: anhy-
drous salt [NFT+4AmPy] (1:1), salt monohydrate [NFT+4AmPy+H2O] (1:1:1), and salt tetrahydrate
[NFT+4AmPy+H2O] (1:1:4). Each salt was selectively prepared by liquid-assisted grinding in the
presence of acetonitrile or ethanol/water mixture at a specific composition. The NFT hydrated
salts were characterized using single crystal X-ray diffraction. The [NFT+4AmPy+H2O] salt (1:1:1)
crystallized as an isolated site hydrate, while the [NFT+4AmPy+H2O] salt (1:1:4) crystallized as
a channel hydrate. The dehydration processes of the NFT salt hydrates were investigated using
differential scanning calorimetry and thermogravimetric analysis. A powder dissolution experiment
was carried out for all NFT multicomponent solid forms in pH 7.4 phosphate buffer solution at 37 ◦C.

Keywords: nitrofurantoin; 4-aminopyridine; salt; hydrate formation; crystal structure; dehydration;
stability; dissolution

1. Introduction

One of the important aspects of drug development is to determine which solid form
of the active pharmaceutical ingredient (API) will be the most preferable for its scale-up [1].
It is well-known that APIs can exist in various solid forms (polymorphs, hydrates/solvates,
salts, cocrystals) and their physicochemical properties can differ strikingly from the prop-
erties of the parent drug compound [2–10]. Therefore, it is important to identify and
characterize all possible solid forms of APIs in the early stages of drug development in
order to use the optimal form of API with the best characteristics in the pharmaceutical
formulation [1].

Poor water solubility is one of the major challenges for many APIs, which in turn is
the reason for their poor bioavailability [11]. The preparation of multicomponent solid
forms (salts, cocrystals) based on poorly soluble APIs is one of the promising solutions to
this problem. This approach allows the modification of a number of physicochemical prop-
erties of the API (solubility, dissolution rate, melting point, permeability, physical stability,
tabletability, etc.) without changing its inherent pharmacological properties [12]. Some
studies have shown that the solubility of poorly soluble APIs can be increased hundreds or
even thousands of times by salt or cocrystal formation [13–16]. However, despite the many
advantages of cocrystallization, only a very limited number of pharmaceutical cocrystals
have been approved and marketed as drug products to date, such as Suglat®, Entresto®,
Steglatro®, Depakote®, Lexapro®, and Betachlor® [17]. Unlike cocrystals, which are just
beginning to enter the pharmaceutical market, more than 50% of drugs are sold as organic
salts [18].
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As well as poor water solubility, approximately one third of pharmaceutical solids
can form hydrates during the manufacturing process [19]. However, the formation of
multicomponent solid forms does not prevent the hydration of APIs. The formation of
hydrates for multicomponent solids, as well as their stability, is still an unpredictable factor.
Moreover, the tendency for hydrate formation is especially high for salt forms, which could
be due to the strong interaction potential of water with ions in the salt structure [20,21].
Additionally, the imbalance between the number of hydrogen bond donors and acceptors
in the compounds can also contribute to the formation of hydrates [22–24]. Water, in
comparison with other organic solvents, due to the small size of its molecules, is able
to integrate into the voids of the crystal structure, thus forming channel hydrates. On
the other hand, water can bind salt components into a stable crystal structure, acting as
both hydrogen bond donor and acceptor [25,26]. The incorporation of water molecules in
the crystal structure will affect many of the physicochemical properties of the API or its
multicomponent solid compared to the anhydrous form. For example, hydrated forms may
exhibit better compressibility and tabletability compared to anhydrous forms [27,28]. In
such cases, it is advisable to give preference to hydrated forms of the API or pharmaceutical
salt to prevent form change during manufacture or storage. On the other hand, hydrated
forms often have lower solubility than anhydrous forms [29–31]. In this regard, the choice
between hydrated and anhydrous forms can be a decisive factor in drug manufacturing.

In this work, nitrofurantoin (NFT) was chosen as the object of study (Figure 1). NFT is
an antibiotic used to treat and prevent lower urinary tract infections, such as cystitis [32].
NFT shows polymorphism and exists in two forms (α and β). The β-polymorph is the
commercial form of nitrofurantoin [33]. In addition to the anhydrous polymorphs, there
are two known monohydrate forms of NFT [34]. As we have previously demonstrated,
the stability of the NFT anhydrous form in water is extremely low. When dissolved in
water, NFT almost immediately transforms into a more thermodynamically stable hydrated
form, which is accompanied by a sharp decrease in API solubility [29,35]. Preparation
of multicomponent crystals with highly soluble coformers is one of the most promising
approaches to increase the solubility and dissolution rate of NFT [36–41]. However, the hy-
dration of NFT cocrystals and salts also occurs, for example, with L-arginine [40], melamine,
4,4′-bipyridine, 1,2-bis(4-pyridyl ethane) [41], and 4-aminopyridine [37]. The tendency
for hydration of both the parent NFT and its multicomponent crystals can be specifically
associated with the imbalance between the number of hydrogen bond donors and acceptors
in the API molecule: one donor against six acceptors.
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The aim of the present study was to study hydrate formation of the NFT salt with
4-aminopyridine (Figure 1). 4-Aminopyridine (4AmPy) is a potassium channel blocker
used to treat various neurological disorders [42]. Moreover, there is a literature review
describing the efficacy of this drug compound in the treatment of lower urinary tract
symptoms in a patient with idiopathic nystagmus [43]. The monohydrate salt of NFT and
4AmPy was first obtained by Segalina et al. [37]; however, the physicochemical properties of
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the multicomponent solid were not investigated due to problems associated with obtaining
a pure phase. In this paper, we present the selective synthesis of not only the known form,
but also two new forms, one of which is the anhydrous salt [NFT+4AmPy] (1:1) and the
second is the salt tetrahydrate [NFT+4AmPy+H2O] (1:1:4). All three multicomponent solids
were obtained both by mechanochemical and crystallization methods and characterized
by single crystal and/or powder X-ray diffraction. Differential scanning calorimetry and
thermogravimetric experiments were carried out to study the thermophysical characteristics
of each salt form. Finally, powder dissolution experiments were carried out in pH 7.4
phosphate buffer solution at 37 ◦C to compare the dissolution profiles of the parent NFT
and its multicomponent crystals. The conducted studies allowed us to conclude how the
packing of water molecules in the crystal structures of the NFT and 4AmPy salts with
different hydration levels affected the physicochemical properties.

2. Results and Discussion
2.1. Crystal Structure Analysis

[NFT+4AmPy+H2O] salt (1:1:1) crystallizes in the monoclinic space group P21/n, and
the asymmetric unit contains one ion each of NFT and 4AmPy and one water molecule
(Figure S1a). Herein, NFT adopts a “twisted” conformation (conformer II [44]), where
the nitrofuran fragment is rotated by 180◦ around the C–C bond in relation to the rest of
the molecule. Previously, we reported that this conformation is not specific to the NFT
molecule since it occurs only in 15% of all determined crystal structures for this API [38]. In
the crystal structure, NFT and 4AmPy ions are linked by N12+–H1···N1− interaction. The
adjacent NFT-4AmPy dimers are connected to each other via N11–H11···O1 hydrogen bond
to form a twisted zigzag chain (Figure 2a). The 3D crystal packing of the salt is fulfilled by
the water molecule. The water molecules act as a bridge, which connects four independent
chains of NFT and 4AmPy via strong O21–H20···O2 and O21–H21···O2 hydrogen bonds to
generate a tetrameric ring motif (Figure 2b). Based on the location of the water molecules,
the [NFT+4AmPy+H2O] salt (1:1:1) is a class of hydrate termed an isolated site hydrate,
where the water molecules are found within discrete pockets isolated from direct contact
with other water molecules [21].
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[NFT+4AmPy+H2O] salt (1:1:4) crystallizes in the orthorhombic space group Pnma,
and the asymmetric unit contains one ion each of NFT and 4AmPy and four water molecules
(Figure S1b). Notably, NFT adopts a frequently observed conformation (conformer I [44]),
in contrast to the [NFT+4AmPy+H2O] salt (1:1:1). The crystal structure consists of NFT-
4AmPy dimers bonded via N11+—H1···N1− interaction. The hydrogen bond distances
suggest that a stronger pyridinium-imide heterodimer is observed here than in the salt
monohydrate (Table S1). These dimers are further developed into a zigzag chain (Figure 3a).
The resulting chain, in contrast to the chain in the NFT salt monohydrate, is practically
planar. This is due to a different NFT conformation. Thus, the neighboring NFT-4AmPy
dimers are connected via bifurcated N12—H10···O3 and N12—H11···O1 hydrogen bonds.
The water molecules form tetramers that are hydrogen-bonded to the neighboring NFT
ions via O21—H21···O1 and O23—H24···O2 hydrogen bonds (Figure 3a). The chains are
assembled into 2D layers via weak C—H···O interactions and further stacked into a 3D
channel structure with water molecules sitting in cavities along the b-axis (Figure 3b).
Therefore, [NFT+4AmPy+H2O] salt (1:1:4) is a class of hydrate termed a channel hydrate.
The Hydrate Analyser tool implemented in Mercury software was used to determine the
water interaction map. The water volume occupied in the unit cell is 441.42 Å3, which is
24.5% of the total unit cell volume (Figure S2).
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2.2. Evaluation of the Formation Pathways of the NFT Salts in LAG

Due to the fact that the single crystals of the [NFT+4AmPy+H2O] (1:1:1) and [NFT+
4AmPy+H2O] (1:1:4) salts were obtained by crystallization from ethanol (96%) or ethanol/
water mixture (50:50 v/v), respectively, it can be concluded that the water content of
organic solvent is the main variable influencing the formation of various hydrated forms
of the NFT salt. Previously, Segalina et al. reported that obtaining a pure form of NFT
salt monohydrate by grinding is not a trivial task [37]. We assume that the difficulty in
obtaining the salt monohydrate may be due to its partial transition to the tetrahydrate form
during the mechanochemical reaction, which was not previously known. We previously
observed a similar sensitivity of salts with different hydration levels to the water content of
the water-organic mixture for norfloxacin salts with fumaric acid [45]. In this regard, we
tried to determine the influence of the ethanol/water composition on the ability to obtain
each hydrated form of the NFT salt as a result of a mechanochemical reaction. A series
of grinding experiments was conducted with the physical mixture (NFT+4AmPy) in a 1:1
molar ratio in the presence of ethanol/water mixtures with various compositions. The
experimental PXRD patterns of the obtained powder samples were compared with the
PXRD patterns calculated from SCXRD data for the NFT hydrated salts (Figure 4).
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compositions with the simulated PXRD patterns calculated from SCXRD data.

The results indicated that the percentage of water in the ethanol/water solvent mixture
should not exceed 9% to obtain a pure form of the NFT salt monohydrate by LAG. The
increasing water content in the cosolvent mixture resulted in the appearance of charac-
teristic peaks of the NFT salt tetrahydrate on the PXRD pattern (peaks at 2θ: 7.6◦ and
15.2◦). The preponderance of the tetrahydrate form compared with the monohydrate form
of the NFT salt in the powder sample occurred only when the ethanol percentage in the
ethanol/water mixture was reduced to almost 50%. To obtain the [NFT+4AmPy+H2O] salt
(1:1:4) without residual traces of the NFT salt monohydrate via LAG, the ethanol content
should not exceed 30%. It should be noted that the pure form of the NFT salt tetrahydrate
was obtained by grinding with additional water as the solvent. Moreover, the grinding
of the NFT salt monohydrate with additional water resulted in the transformation of the
initial phase into the tetrahydrate form (Figure S3). During the grinding experiments, it
was noted that the powdered samples of the NFT salts with different hydration levels were
characterized by various shades of yellow: the powder of the salt monohydrate had a pale
yellow color while the powder of the salt tetrahydrate had a more saturated shade of yellow
(Figure S4).

In addition to the two hydrated forms of the NFT salt, a new phase identified as the
anhydrous NFT salt [NFT+4AmPy] (1:1) was obtained by crystallization and grinding in
the presence of acetonitrile. Interestingly, acetonitrile is an organic solvent which is most fre-
quently used to produce single crystals of the anhydrous/unsolvated NFT multicomponent
solids [38,40,41,44,46,47]. Despite numerous attempts, we failed to grow single crystals of
the [NFT+4AmPy] salt (1:1) suitable for SCXRD. However, the resulting powdered sample
of the new phase obtained by crystallization from acetonitrile of NFT and 4AmPy in a 1:10
molar ratio was analyzed by PXRD (Figure 5).



Molecules 2022, 27, 8990 7 of 15
Molecules 2022, 27, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 5. Experimental PXRD pattern of [NFT+4AmPy] salt (1:1) prepared via crystallization and 
LAG in the presence of acetonitrile compared to the parent compounds and simulated PXRD pat-
terns for the NFT hydrated salts. 

The new phase was characterized by a unique set of reflections, which differed from 
both the parent components and the two hydrated forms of the salt. The experimental 
PXRD pattern of the sample obtained by grinding of the physical mixture in a 1:1 molar 
ratio in the presence of acetonitrile completely coincided with the PXRD of the anhydrous 
phase obtained by crystallization. The absence of the solvent used and/or water traces in 
the powder sample of the [NFT+4AmPy] salt (1:1) was confirmed by DSC/TG. The grind-
ing of the [NFT+4AmPy] salt (1:1) in the presence of water resulted in the transformation 
of the initial phase into the tetrahydrate form (Figure S3). The results of the mechano-
chemical experiments are depicted in Scheme 1. It was found that regardless of the initial 
phase (physical mixture, [NFT+4AmPy] (1:1) or [NFT+4AmPy+H2O] (1:1:1)), the grinding 
of the powdered sample in the presence of water led to the formation of the 
[NFT+4AmPy+H2O] salt (1:1:4). 

 
Scheme 1. Schematic representation of preparation and transformation of the NFT multicomponent 
solid forms via LAG. 

  

Figure 5. Experimental PXRD pattern of [NFT+4AmPy] salt (1:1) prepared via crystallization and
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for the NFT hydrated salts.

The new phase was characterized by a unique set of reflections, which differed from
both the parent components and the two hydrated forms of the salt. The experimental
PXRD pattern of the sample obtained by grinding of the physical mixture in a 1:1 molar
ratio in the presence of acetonitrile completely coincided with the PXRD of the anhydrous
phase obtained by crystallization. The absence of the solvent used and/or water traces in
the powder sample of the [NFT+4AmPy] salt (1:1) was confirmed by DSC/TG. The grinding
of the [NFT+4AmPy] salt (1:1) in the presence of water resulted in the transformation of
the initial phase into the tetrahydrate form (Figure S3). The results of the mechanochemical
experiments are depicted in Scheme 1. It was found that regardless of the initial phase
(physical mixture, [NFT+4AmPy] (1:1) or [NFT+4AmPy+H2O] (1:1:1)), the grinding of the
powdered sample in the presence of water led to the formation of the [NFT+4AmPy+H2O]
salt (1:1:4).
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2.3. Thermal Analysis

The tehermal behavior of [NFT+4AmPy] (1:1), [NFT+4AmPy+H2O] (1:1:1), [NFT+
4AmPy+H2O] (1:1:4) was studied by DSC and TGA. The DSC and TG curves for all
multicomponent forms of NFT are shown in Figure 6. Thermophysical data for the hydrated
forms of NFT salt are summarized in Table 1.
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Table 1. Physicochemical characteristics of dehydration for the NFT salt hydrates.

Tonset
dehydr,

◦C ∆mcalc
s , % ∆mexp

s , % ∆HT
desolv, J·g−1 ∆HS, kJ·mol−1

[NFT+4AmPy+H2O]
(1:1:1) 99.3 ± 0.2 5.14 5.09 131.6 ± 0.5 46.1 ± 0.5

[NFT+4AmPy+H2O]
(1:1:4) 38.4 ± 0.2 17.83 17.76 324.3 ± 0.5 32.8 ± 0.5

The DSC and TG curves obtained for the [NFT+4AmPy] salt (1:1) confirmed that this
phase was an anhydrous/unsolvated form of the NFT and 4AmPy salt. The DSC curve
revealed a single endothermic peak with Tonset = 122.9 ± 0.2 ◦C (∆Hfus = 57.2 ± 0.5 J·g−1),
indicating the melting of salt. An exothermic event immediately after the endothermic
peak was associated with sample decomposition at temperatures above 140 ◦C. According
to TG analyses, both of these effects were accompanied by a significant weight loss of the
sample (~30%).

Thermal analysis of the NFT salt hydrates revealed the following results. A single
endothermic event observed in the DSC curve of both samples corresponded to the dehy-
dration process with the onset temperature of 99.3± 0.2 ◦C for the NFT salt monohydrate or
38.4 ± 0.2 ◦C for the NFT salt tetrahydrate. The dehydration was followed by a weight loss
event. The TG curves of the [NFT+4AmPy+H2O] salt (1:1:1) and the [NFT+4AmPy+H2O]
salt (1:1:4) showed a weight loss of 5.09% or 17.76%, respectively, which was consistent
with the calculated weight loss (5.14% or 17.83%, respectively). This was consistent with
the release of one or four water molecules from the corresponding NFT salts. After dehy-
dration, the endothermic peaks of the two NFT salts corresponding to the melting were not
observed. This indicated that the release of water led to destruction of the crystal structure
of the salts and, as a result, amorphization because the components failed to rearrange
and pack immediately. A similar thermal behavior was also observed for the NFT solvate
with 3-picoline and its hydrated form [44]. The large difference between the dehydration
temperatures of the NFT salt hydrates can be related to the bonding environment features
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in the crystal structures and the binding strength of the solvent molecules. The binding
strength of the water molecules in the NFT hydrated salts can be estimated by calculating
the vaporization enthalpy (∆Hs) of the salt-bound solvent using the following equation [48]:

∆Hs = (∆HT
desolv × 100/∆ms)×Ms (1)

where ∆HT
desolv is the enthalpy of desolvation/dehydration determined from the DSC

data, ∆ms is the mass loss percent measured in the TG experiment, and Ms is the solvent
molecular weight. The resulting ∆Hs values for the NFT salt hydrates are given in Table 1.

In the [NFT+4AmPy+H2O] salt (1:1:1), the ∆Hs value was 12% higher than in the
pure liquid (vaporization enthalpy of water ≈ 40.7 kJ·mol−1). This indicated stronger
interactions of water molecules with salt components than in pure water and the NFT salt
tetrahydrate. Indeed, in the crystal structure of the NFT salt monohydrate, the O—H···O
hydrogen bonds formed between NFT ions and water molecules were the shortest hydrogen
bonds among all the interactions in the crystal structure. Moreover, the water molecules
played an essential role in the stabilization of the 3D structure of the [NFT+4AmPy+H2O]
salt (1:1:1) linking the chains of the NFT-4AmPy dimers (Figure 2).

In the [NFT+4AmPy+H2O] salt (1:1:4), the ∆Hs value was 24% lower than in pure water.
The water molecules in the NFT salt tetrahydrate are located in the cavities; therefore, they
can freely leave the crystal structure during heating. To confirm this hypothesis, a powdered
sample of the [NFT+4AmPy+H2O] salt (1:1:4) was heated to 100 ◦C, the temperature at
which dehydration ends, and cooled to 20 ◦C (Figure S5a). The sample obtained after the
first heating cycle was analyzed by PXRD (Figure S5b). It was found that dehydration led to
a significant decrease in sample crystallinity, which was proven by the intensity reduction
of the peaks. However, the characteristic peaks on the PXRD pattern of the sample obtained
after dehydration coincided with the peaks of the [NFT+4AmPy+H2O] salt (1:1:4).

2.4. Powder Dissolution

It is known that nitrofurantoin is a drug compound with poor solubility. Moreover,
NFT spontaneously transforms to a monohydrate form in aqueous medium, the solubility
of which is lower than that of the anhydrous form [29]. Therefore, it was interesting to
determine whether the solubility of NFT would increase as a result of its salt formation
with 4AmPy and to investigate the behavior of various salt forms during their dissolution.
Powder dissolution experiments were carried out in pH 7.4 phosphate buffer solution at 37
◦C, and the resulting dissolution profiles are presented in Figure 7.

Based on the obtained profiles, it was found that the dissolution of all NFT multicom-
ponent solid forms was characterized by the well-known “spring and parachute” pattern.
Such behavior indicated that the NFT salts, regardless of their hydration level, underwent
a phase transformation during dissolution. This was also confirmed by the PXRD analysis
of the residual materials collected at the end of the experiment (Figure S6). In all cases, it
was found that NFT multicomponent solids transformed to a less soluble hydrated phase
of the API.

The [NFT+4AmPy] (1:1) and [NFT+4AmPy+H2O] (1:1:4) salts had similar dissolution
profiles. They were characterized by a faster dissolution rate than that of the parent NFT
and NFT salt monohydrate. The maximum concentrations (Cmax) of both of the NFT salts
reached in the first 15–20 min of the dissolution experiment were the same (2.60 × 10−3 M)
and were 24% higher than the NFT monohydrate solubility (2.11 × 10−3 M). However, an
initial rapid release of NFT from the salt forms was followed by a sharp decrease in the
API concentration. After dissolution of the [NFT+4AmPy] (1:1) and [NFT+4AmPy+H2O]
(1:1:4) salts for 30 min, the NFT concentration decreased to a similar plateau concentration
as that of the NFT monohydrate. The dissolution behavior of the anhydrous and hydrated
salts confirmed that the water molecules in the crystal structure of the [NFT+4AmPy+H2O]
salt (1:1:4) were weakly hydrogen-bonded to the salt components, and salt hydration did
not significantly contribute to NFT solubility and stability.
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The [NFT+4AmPy+H2O] salt (1:1:1) dissolution was characterized by a gradual in-
crease in the NFT concentration in the first 90 min of the experiment. The Cmax value of
the NFT salt monohydrate (2.94 × 10−3 M) was 38% higher than the NFT monohydrate
solubility. Furthermore, due to the NFT concentration decreasing more slowly compared to
the other salt forms, the API supersaturation level in the buffer solution was maintained
for almost 6 h. The prolonged stability of the [NFT+4AmPy+H2O] salt (1:1:1) during the
dissolution experiments was associated precisely with the specific crystal packing of the
water molecules in the NFT salt monohydrate. Thus, taking into account the poor water
solubility and stability of the parent NFT, the results presented in this paper highlight
the potential application of [NFT+4AmPy+H2O] salt (1:1:1) in the development of new
nitrofurantoin formulations.

3. Experimental Section
3.1. Materials

Nitrofurantoin was purchased from Acros Organics (Geel, Belgium) and its PXRD
pattern was found to correspond to the β-polymorph form of this drug with Cambridge
Structural Database (CSD) code LABJON02. 4-Amynopyridine was obtained from Sigma-
Aldrich (St. Louis, MO, USA). All of the chemicals were used as received without further
purification. Chromatographic or analytical grade solvents were used in the experiments.

3.2. Sample Preparation
3.2.1. Solution Crystallization

Single crystals of the NFT hydrated salts ([NFT+4AmPy+H2O] (1:1:1) and [NFT+
4AmPy+H2O] (1:1:4)) were successfully obtained by the slow evaporation method. The
orange needle crystals of [NFT+4AmPy+H2O] (1:1:1) were prepared by dissolving a physi-
cal mixture of NFT (10.1 mg) and 4AmPy (39.9 mg) in a 1:10 molar ratio in ethanol 96% (5
mL). The orange prism crystals of [NFT+4AmPy+H2O] (1:1:4) were prepared by dissolving
a physical mixture of NFT (10.1 mg) and 4AmPy (39.9 mg) in a 1:10 molar ratio in a mix-
ture of ethanol/water (50:50 v/v), in a sufficient quantity to ensure full dissolution. The
crystallizing dishes containing the resulting solutions were covered by parafilm perforated
with a few small holes, and the solutions allowed to evaporate slowly in the dark at room
temperature. Single crystals suitable for SCXRD were obtained after a few days. Despite
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numerous attempts, we were unable to obtain good quality single crystals for the anhy-
drous NFT salt [NFT+4AmPy] (1:1). The powdered sample of [NFT+4AmPy] (1:1) was
prepared by dissolving a physical mixture of NFT (10.1 mg) and 4AmPy (39.9 mg) in a 1:10
molar ratio in acetonitrile. The resulting powder was isolated and characterized by PXRD
and DSC/TG techniques.

3.2.2. Liquid-Assisted Grinding (LAG)

The grinding experiments were performed using a Fritsch planetary micro mill (Model
Pulverisette 7; Fritsch, Idar-Oberstein, Germany) in 12 mL agate grinding jars with ten 5
mm agate balls at a rate of 500 rpm for 60 min. In a typical experiment, 50 mg of a physical
mixture of NFT and 4AmPy in a 1:1 molar ratio were placed into a grinding jar and 50 µL
of solvent or solvent mixture was added with a micropipette. The phase composition of the
resulting bulk samples was analyzed by PXRD.

3.3. X-ray Diffraction
3.3.1. Single Crystal X-ray Diffraction (SCXRD)

The X-ray diffraction data for the [NFT+4AmPy+H2O] (1:1:1) single crystals were
collected on a Bruker D8 Venture machine. Additionally, the [NFT+4AmPy+H2O] (1:1:4)
single crystals were analyzed on a Bruker SMART APEX II diffractometer with graphite-
monochromated Mo-Kα radiation (λ = 0.71073 Å). Adsorption corrections based on mea-
surements of equivalent reflections were applied [49]. The structures were solved by direct
methods and refined by full-matrix least-squares on F2 with anisotropic thermal parame-
ters for all the non-hydrogen atoms [50]. All hydrogen atoms were found from different
Fourier maps and refined isotropically. In the [NFT+4AmPy+H2O] salt (1:1:4), the hydro-
gen atoms of the water molecules are disordered and they were refined with restraints.
The crystal data, data collection, and details of structure refinement are summarized in
Table 2. Relevant hydrogen bonding interactions and their geometries are listed in Table
S1. The crystallographic data were deposited with the Cambridge Crystallographic Data
Centre as supplementary publications under CCDC numbers 2216150 and 2216151. This
information can be obtained free of charge from the Cambridge Crystallographic Data
Centre at www.ccdc.cam.ac.uk/data_request/cif (accessed on 28 October 2022).

Table 2. Crystallographic data for the NFT hydrated salts.

[NFT+4AmPy+H2O] (1:1:1) [NFT+4AmPy+H2O] (1:1:4)

Chemical formula C8H5N4O5·C5H7N2·H2O C8H5N4O5·C5H7N2·4(H2O)
Formula weight 350.30 404.35

Crystal system, space group Monoclinic, P21/n Orthorhombic, Pnma
Temperature, K 150(2) 100(2)

a, Å 7.1941(3) 18.6147(11)
b, Å 19.5866(7) 6.4828(4)
c, Å 11.0933(4) 14.9379(3)
β, ◦ 98.2417(12) 90

Volume, Å3 1546.99(10) 1802.64(19)
Z 4 4

Wavelength, Å 0.71073 0.71073
Radiation type Mo Kα Mo Kα

Dcalc, g·cm−3 1.504 1.490
µ, mm−1 0.12 0.13

Reflections collected 20,175 33,823
Independent reflections 3368 2846
Reflections with I > 2(I) 2789 2649

Rint 0.036 0.049
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 1.05 0.043, 0.104, 1.13

Parameters 283 230
Goodness-of-fit on F2 1.046 1.132

Largest diff. peak/hole, e·Å−3 0.26, −0.17 0.46, −0.28
CCDC number 2216150 2216151

www.ccdc.cam.ac.uk/data_request/cif
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3.3.2. Powder X-ray Diffraction (PXRD)

PXRD analysis of the NFT samples was performed on a D2 PHASER diffractometer
(Bruker AXS, Karlsruhe, Germany) with Cu-Kα radiation (λ = 1.54187 Å) at 30 kV and
10 mA, equipped with a Lynxeye XE-T high-resolution position sensitive detector. The
PXRD patterns were recorded over the range of 5–30◦ (2θ) with a step size of 0.02◦ and
dwell time of 1 s.

3.4. Thermal Analyses
3.4.1. Differential Scanning Calorimetry (DSC)

The thermal analysis was carried out using a differential scanning calorimeter equipped
with a refrigerated cooling system (Perkin Elmer DSC 4000, Waltham, MA, USA). The sam-
ple was heated in a sealed aluminum sample holder at a rate of 10 ◦C min−1 under a
nitrogen atmosphere. The unit was calibrated with indium and zinc standards. The
accuracy of the weighing procedure was ±0.01 mg.

3.4.2. Thermogravimetric Analysis (TGA)

TGA was performed using a TG 209 F1 Iris thermomicrobalance (Netzsch, Selb, Ger-
many). Approximately 10 mg of the bulk sample was added to a platinum crucible. The
samples were heated at a constant heating rate of 10 ◦C min−1 and purged throughout the
experiment under a dry argon stream at 30 mL min−1.

3.5. Dissolution Studies

The powder dissolution experiments were carried out using a USP-certified Electrolab
EDT-08LX dissolution tester (Navi Mumbai, India) applying the USP II paddle method
for 360 min. Approximately 215 mg of pure NFT or an NFT-equivalent amount of the
salt (non-sink conditions) was added to 300 mL of pH 7.4 buffer solution with a paddle
speed of 100 rpm at 37.0 ± 0.1 ◦C. Aliquots of 1 mL with medium reposition were obtained
by syringe at predetermined time intervals (5, 10, 15, 20, 30, 45, 60, 90, 120, 180, 240, 300,
and 360 min). The samples were filtered using a Rotilabo PTEF syringe filter (Tullagreen,
Ireland) with 0.2 µm pores. The concentrations of NFT and 4AmPy in the solution phase
were determined after suitable dilution by HPLC. The results are stated as the average of
three replicated experiments. The solution pH was measured at the beginning and end of
each dissolution experiment. After the dissolution experiments, the solid residues were
collected and dried at room temperature for PXRD analysis.

3.6. High-Performance Liquid Chromatography (HPLC)

HPLC was performed on an LC-20 AD Shimadzu Prominence model (Tokyo, Japan)
equipped with a PDA detector and Luna C-18 column (150 mm× 4.6 mm i.d., 5 µm particle
size, and 100 Å pore size). The column temperature was set to 40 ◦C. Elution of the samples
was achieved using a mobile phase consisting of acetonitrile and 0.1% aqueous solution
of trifluoroacetic acid mixed in a 15:85 (v/v) ratio using an isocratic regime at a flow rate
of 1 mL·min−1. The injection volume was 20 µL. UV detection of NFT and 4AmPy was
carried out at wavelengths of 265 and 262 nm, respectively.

4. Conclusions

Three multicomponent solid forms of nitrofurantoin with 4-aminopyridine (anhy-
drous salt, salt monohydrate, and salt tetrahydrate) were obtained and studied. Each salt
was selectivity obtained by mechanochemical reaction in the presence of acetonitrile or
ethanol/water mixtures of particular compositions. The crystal structures of the nitro-
furantoin hydrated salts were determined and analyzed. The crystal packing analysis
suggested that the hydrated salts crystallized into distinct crystal structures, which had a
direct influence on differences in the physicochemical properties of the solid forms. The
nitrofurantoin salt monohydrate, termed an isolated site hydrate, showed greater thermal
stability than the salt tetrahydrate containing water molecules in channels. This was con-
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firmed by higher values of dehydration temperature and vaporization enthalpy for the salt
monohydrate compared to those of the salt tetrahydrate. Dissolution studies of the nitrofu-
rantoin multicomponent solids in pH 7.4 buffer solution indicated that the anhydrous salt
and its tetrahydrate form had higher dissolution rates than the parent drug and the salt
monohydrate. In turn, the nitrofurantoin salt monohydrate showed the highest maximum
concentration of the drug compound maintained over a prolonged time period.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27248990/s1, Figure S1: The ORTEP diagram of the
[NFT+4AmPy+H2O] (1:1:1) and [NFT+4AmPy+H2O] (1:1:4) salts. Figure S2: Water interaction map
for the [NFT+4AmPy+H2O] salt (1:1:4). Figure S3: Comparison of the simulated PXRD calculated for
the [NFT+4AmPy+H2O] salt (1:1:4) with the experimental PXRD patterns of the powdered samples
obtained by LAG of the [NFT+4AmPy] (1:1) or [NFT+4AmPy+H2O] (1:1:1) salts in the presence of
water. Figure S4: Color difference between the [NFT+4AmPy+H2O] (1:1:1) and [NFT+4AmPy+H2O]
(1:1:4) salts prepared by LAG method. Figure S5: DSC curves of the [NFT+4AmPy+H2O] salt
(1:1:4) in a heat-cool-heat cycle mode and comparison of the experimental diffractogram pattern of
[NFT+4AmPy+H2O] salt (1:1:4) after dehydration and the calculated diffraction pattern for this salt.
Figure S6: Results of PXRD analysis of the residual materials collected at the end of the dissolution
experiments. Table S1: Hydrogen bond geometries for the NFT hydrated salts.
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