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Abstract: The AgOAc-catalysed reaction of 3-nitro-2-phenyl-2H-chromenes with stabilized azome-
thine ylides generated from the imines based on methyl glycinate and arylaldehydes leads to a mixture
of endo and endo’ isomers of the corresponding chromeno[3,4-c]pyrrolidines in a ratio of 2.0–2.3:1 in
85–93% total yields as a result of a Michael addition/Mannich reaction sequence. In a similar reac-
tion involving 2-trifluoromethyl-3-nitro-2H-chromenes, only endo chromeno[3,4-c]pyrrolidines are
formed in 85–94% yields. 3-Nitro-2-(trichloromethyl)-2H-chromenes under the same conditions react
with these azomethine ylides to give the corresponding Michael adducts as individual anti-isomers
with the cis,trans-configuration of the chromane ring in 40–67% yields. Some 4-CF3-substituted
chromano[3,4-c]pyrrolidines exhibited high cytotoxic activity against HeLa human cervical carci-
noma cells.

Keywords: 3-nitro-2H-chromenes; azomethine ylides; Michael addition/Mannich reaction sequence;
chromeno[3,4-c]pyrrolidines; cytotoxicity

1. Introduction

The chromeno[3,4-c]pyrrolidine scaffold is the main structural element of a number
of bioactive molecules with important pharmaceutical properties. For example, the trans-
chromeno[3,4-c]pyrrolidine derivative S33138 is a dopamine D3 receptor antagonist and a
potential drug for the treatment of CNS disorders such as schizophrenia and Parkinson’s dis-
ease [1], while its cis-derivative, fiduxosin, is an α1-adrenoceptor antagonist and a promising
drug for the treatment of benign prostatic hyperplasia [2] (Figure 1). It was recently reported
that spirooxindole derivatives of chromenopyrroli(zi)dines 1 and 2 show high antitumor
activity against human cervical carcinoma and human rhabdomyosarcoma cancer cells
along with low cytotoxicity against normal human dermal fibroblast [3–5]. Fused prolinates
3 have been successfully tested as antimycobacterial agents against the M. tuberculosis H37Rv
strain [6]. Therefore, the development of regio- and stereoselective methods for the synthesis
of novel ∆3-fused chromenopyrrolidine derivatives is an urgent task.

A convenient one-pot atom-economical method for the synthesis of functionalized
pyrrolidines is based on the reaction of electron-deficient alkenes with stabilized azomethine
ylides generated in situ from Schiff bases [7–12]. Due to the high regio- and stereoselectivity
of reactions involving these ylides, this approach is an indispensable tool in the synthesis of
complex heterocyclic molecules containing up to four new chiral centers with the required
arrangement and spatial orientation of substituents from relatively simple and commer-
cially available precursors. When amino acid esters are used as the amino component of
the Schiff base, prolinates are formed as reaction products. These reactions are usually
carried out in the presence of catalytic amounts of a Brønsted base and transition metal
or lithium salt as a Lewis acid. Lewis acids increase the stereoselectivity of the process by
stabilizing the W-conformation of the ylide [13,14].
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Figure 1. Some bioactive chromenopyrroli(zi)dines. 

Being readily available and highly reactive substrates, conjugate nitroalkenes are 
widely used as dipolarophiles for the stereoselective synthesis of nitroprolinates [15–18]. 
In the reactions of trans-nitrostyrene with iminoesters, four diastereomers can be formed, 
classified as endo, exo, endo’ and exo’ isomers (Scheme 1). 

 
Scheme 1. Possible diastereomers generated from α-iminoesters and trans-nitrostyrenes. 

Depending on the type of catalyst, endo [19–22], exo [23,24] or exo’ [25] isomers can be 
obtained as a result of a diastereo- and enantioselective concerted 1,3-dipolar cycloaddi-
tion or of a Michael addition/Mannich reaction sequence. Heating without a Lewis acid 
and a base gave the mixtures of endo, exo, endo’ [26] or endo and exo [27] isomers. 

Due to the presence of a β-nitrostyrene moiety, 3-nitro-2H-chromenes can also react 
with azomethine ylides to form chromenopyrroli(zi)dine derivatives [28–30]. There are 
only four reports on the reactions of nitrochromenes with stabilized azomethine ylides 

Figure 1. Some bioactive chromenopyrroli(zi)dines.

Being readily available and highly reactive substrates, conjugate nitroalkenes are
widely used as dipolarophiles for the stereoselective synthesis of nitroprolinates [15–18].
In the reactions of trans-nitrostyrene with iminoesters, four diastereomers can be formed,
classified as endo, exo, endo’ and exo’ isomers (Scheme 1).
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Scheme 1. Possible diastereomers generated from α-iminoesters and trans-nitrostyrenes.

Depending on the type of catalyst, endo [19–22], exo [23,24] or exo’ [25] isomers can be
obtained as a result of a diastereo- and enantioselective concerted 1,3-dipolar cycloaddition
or of a Michael addition/Mannich reaction sequence. Heating without a Lewis acid and a
base gave the mixtures of endo, exo, endo’ [26] or endo and exo [27] isomers.

Due to the presence of a β-nitrostyrene moiety, 3-nitro-2H-chromenes can also react
with azomethine ylides to form chromenopyrroli(zi)dine derivatives [28–30]. There are
only four reports on the reactions of nitrochromenes with stabilized azomethine ylides
based on amino acid esters and arylaldehydes [6,31–33] (Scheme 2). It was reported that
the reaction between 2-aryl-substituted nitrochromenes 4 and Schiff bases 5 in the presence
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of DBU and LiBr resulted in adducts exo-3 [6], while the same reaction in the presence
of Et3N and AgOAc led to products 6 as individual endo isomers [31]. If the ylide from
methyl sarcosinate and benzaldehyde was used as a reagent, only adducts endo’-7 were
obtained [31]. In the works [32,33], the synthesis of products endo-6 (Ar2 = Ph, R1 = Et,
R2 = CO2Et) from chromenes 4 and the corresponding iminoester 5 in the presence of a
chiral base [32] or by a three-component reaction involving 3-nitro-2-phenyl-2H-chromene,
diethyl 2-aminomalonate and benzaldehyde without a catalyst [33] has been described.
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from amino acid esters and arylaldehydes [6,31].

Our group’s science research is focused on the development of methods for ∆3-carbo-
and heteroannulation of 2-trifluoromethyl-substituted 3-nitro-2H-chromenes using avail-
able ambiphilic reagents [3–5,34,35]. The introduction of the electron-withdrawing CF3-
group in position 2 of 3-nitro-2H-chromene not only activates the double bond but also
increases the stereoselectivity of their reactions with nucleophiles and ambiphiles. Fur-
thermore, the replacement of the methyl group by the trifluoromethyl one in the bioactive
molecule can lead to an increase in pharmacological properties due to enhanced lipophilic-
ity and metabolic stability [36–38].

In this work, the behavior of 2-phenyl- and 2-trifluoro(trichloro)methyl-substituted
3-nitro-2H-chromenes 4 in the reaction with stabilized azomethine ylides generated from
α-iminoesters 5 in the presence of Et3N and AgOAc have been compared and cytotoxic
activity of some 4-phenyl- and 4-trifluoromethyl-substituted chromeno[3,4-c]pyrrolidine
derivatives has been studied.

2. Results and Discussion

To obtain 4-phenyl-substituted chromeno[3,4-c]pyrrolidines 8, we used the Nyerges
group’s method [31], but the amount of AgOAc was reduced from 150 to 10 mol%. The
reaction between chromene 4a and imine ester 5b (Ar = 4-MeOC6H4) in the presence of
Et3N and AgOAc in toluene at room temperature for 5 h led to the mixture of endo-8b
and endo’-8b isomers in a ratio of 2.1:1 in 60% total yield (Scheme 3, Table 1, entry 1). It
motivated us to optimize the conditions for this reaction. Replacing toluene with acetonitrile
or tetrahydrofuran led to an increase in the yield of the target product to 91–92% (Table 1,
entries 2–3). The best yield of adduct 8b (93%) was achieved when the reaction was carried
out in dichloromethane (DCM) (Table 1, entry 4). The use of CuI as a catalyst proved to be
less efficient (Table 1, entries 5–8). Regardless of the nature of the catalyst and solvent, the
ratio of stereoisomers remained unchanged.



Molecules 2022, 27, 8983 4 of 21

Molecules 2022, 27, x FOR PEER REVIEW 4 of 22 
 

 

to be less efficient (Table 1, entries 5–8). Regardless of the nature of the catalyst and sol-
vent, the ratio of stereoisomers remained unchanged. 

 
Scheme 3. The reaction of nitrochromene 4a with azomethine 5b. 

Table 1. Condition optimization for the reaction of 4a with 5b a. 

Entry Catalyst Solvent Total Yield b, % Ratio c of endo:endo’ 
1 AgOAc PhMe 60 2.1:1 
2 AgOAc MeCN 91 2.1:1 
3 AgOAc THF 92 2.1:1 
4 AgOAc DCM 93 2.1:1 
5 CuI PhMe 40 2.1:1 
6 CuI MeCN 70 2.1:1 
7 CuI THF 70 2.1:1 
8 CuI DCM 78 2.1:1 

a Conditions: a mixture of 4a (63 mg, 0.25 mmol) and 5b (58 mg, 0.28 mmol) was stirred at room 
temperature in 1 mL of the corresponding solvent for 5 h in the presence of Et3N (2.9 mg, 0.025 
mmol) and the corresponding catalyst (0.025 mmol). b Isolated yield. c Determined by 1H NMR 
spectroscopy of the reaction mixtures. 

Under optimized conditions, chromeno[3,4-c]pyrrolidines 8a−g were obtained as 
mixtures of endo and endo’ isomers in a 2.0–2.3:1 ratio with 85–93% total yields (Scheme 4, 
Table 2). The donor-acceptor properties of substituents in chromene 4 and in the aryl 
fragment of the α-iminoester 5 had no significant effect on the yields of products 8 and 
the diastereoselectivity of the reaction. Individual isomers endo-8a−g and endo’-8a−g in 
54–61% and 20–27% yields, respectively, were prepared after the purification of crude 
products by column chromatography. 

 
Scheme 4. Synthesis of 4-Ph-substituted chromeno[3,4-c]pyrrolidines 8. 
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Table 1. Condition optimization for the reaction of 4a with 5b a.

Entry Catalyst Solvent Total Yield b, % Ratio c of endo:endo’

1 AgOAc PhMe 60 2.1:1
2 AgOAc MeCN 91 2.1:1
3 AgOAc THF 92 2.1:1
4 AgOAc DCM 93 2.1:1
5 CuI PhMe 40 2.1:1
6 CuI MeCN 70 2.1:1
7 CuI THF 70 2.1:1
8 CuI DCM 78 2.1:1

a Conditions: a mixture of 4a (63 mg, 0.25 mmol) and 5b (58 mg, 0.28 mmol) was stirred at room temperature in
1 mL of the corresponding solvent for 5 h in the presence of Et3N (2.9 mg, 0.025 mmol) and the corresponding
catalyst (0.025 mmol). b Isolated yield. c Determined by 1H NMR spectroscopy of the reaction mixtures.

Under optimized conditions, chromeno[3,4-c]pyrrolidines 8a−g were obtained as
mixtures of endo and endo’ isomers in a 2.0–2.3:1 ratio with 85–93% total yields (Scheme 4,
Table 2). The donor-acceptor properties of substituents in chromene 4 and in the aryl
fragment of the α-iminoester 5 had no significant effect on the yields of products 8 and
the diastereoselectivity of the reaction. Individual isomers endo-8a−g and endo’-8a−g
in 54–61% and 20–27% yields, respectively, were prepared after the purification of crude
products by column chromatography.
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Table 2. Scope of the synthesis of 4-Ph-substituted chromeno[3,4-c]pyrrolidines 8 a.

Chromene 4 R1 Imine 5 Ar Product Total yield b, % Yield b

endo-8, %
Yield b

endo’-8, %
Ratio c of
endo:endo’

a H a Ph 8a 87 56 23 2.0:1
a H b 4-MeOC6H4 8b 93 63 21 2.1:1
a H c 3,4-(MeO)2C6H3 8c 90 54 27 2.2:1
a H d 2,3,4-(MeO)3C6H2 8d 87 55 − d 2.3:1

a H e benzo[d][1,3]dioxol-
5-yl 8e 85 56 20 2.3:1

b Br b 4-MeOC6H4 8f 92 61 21 2.2:1
c MeO b 4-MeOC6H4 8g 88 57 22 2.2:1

a Conditions: a mixture of the appropriate chromene 4 (0.5 mmol), azomethine 5 (0.55 mmol), Et3N (5 mg, 0.05
mmol) and AgOAc (5.8 mg, 0.05 mmol) was stirred at room temperature in DCM (2 mL) for 5 h. b Isolated
yield. c Determined by 1H NMR spectroscopy of the reaction mixtures. d This isomer was not isolated from the
reaction mixture.

Next, we examined 2-trifluoromethyl-substituted chromenes 4d−i in the reaction with
iminoesters 5a−e. It was found that under the same conditions, adducts endo-9a−j are
formed in 85–94% yields as the only reaction products (Scheme 5, Table 3). Other isomers
were not detected in the reaction mixtures by 19F NMR spectroscopy. The product yields
also did not depend on the nature of the substituents in the starting chromenes 4 and Schiff
bases 5.

Molecules 2022, 27, x FOR PEER REVIEW 5 of 22 
 

 

Table 2. Scope of the synthesis of 4-Ph-substituted chromeno[3,4-c]pyrrolidines 8 a. 

Chromene 
4 

R1 
Imine 

5 
Ar Product Total yield 

b, % 
Yield b en-

do-8, % 
Yield b endo’-8, 

% 
Ratio c of  

endo:endo’ 
a H a Ph 8a 87 56 23 2.0:1 
a H b 4-MeOC6H4 8b 93 63 21 2.1:1 
a H c 3,4-(MeO)2C6H3 8c 90 54 27 2.2:1 
a H d 2,3,4-(MeO)3C6H2 8d 87 55 − d 2.3:1 
a H e benzo[d][1,3]dioxol-5-yl 8e 85 56 20 2.3:1 
b Br b 4-MeOC6H4 8f 92 61 21 2.2:1 
c MeO b 4-MeOC6H4 8g 88 57 22 2.2:1 

a Conditions: a mixture of the appropriate chromene 4 (0.5 mmol), azomethine 5 (0.55 mmol), Et3N 
(5 mg, 0.05 mmol) and AgOAc (5.8 mg, 0.05 mmol) was stirred at room temperature in DCM (2 mL) 
for 5 h. b Isolated yield. c Determined by 1H NMR spectroscopy of the reaction mixtures. d This iso-
mer was not isolated from the reaction mixture. 

Next, we examined 2-trifluoromethyl-substituted chromenes 4d−i in the reaction 
with iminoesters 5a−e. It was found that under the same conditions, adducts endo-9a−j 
are formed in 85–94% yields as the only reaction products (Scheme 5, Table 3). Other 
isomers were not detected in the reaction mixtures by 19F NMR spectroscopy. The prod-
uct yields also did not depend on the nature of the substituents in the starting chromenes 
4 and Schiff bases 5. 

 
Scheme 5. Synthesis of 4-CF3-substituted chromeno[3,4-c]pyrrolidines 9. 

Table 3. Scope of the synthesis of 4-CF3-substituted chromeno[3,4-c]pyrrolidines 9 a. 

Chromene 4 R1 R2 Imine 5 Ar Product 
Yield b, 

% 
d H H a Ph endo-9a 90 
d H H b 4-MeOC6H4 endo-9b 92 
d H H c 3,4-(MeO)2C6H3 endo-9c 92 
d H H d 2,3,4-(MeO)3C6H2 endo-9d 85 
d H H e benzo[d][1,3]dioxol-5-yl endo-9e 87 
e Cl H b 4-MeOC6H4 endo-9f 90 
f Br H b 4-MeOC6H4 endo-9g 94 
g Br Br b 4-MeOC6H4 endo-9h 93 
h MeO H b 4-MeOC6H4 endo-9i 89 
i H EtO b 4-MeOC6H4 endo-9j 87 

a Conditions: a mixture of the appropriate chromene 4 (0.5 mmol), azomethine 5 (0.55 mmol), Et3N 
(5 mg, 0.05 mmol) and AgOAc (5.8 mg, 0.05 mmol) was stirred at room temperature in DCM (2 mL) 
for 5 h. b Isolated yield. 

3-Nitro-2-(trichloromethyl)-2H-chromenes 4j−n under the same conditions react 
with iminoesters 5a,b,e to give the corresponding Michael adducts 10a−g in 40–67% 
yields as individual anti isomers with the cis,trans configuration of the chromane ring 
(Scheme 6, Table 4). The lowest yield (40%) was observed in the reaction involving ni-
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Table 3. Scope of the synthesis of 4-CF3-substituted chromeno[3,4-c]pyrrolidines 9 a.

Chromene 4 R1 R2 Imine 5 Ar Product Yield b, %

d H H a Ph endo-9a 90
d H H b 4-MeOC6H4 endo-9b 92
d H H c 3,4-(MeO)2C6H3 endo-9c 92
d H H d 2,3,4-(MeO)3C6H2 endo-9d 85
d H H e benzo[d][1,3]dioxol-5-yl endo-9e 87
e Cl H b 4-MeOC6H4 endo-9f 90
f Br H b 4-MeOC6H4 endo-9g 94
g Br Br b 4-MeOC6H4 endo-9h 93
h MeO H b 4-MeOC6H4 endo-9i 89
i H EtO b 4-MeOC6H4 endo-9j 87

a Conditions: a mixture of the appropriate chromene 4 (0.5 mmol), azomethine 5 (0.55 mmol), Et3N (5 mg,
0.05 mmol) and AgOAc (5.8 mg, 0.05 mmol) was stirred at room temperature in DCM (2 mL) for 5 h. b Iso-
lated yield.

3-Nitro-2-(trichloromethyl)-2H-chromenes 4j−n under the same conditions react with
iminoesters 5a,b,e to give the corresponding Michael adducts 10a−g in 40–67% yields as
individual anti isomers with the cis,trans configuration of the chromane ring (Scheme 6, Table 4).
The lowest yield (40%) was observed in the reaction involving nitrochromene 4n with the
MeO group in position 6. The isomers syn-10 were not observed in the reaction mixtures.
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Table 4. Scope of the synthesis of 2-CCl3-substituted chromanes 10 a.

Chromene 4 R1 Imine 5 Ar Product Yield b, %

j H a Ph 10a 43
j H b 4-MeOC6H4 10b 66
j H e benzo[d][1,3]dioxol-5-yl 10c 55
k Cl b 4-MeOC6H4 10d 60
l Br b 4-MeOC6H4 10e 67

m Br b 4-MeOC6H4 10f 50
n MeO b 4-MeOC6H4 10g 40

a Conditions: a mixture of the appropriate chromene 4 (0.5 mmol), azomethine 5 (0.55 mmol), Et3N (5 mg,
0.05 mmol) and AgOAc (5.8 mg, 0.05 mmol) was stirred at room temperature in DCM (2 mL) for 5 h. b Iso-
lated yield.

To understand the reason for such different stereoselectivity of the reactions involving
2-Ph- and 2-CF3-substituted chromenes 4, additional experiments have been performed. If
the reaction between chromene 4d and iminoesters 5b was carried out at −20 ◦C, the mix-
ture of the products endo-9b, endo’-9b and exo-9b was obtained in a ratio of 65:27:8, respec-
tively (Scheme 7). When this process was carried out at room temperature without AgOAc,
the content of the isomer endo’-9b increased to 38% (endo-9b:endo’-9b:exo-9b = 51:38:11),
and the total yield decreased to 42%. If the crude mixture of compounds endo-8b endo’-8b
was heated in toluene for 12 h, the content of the endo’ isomer was reduced to 11%.
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Thus, chromeno[3,4-c]pyrrolidines endo-8,9 and exo-9 are formed as a result of the
Michael addition of W-shaped ylides to chromenes 4 followed by Mannich cyclization
through intermediates A and C. (Scheme 8). A similar process involving S-shaped ylides
leads to minor products endo’-8,9 through intermediate B. Apparently, S-ylides are formed
in the presence of a slight excess of Et3N relative to AgOAc in the reaction mixture. If
chromene 4 contains a trichloromethyl group at position 2, closing the pyrrolidine ring is
impossible due to steric repulsions between the CCl3 and Ar substituents. In this case, the
end products of the reaction are Michael adducts anti-10.
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Scheme 8. Proposed mechanism for the AgOAc-catalyzed reaction of chromenes 4 with iminoesters 5.

The addition of azomethine ylides to chromenes 4 occurs reversibly. The isomers
endo’-8,9 and exo-9 are kinetic control products (KC) and convert into the thermodynami-
cally more stable isomers endo-8,9 at higher temperatures (TC). In the case of more reactive
2-CF3-chromenes 4, the reverse reaction proceeds even at room temperature under the
reaction conditions.

The structure and relative configuration of compounds 8–10 were confirmed by 1D
and 2D NMR spectroscopy and X-ray single-crystal analysis. In the 1H NMR spectra of
chromeno[3,4-c]pyrrolidines 8 and 9, signals of the H-1, H-3, H-4 and H-9b characteristic
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protons are observed (Figure 2). In the spectra of isomers, endo-8a−g and endo-9a−j
acquired in CDCl3, the signal of the H-1 proton manifested as a doublet or a doublet
of doublets at 4.00–4.15 ppm with the spin-spin coupling constant 3J1,9b = 3.0–3.9 Hz. A
doublet of the H-9b proton in these isomers manifested in the range of 4.49–4.79 ppm.
In the spectra of isomers endo’-8a−g and endo’-9b, both of these protons are observed
as doublets in the range of 4.83–5.00 and 4.90–5.10 ppm, respectively, with the coupling
constant 3J, = 9.3–9.8 Hz. In the spectra of endo isomers, the signal of the H-3 proton
manifested at 4.73–4.97 ppm, while in the spectra of endo’ isomers, this proton is deshielded
and is observed at 5.29–5.42 ppm. The signal of the H-4 proton manifested as a singlet
in the range of 5.50–5.68 ppm in the spectra of adducts endo-8a−g and endo’-8a−g or as
a quartet at 5.03–5.18 ppm with the coupling constant 3JH,F = 6.8–7.0 Hz in the spectra
of adducts endo-9a−j and endo’-9b. In the 1H NMR spectrum of isomer exo-9b, signals
of the H-1, H-3, H-4 and H-9b characteristic protons are observed at 4.40, 4.51, 4.38 and
4.67 ppm, respectively. The coupling constant 3J1,9b is 5.8 Hz. The 19F NMR spectra of
isomers endo-9a−j, endo’-9b and exo-9b contain doublets of CF3-group at 96.6–97.0, 98.0
and 95.8 ppm with coupling constants 6.8–7.0, 7.0 and 7.2 Hz, respectively.
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In the 2D 1H−1H NOESY spectrum of compound endo-8b, the cross-peaks H-1↔H-3,
H-1↔H-4, H-3↔H-4 and H-9b↔Ho Ph are observed, which indicate the cis arrangement of
the H-1, H-3 and H-4 hydrogen atoms relative to the fused tricyclic system (Figure 3). The
2D 1H−1H NOESY spectrum of compound endo’-8b has shown the cross-peak H-1↔H-2,6
4-MeOC6H4 along with the cross-peaks H-3↔H-4 and H-9b↔Ho Ph, which indicate the
trans arrangement of the H-1 and H-3 atoms and the cis arrangement of the H-3 and H-4
atoms. The cross-peak H-9b↔H-3 is not observed in the spectra of both isomers.

1 
 

 
Figure 3. The main correlations in the 2D 1H−1H NOESY spectra of endo-8b and endo’-8b.

The relative configuration of endo chromeno[3,4-c]pyrrolidines 8 and 9 was unambigu-
ously confirmed by single crystal X-ray diffraction analysis of compounds endo-8b and
endo-9a (Figures 4 and 5). In both molecules, the H-1, H-3, and H-4 atoms are located on one
side of the condensed tricyclic system, with the 4-Ph or 4-CF3-group occupying the axial
position, while the nitro group is in the equatorial positions. The pyran and pyrrolidine
rings have half-chair and twist conformations, respectively.
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In the 1H NMR spectra of 2-CCl3-substituted chromanes 10a−g, the signals of the
H-2’, H-3’ and H-4’ protons of the chromane ring in the range of 5.18–5.30, 6.25–6.29 and
4.08–4.14 ppm, respectively, with spin-spin coupling constants 3J2’,3’ ≈ 3J3’,4’ ≈ 1.0–1.8 Hz,
and a singlet of the vinylic proton at 7.87–7.99 ppm are observed (see Supplementary
Materials for NMR spectra).

The structure and relative configuration of chromane 10c was unambiguously con-
firmed by single crystal X-ray diffraction analysis (Figure 6). In this molecule, the nitro
and CF3 groups are located on the same side of the pyran ring, with the latter occupy-
ing the equatorial position. The iminoester fragment and the nitro group are arranged
trans-diaxially. The pyran ring has a distorted half-chair conformation.
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For representative chromeno[3,4-c]pyrrolidines endo-8b,e−g and endo-9e,f−j, their
in vitro cytotoxic activity against HeLa cervical cancer and human dermal fibroblast cells
(HDF) was evaluated. The known cytotoxin camptothecin [39] was used for comparison
(Table 5). Of all the tested 2-Ph-substituted chromeno[3,4-c]pyrrolidines 8, only endo-8e
bearing a benzo[d][1,3]dioxol-5-yl substituent at position 3 showed noticeable cytotoxic
activity against HeLa cells. Compound endo-9j with a p-methoxyphenyl substituent at
position 3 and the EtO group at position 6 is cytotoxic to HeLa and HDF cells. Compound
endo-9b with a p-methoxyphenyl group at position 3 exhibited a high antitumor activity
along with low toxicity and is a promising drug candidate.

Table 5. Cytotoxic activity (IC50) of compounds endo-8b,e−g and endo-9b,e−j against HeLa and
HDF cell lines.

Compound
IC50, µM

HeLa HDF

endo-8b 5300 ± 120.0 33.23 ± 1.65
endo-8e 44.98 ± 2.15 806.00 ± 41.54
endo-8f 5610 ± 37.0 745.0 ± 16.40
endo-8g 5220 ± 117.0 781.0 ± 17.50
endo-9b 0.55 ± 0.01 − a

endo-9e 108 ± 15.8 185 ± 14.2
endo-9f 50.22 ± 3.40 1750.00 ± 120.0
endo-9g 3100.0 ± 84.8 225.00 ± 47.20
endo-9h 4400.0 ± 90.1 8750.0 ± 647.0
endo-9i 12.17 ± 1.37 213.00 ± 51.25
endo-9j 4.19 ± 0.05 0.74 ± 0.05

Camptothecin 1.66 ± 0.97 323.27 ± 28.93
a This compound is not cytotoxic in the concentration range from 10−7 M to 10−4 M.
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In summary, it has been found that the addition of azomethine ylides derived from
α-iminoesters to 2-Ph- and 2-CF3-substituted 3-nitro-2H-chromenes proceeds as a reversible
Michael addition/Mannich reaction sequence. The reaction of these ylides with 2-CCl3-
chromenes stops at the Michael addition step. The stereochemistry of chromenoprolinates can
be controlled by varying the temperature and solvent. One-pot stereoselective approaches
to the synthesis of 4-(trifluoromethyl)-substituted chromeno[3,4-c]pyrrolidines and methyl
2-(arylideneamino)-2-(2-(trichloromethyl)chroman-4-yl)acetates from available reagents have
been developed. Some 4-CF3-substituted chromeno[3,4-c]pyrrolidine derivatives have shown
high antitumor activity and are of undoubted interest in medicinal chemistry.

3. Materials and Methods
3.1. General

IR spectra were recorded on a Shimadzu IRSpirit-T spectrometer (Shimadzu Corp., Ky-
oto, Japan) using an attenuated total reflectance (ATR) unit (FTIR mode, diamond prism),
and the absorbance maxima (ν) are reported in cm–1. NMR spectra were recorded on
Bruker Avance III-500 (work frequencies: 1H—500 MHz, 19F—471 MHz, 13C—126 MHz)
and Bruker DRX-400 (Bruker BioSpin GmbH, Ettlingen, Germany, work frequencies:
1H—400 MHz; 19F—376 MHz) spectrometers in CDCl3. The chemical shifts (δ) are reported
in ppm relative to the internal standard TMS (1H NMR), C6F6 (19F NMR), and residual
signal of the solvent (13C NMR). 2D NMR spectra were acquired on Bruker AVANCE NEO
(600 MHz) and Bruker AVANCE 400 spectrometers. The HRMS spectra were obtained using
the UHR-QqTOF maXis Impact HD mass spectrometer. Melting points were determined
on an SMP40 apparatus. Column chromatography was performed on silica gel (Merck 60,
70–230 mesh, Darmstadt, Germany). All solvents used were dried and distilled by standard
procedures. The starting chromenes 4a−c and 4d−n were prepared according to described
procedures [40,41]. Schiff bases 5 were obtained according to the described procedure [42].

3.2. Synthesis of Compounds 8a–g

General procedure. A mixture of the appropriate 3-nitro-2-phenyl-2H-chromene 4
(0.5 mmol), azomethine 5 (0.55 mmol), Et3N (7 µL, 5 mg, 0.05 mmol) and AgOAc (5.8 mg,
0.05 mmol) was stirred in dichloromethane (2 mL) for 5 h at room temperature (TLC control,
EtOAc−hexane (1:2)). Upon completion of the reaction, the residue was evaporated under
reduced pressure to complete dryness. The residue was purified by silica gel column
chromatography (eluent−EtOAc−hexane (1:2)) to give products endo-8 and exo’-8.

Methyl
(1S*,3S*,3aS*,4R*,9bR*)-3a-nitro-3,4-diphenyl-1,2,3,3a,4,9b-hexahydrochromeno[3,4-c]pyrrole-
1-carboxylate (endo-8a). Yield 120 mg (56%), white powder, mp 183–185 ◦C. IR (ATR) ν
3381 (NH), 1748 (C=O), 1547, 1340 (NO2). 1H NMR (500 MHz) δ 3.14 (dd, 1H, J = 10.8,
7.8 Hz, NH), 4.02 (s, 3H, MeO2C), 4.15 (dd, J = 7.8, 3.8 Hz, 1H, H-1), 4.79 (d, J = 3.8 Hz,
1H, H-9b), 4.97 (d, J = 10.8 Hz, 1H, H-3), 5.58 (s, 1H, H-4), 6.82 (d, J = 8.2 Hz, 1H, H-6),
7.07 (t, J = 7.6 Hz, 1H, H-8), 7.11–7.21 (m, 6H, H-7, H Ph), 7.35–7.45 (m, 2H, H Ph), 7.55 (d,
J = 7.6 Hz, 1H, H-9); 13C NMR (126 MHz) δ 46.0, 53.0, 68.6, 70.5, 75.5, 96.7, 118.3, 123.3,
125.1, 126.9 (2C), 128.3 (2C), 128.5 (2C), 128.8, 128.88, 128.90, 129.0 (2C), 129.6, 133.9,
135.1, 149.9, 172.4. HRMS (ESI) m/z: [M + H]+ calcd for C25H23N2O5 431.1601, found
431.1595.

Methyl
(1R*,3S*,3aS*,4R*,9bR*)-3a-nitro-3,4-diphenyl-1,2,3,3a,4,9b-hexahydrochromeno[3,4-c]pyrrole-
1-carboxylate (endo’-8a). Yield 50 mg (23%), beige powder, mp 90–92 ◦C. IR (ATR) ν 3350
(NH), 1735 (C=O), 1542, 1355 (NO2). 1H NMR (500 MHz) δ 2.78 (br. s, 1H, NH), 3.36 (s,
3H, MeO2C), 5.00 (d, J = 9.8 Hz, 1H, H-1), 5.06 (d, J = 9.8 Hz, 1H, H-9b), 5.38 (s, 1H, H-3),
5.68 (s, 1H, H-4), 6.81 (d, J = 8.2, 1.2 Hz, 1H, H-6), 6.96 (td, J = 7.6, 1.2 Hz, 1H, H-8), 7.11
(ddd, J = 8.2, 7.8, 1.4 Hz, 1H, H-7), 7.22–7.34 (m, 11H, H-9, H Ph); 13C NMR (126 MHz) δ
45.2, 51.7, 64.3, 68.6, 77.5, 97.8, 118.1, 120.6, 121.9, 127.3 (2C), 128.2 (2C), 128.4 (2C), 128.7
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(2C), 128.87, 128.92, 129.0, 129.7, 134.8, 136.7, 152.6, 173.3. HRMS (ESI) m/z: [M + H]+

calcd for C25H23N2O5 431.1601, found 431.1604.

Methyl
(1S*,3S*,3aS*,4R*,9bR*)-3-(4-methoxyphenyl)-3a-nitro-4-phenyl-1,2,3,3a,4,9b-hexahydrochromeno[3,4-
c]pyrrole-1-carboxylate (endo-8b). Yield 145 mg (63%), white powder, mp 159–161 ◦C. IR (ATR)
ν 3323 (NH), 1745 (C=O), 1536, 1361 (NO2). 1H NMR (600 MHz) δ 3.09 (br. s, 1H, NH), 3.83
(s, 3H, MeO), 4.02 (s, 3H, MeO2C), 4.13 (br. s, 1H, H-1), 4.77 (d, J = 3.7 Hz, 1H, H-9b), 4.93
(d, J = 4.9 Hz, 1H, H-3), 5.53 (s, 1H, H-4), 6.81 (d, J = 8.1 Hz, 1H, H-6), 6.95 (d, J = 8.6 Hz, 2H,
H-3,5 4-MeOC6H4), 7.06 (td, J = 7.5, 0.9 Hz, 1H, H-8), 7.12–7.20 (m, 6H, H-7, H Ph), 7.30 (d,
J = 8.6 Hz, 2H, H-2,6 4-MeOC6H4), 7.55 (d, J = 7.6 Hz, 1H, H-9); 13C NMR (151 MHz) δ 45.9
(C-9b), 53.2 (MeO2C), 55.3 (MeO), 68.4 (C-1), 70.1 (C-3), 75.5 (C-4), 96.4 (C-3a), 114.4 (C-3,5
4-MeOC6H4), 118.4 (C-6), 123.3 (C-8), 124.9 (C-9a), 125.3 (C-7), 128.1 (C-2,6 4-MeOC6H4), 128.3
(C-2,6 Ph), 128.5 (C-3,5 Ph), 128.7 (C-9), 128.9 (C-4 Ph, C-1 4-MeOC6H4), 135.0 (C-1 Ph), 149.8
(C-5a), 160.6 (C-4 4-MeOC6H4), 172.3 (C=O). HRMS (ESI) m/z: [M + H]+ calcd for C26H25N2O6
461.1707, found 461.1710.

Methyl
(1R*,3S*,3aS*,4R*,9bR*)-3-(4-methoxyphenyl)-3a-nitro-4-phenyl-1,2,3,3a,4,9b-hexahydrochromeno
pyrrole-1-carboxylate (endo’-8b). Yield 48 mg (21%), beige powder, mp 132–133 ◦C. IR (ATR)
ν 3356 (NH), 1732 (C=O), 1543, 1351 (NO2). 1H NMR (600 MHz) δ 2.74 (br. s, 1H, NH),
3.35 (s, 3H, MeO2C), 3.78 (s, 3H, MeO), 4.98 (d, J = 9.8 Hz, 1H, H-1), 5.04 (d, J = 9.8 Hz,
1H, H-9b), 5.35 (s, 1H, H-3), 5.64 (s, 1H, H-4), 6.80 (dd, J = 8.2, 1.0 Hz, 1H, H-6), 6.85 (d,
J = 8.7 Hz, 2H, H-3,5 4-MeOC6H4), 6.95 (td, J = 7.6, 1.0 Hz, 1H, H-8), 7.10 (ddd, J = 8.2,
7.6, 1.0 Hz, 1H, H-7), 7.21 (d, J = 8.7 Hz, 2H, H-2,6 4-MeOC6H4), 7.23 (d, J = 8.0 Hz, 1H,
H-9), 7.25–7.28 (m, 5H, H Ph); 13C NMR (151 MHz) δ 45.2, 51.9, 55.3, 64.4, 68.6, 77.5, 97.9,
114.2 (2C), 118.3, 120.9, 122.1, 128.3 (2C), 128.36, 128.40, 128.5 (2C), 128.6 (2C), 129.0, 129.8,
134.9, 152.6, 160.3, 173.4. HRMS (ESI) m/z: [M + H]+ calcd for C26H25N2O6 461.1707, found
461.1706.

Methyl
(1S*,3S*,3aS*,4R*,9bR*)-3-(3,4-dimethoxyphenyl)-3a-nitro-4-phenyl-1,2,3,3a,4,9b-hexahydrochrom
eno[3,4-c]pyrrole-1-carboxylate (endo-8c). Yield 132 mg (54%), white powder, mp 191–193 ◦C.
IR (ATR) ν 3327 (NH), 1732 (C=O), 1535, 1341 (NO2). 1H NMR (500 MHz) δ 3.12 (br. s, 1H,
NH), 3.90 (s, 3H, MeO), 3.91 (s, 3H, MeO), 4.02 (s, 3H, MeO2C), 4.14 (d, J = 3.8 Hz, 1H, H-1),
4.77 (d, J = 3.8 Hz, 1H, H-9b), 4.92 (c, 1H, H-3), 5.55 (s, 1H, H-4), 6.81 (dd, J = 7.5, 1.0 Hz, 1H,
H-6), 6.85 (d, J = 1.8 Hz, 1H, H-2 (MeO)2C6H3), 6.90 (d, J = 8.3 Hz, 1H, H-5 (MeO)2C6H3),
6.95 (dd, J = 8.3, 1.8 Hz, 1H, H-6 (MeO)2C6H3), 7.06 (td, J = 7.5, 1.0 Hz, 1H, H-8), 7.12–7.21
(m, 6H, H-7, H Ph), 7.54 (d, J = 7.5 Hz, 1H, H-9); 13C NMR (126 MHz) δ 45.9, 53.0, 55.9, 56.1,
68.4, 70.5, 75.7, 96.4, 109.8, 111.3, 118.3, 119.6, 123.2, 125.1, 126.3, 128.3 (2C), 128.5 (2C), 128.8,
128.9 (2C), 135.1, 149.3, 149.9, 150.1, 172.5. HRMS (ESI) m/z: [M + H]+ calcd for C27H27N2O6
491.1813, found 491.1814.

Methyl
(1R*,3S*,3aS*,4R*,9bR*)-3-(3,4-dimethoxyphenyl)-3a-nitro-4-phenyl-1,2,3,3a,4,9b-hexahydrochrom
eno[3,4-c]pyrrole-1-carboxylate (endo’-8c). Yield 66 mg (27%), beige powder, mp 113–115 ◦C.
IR (ATR) ν 3338 (NH), 1732 (C=O), 1536, 1340 (NO2). 1H NMR (500 MHz) δ 2.73 (br. s, 1H,
NH), 3.36 (s, 3H, MeO2C), 3.80 (s, 3H, MeO), 3.85 (s, 3H, MeO), 4.96 (d, J = 9.5 Hz, 1H, H-1),
5.07 (d, J = 9.5 Hz, 1H, H-9b), 5.40 (s, 1H, H-3), 5.59 (s, 1H, H-4), 6.71 (d, J = 1.8 Hz, 1H, H-2
(MeO)2C6H3), 6.78–6.83 (m, 2H, H-6, H-5 (MeO)2C6H3), 6.90 (dd, J = 8.0, 1.8 Hz, 1H, H-6
(MeO)2C6H3), 6.96 (t, J = 7.6 Hz, 1H, H-8), 7.10 (t, J = 7.8 Hz, 1H, H-7), 7.23–7.31 (m, 6H,
H-9, H Ph); 13C NMR (126 MHz) δ 45.4, 51.7, 55.8, 56.0, 64.0, 68.4, 77.8, 97.9, 110.5, 111.0,
118.2, 119.7, 122.0, 127.9, 128.1 (2C), 128.3, 128.6 (2C), 128.9 (2C), 129.7, 134.9, 149.0, 149.6,
152.6, 173.5. HRMS (ESI) m/z: [M + H]+ calcd for C27H27N2O6 491.1813, found 491.1806.

Methyl
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(1S*,3S*,3aS*,4R*,9bR*)-3a-nitro-4-phenyl-3-(3,4,5-trimethoxyphenyl)-1,2,3,3a,4,9b-hexahydrochr
omeno[3,4-c]pyrrole-1-carboxylate (endo-8d). Yield 143 mg (55%), white powder, mp 200–202 ◦C.
IR (ATR) ν 3356 (NH), 1735 (C=O), 1537, 1332 (NO2). 1H NMR (500 MHz) δ 3.02 (br. s,
1H, NH), 3.87 (s, 3H, MeO), 3.89 (s, 6H, MeO), 4.02 (s, 3H, MeO2C), 4.13 (d, J = 3.8 Hz, 1H,
H-1), 4.80 (d, J = 3.8 Hz, 1H, H-9b), 4.89 (c, 1H, H-3), 5.59 (s, 1H, H-4), 6.58 (s, 2H, H-2,6
3,4,5-(MeO)3C6H2), 6.82 (d, J = 8.1 Hz, 1H, H-6), 7.07 (t, J = 7.6 Hz, 1H, H-8), 7.13–7.24 (m,
6H, H-7, H Ph), 7.53 (d, J = 7.6 Hz, 1H, H-9); 13C NMR (126 MHz) δ 45.8, 52.9 (3C), 56.3, 68.1,
70.2, 75.7, 96.3, 104.1 (2C), 118.1, 123.1, 124.7, 128.1 (2C), 128.3 (2C), 128.6, 128.77, 128.80,
129.8, 134.9, 138.9, 149.9, 153.4 (2C), 172.4. HRMS (ESI) m/z: [M + H]+ calcd for C28H29N2O8
521.1918, found 521.1921.

Methyl
(1R*,3S*,3aS*,4R*,9bR*)-3a-nitro-4-phenyl-3-(3,4,5-trimethoxyphenyl)-1,2,3,3a,4,9b-hexahydrochr
omeno[3,4-c]pyrrole-1-carboxylate (endo’-8d). This product was not isolated in pure form. 1H
NMR (400 MHz) δ 3.02 (br. s, 1H, NH), 3.39 (s, 3H, MeO2C), 3.77 (s, 6H, MeO), 3.81 (s, 3H,
MeO), 4.94 (d, J = 9.3 Hz, 1H, H-1), 5.10 (d, J = 9.3 Hz, 1H, H-9b), 5.42 (c, 1H, H-3), 5.54 (s,
1H, H-4), 6.46 (s, 2H, H-2,6 3,4,5-(MeO)3C6H2), 6.79 (d, J = 8.2 Hz, 1H, H-6), 6.98 (td, J = 7.6,
1.1 Hz, 1H, H-8), 7.10 (t, J = 8.1 Hz, 1H, H-7), 7.21–7.37 (m, 6H, H-9, H Ph).

Methyl
(1S*,3S*,3aS*,4R*,9bR*)-3-(benzo[d][1,3]dioxol-5-yl)-3a-nitro-4-phenyl-1,2,3,3a,4,9b-hexahydr
ochromeno[3,4-c]pyrrole-1-carboxylate (endo-8e). Yield 133 mg (56%), white powder, mp
177–179 ◦C. IR (ATR) ν 3328 (NH), 1744 (C=O), 1536, 1346 (NO2). 1H NMR (500 MHz)
δ 3.00 (dd, J = 10.2, 7.7 Hz, 1H, NH), 4.01 (s, 3H, MeO2C), 4.11 (dd, J = 7.7, 3.8 Hz, 1H,
H-1), 4.77 (d, J = 3.8 Hz, 1H, H-9b), 4.89 (d, J = 10.2 Hz, 1H, H-3), 5.57 (s, 1H, H-4), 5.99
(d, J = 1.4 Hz, 1H, OCH2O), 6.00 (d, J = 1.4 Hz, 1H, OCH2O), 6.80 (dd, J = 8.1, 1.1 Hz, 1H,
H-6), 6.85 (d, J = 8.0 Hz, 1H, H-7 benzo[d][1,3]dioxol-5-yl), 6.86 (d, J = 1.6 Hz, 1H, H-4
benzo[d][1,3]dioxol-5-yl), 6.88 (dd, J = 8.1, 1.6 Hz, 1H, H-6 benzo[d][1,3]dioxol-5-yl), 7.06
(td, J = 7.6, 1.1 Hz, 1H, H-8), 7.11–7.22 (m, 6H, H-7, H Ph), 7.53 (d, J = 7.6 Hz, 1H, H-9); 13C
NMR (126 MHz) δ 45.8, 53.0, 68.3, 70.2, 75.5, 96.3, 101.4, 107.0, 108.6, 118.3, 120.8, 123.2,
125.1, 127.6, 128.3 (2C), 128.5 (2C), 128.8, 128.9 (2C), 135.1, 148.3, 148.7, 149.9, 172.4. HRMS
(ESI) m/z: [M + H]+ calcd for C26H23N2O7 475.1500, found 475.1486.

Methyl
(1R*,3S*,3aS*,4R*,9bR*)-3-(benzo[d][1,3]dioxol-5-yl)-3a-nitro-4-phenyl-1,2,3,3a,4,9b-hexahydr
ochromeno[3,4-c]pyrrole-1-carboxylate (endo’-8e). Yield 47 mg (20%), beige powder, mp
111–113 ◦C. IR (ATR) ν 3362 (NH), 1731 (C=O), 1543, 1340 (NO2). 1H NMR (500 MHz) δ
2.69 (br. s, 1H, NH), 3.36 (s, 3H, MeO2C), 4.95 (d, J = 9.7 Hz, 1H, H-1), 5.04 (d, J = 9.7 Hz,
1H, H-9b), 5.32 (br. s, 1H, H-3), 5.64 (s, 1H, H-4), 5.94 (d, J = 1.3 Hz, 1H, OCH2O), 5.95 (d,
J = 1.3 Hz, 1H, OCH2O), 6.73–6.82 (m, 4H, H-6, H-4,6,7 benzo[d][1,3]dioxol-5-yl), 6.96 (td,
J = 7.5, 1.0 Hz, 1H, H-8), 7.10 (td, J = 7.6, 1.2 Hz, 1H, H-8), 7.22 (dd, J = 7.6, 1.2 Hz, 1H, H-9),
7.25–7.29 (m, 5H, H Ph); 13C NMR (126 MHz) δ 45.0, 51.7, 64.1, 68.4, 77.5, 97.6, 101.2, 107.5,
108.3, 118.2, 120.7, 121.2, 121.9, 128.2 (2C), 128.4 (2C), 128.87, 128.92, 129.7, 130.4, 134.7,
147.9, 148.2, 152.5, 173.4. HRMS (ESI) m/z: [M + H]+ calcd for C26H23N2O7 475.1500, found
475.1503.

Methyl
(1S*,3S*,3aS*,4R*,9bR*)-8-bromo-3-(4-methoxyphenyl)-3a-nitro-4-phenyl-1,2,3,3a,4,9b-hexahydroch
romeno[3,4-c]pyrrole-1-carboxylate (endo-8f). Yield 164 mg (61%), white powder, mp 208–210 ◦C.
IR (ATR) ν 3359 (NH), 1755 (C=O), 1547, 1362 (NO2). 1H NMR (500 MHz) δ 3.07 (dd, J = 10.6,
7.7 Hz, 1H, NH), 3.82 (s, 3H, MeO), 4.03 (s, 3H, MeO2C), 4.10 (dd, J = 7.7, 3.8 Hz, 1H, H-1),
4.74 (d, J = 3.8 Hz, 1H, H-9b), 4.88 (d, J = 10.6 Hz, 1H, H-3), 5.53 (s, 1H, H-4), 6.69 (d,
J = 8.7 Hz, 1H, H-6), 6.94 (d, J = 8.7 Hz, 2H, H-3,5 4-MeOC6H4), 7.11–7.15 (m, 2H, H Ph),
7.16–7.22 (m, 3H, H Ph), 7.24 (dd, J = 8.7, 2.5 Hz, 1H, H-7), 7.28 (d, J = 8.7 Hz, 2H, H-2,6
4-MeOC6H4), 7.67 (d, J = 2.5 Hz, 1H, H-9); 13C NMR (126 MHz) δ 45.8, 53.2, 55.3, 68.3,
70.3, 75.7, 96.0, 114.4 (2C), 115.4, 120.2, 125.4, 127.3, 128.0 (2C), 128.2 (2C), 128.6 (2C), 129.0,
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131.4, 131.9, 134.7, 149.1, 160.6, 172.1. HRMS (ESI) m/z: [M + H]+ calcd for C26H24BrN2O6
539.0812, found 539.0809.

Methyl
(1R*,3S*,3aS*,4R*,9bR*)-8-bromo-3-(4-methoxyphenyl)-3a-nitro-4-phenyl-1,2,3,3a,4,9b-hexahydroch
romeno[3,4-c]pyrrole-1-carboxylate (endo’-8f). Yield 57 mg (21%), beige powder, mp 188–190 ◦C.
IR (ATR) ν 3382 (NH), 1715 (C=O), 1546, 1362 (NO2). 1H NMR (500 MHz) δ 2.72 (br. s, 1H,
NH), 3.47 (s, 3H, MeO2C), 3.78 (s, 3H, MeO), 4.96 (d, J = 9.8 Hz, 1H, H-1), 4.99 (d, J = 9.8 Hz,
1H, H-9b), 5.29 (s, 1H, H-3), 5.63 (s, 1H, H-4), 6.70 (d, J = 8.7 Hz, 1H, H-6), 6.85 (d, J = 8.7 Hz,
2H, H-3,5 4-MeOC6H4), 7.21 (d, J = 8.7 Hz, 2H, H-2,6 4-MeOC6H4), 7.23–7.29 (m, 7H, H-7,9,
Ph); 13C NMR (126 MHz) δ 44.7, 51.9, 55.2, 63.9, 68.3, 77.5, 97.2, 114.1 (2C), 120.0, 122.9,
124.3, 128.26 (2C), 128.32 (2C), 128.5 (2C), 129.0, 131.6, 131.8, 132.3, 134.4, 151.2, 160.0, 170.4.
HRMS (ESI) m/z: [M + H]+ calcd for C26H24BrN2O6 539.0812, found 539.0810.

Methyl
(1S*,3S*,3aS*,4R*,9bR*)-8-methoxy-3-(4-methoxyphenyl)-3a-nitro-4-phenyl-1,2,3,3a,4,9b-hexahydro
chromeno[3,4-c]pyrrole-1-carboxylate (endo-8g). Yield 140 mg (57%), white powder, mp
173–175 ◦C. IR (ATR) ν 3364 (NH), 1752 (C=O), 1544, 1365 (NO2). 1H NMR (400 MHz) δ
3.09 (t, J = 8.7 Hz, 1H, NH), 3.79 (s, 3H, MeO), 3.82 (s, 3H, MeO), 4.02 (s, 3H, MeO2C), 4.12
(dd, J = 6.7, 3.9 Hz, 1H, H-1), 4.72 (d, J = 3.9 Hz, 1H, H-9b), 4.93 (d, J = 10.4 Hz, 1H, H-3),
5.50 (s, 1H, H-4), 6.69 (dd, J = 8.8, 2.5 Hz, 1H, H-7), 6.72 (d, J = 8.8 Hz, 1H, H-6), 6.94 (d,
J = 8.7 Hz, 2H, H-3,5 4-MeOC6H4), 7.07 (d, J = 2.5 Hz, 1H, H-9), 7.11–7.21 (m, 5H, H Ph),
7.29 (d, J = 8.7 Hz, 2H, H-2,6 4-MeOC6H4); 13C NMR (126 MHz) δ 46.4, 53.0, 55.2, 55.6, 68.4,
70.3, 75.7, 96.7, 113.1, 114.4 (2C), 114.7, 119.1, 125.6, 126.0, 128.0 (2C), 128.3 (2C), 128.4 (2C),
128.8, 135.1, 143.6, 155.3, 160.6, 172.3. HRMS (ESI) m/z: [M + H]+ calcd for C27H27N2O7
491.1813, found 491.1812.

Methyl
(1R*,3S*,3aS*,4R*,9bR*)-8-methoxy-3-(4-methoxyphenyl)-3a-nitro-4-phenyl-1,2,3,3a,4,9b-hexahydr
ochromeno[3,4-c]pyrrole-1-carboxylate (endo’-8g). Yield 54 mg (22%), beige powder, mp
95–97 ◦C. IR (ATR) ν 3344 (NH), 1733 (C=O), 1542, 1358 (NO2). 1H NMR (500 MHz)
δ 2.73 (br. s, 1H, NH), 3.40 (s, 3H, MeO2C), 3.76 (s, 3H, MeO), 3.79 (s, 3H, MeO), 4.97 (d,
J = 9.7 Hz, 1H, H-1), 5.01 (d, J = 9.7 Hz, 1H, H-9b), 5.36 (s, 1H, H-3), 5.59 (s, 1H, H-4), 6.66
(dd, J = 8.8, 2.8 Hz, 1H, H-7), 6.71 (d, J = 8.8 Hz, 1H, H-6), 6.75 (d, J = 2.8 Hz, 1H, H-9),
6.86 (d, J = 8.7 Hz, 2H, H-3,5 4-MeOC6H4), 7.20–7.26 (m, 7H, H-2,6 4-MeOC6H4, H Ph);
13C NMR (126 MHz) δ 45.5, 51.7, 55.2, 55.7, 64.3, 68.6, 77.4, 98.0, 114.0, 114.1 (2C), 115.0,
118.9, 121.6, 128.2 (2C), 128.36 (2C), 128.44 (2C), 128.8, 130.1, 134.9, 146.2, 154.4, 160.2, 173.2.
HRMS (ESI) m/z: [M + H]+ calcd for C27H27N2O7 491.1813, found 491.1811.

3.3. Synthesis of Compounds 9a–j

General procedure. A mixture of the appropriate 3-nitro-2-(trifluoromethyl)-2H-
chromene 4 (0.5 mmol), azomethine 5 (0.55 mmol), Et3N (7 µL, 5 mg, 0.05 mmol) and
AgOAc (5.8 mg, 0.05 mmol) was stirred in dichloromethane (2 mL) for 5 h at room tem-
perature (TLC control, EtOAc−hexane (1:3)). Upon completion of the reaction, the residue
was evaporated under reduced pressure to complete dryness. The residue was purified by
silica gel column chromatography (eluent−EtOAc−hexane (1:3)) to give products endo-9.

Methyl
(1S*,3S*,3aS*,4S*,9bR*)-3a-nitro-3-phenyl-4-(trifluoromethyl)-1,2,3,3a,4,9b-hexahydrochromeno[3,4-
c]pyrrole-1-carboxylate (endo-9a). Yield 190 mg (90%), beige powder, mp 125–127 ◦C. IR (ATR)
ν 3320 (NH), 1743 (C=O), 1546, 1361 (NO2). 1H NMR (500 MHz) δ 3.13 (dd, J = 11.3, 7.5 Hz,
1H, NH), 4.02 (s, 3H, MeO2C), 4.09 (dd, J = 7.5, 3.1 Hz, 1H, H-1), 4.57 (d, J = 3.1 Hz, 1H,
H-9b), 4.83 (d, J = 11.3 Hz, 1H, H-3), 5.11 (q, J = 7.0 Hz, 1H, H-4), 7.07 (dd, J = 8.2, 1.0 Hz,
1H, H-6), 7.18 (ddd, J = 8.2, 7.6, 1.0 Hz, 1H, H-8), 7.23–7.32 (m, 3H, H-7, H Ph), 7.43–7.47 (m,
3H, H Ph), 7.52 (d, J = 7.7 Hz, 1H, H-9); 19F NMR (471 MHz) δ 96.6 (d, J = 7.0 Hz, CF3); 13C
NMR (126 MHz) δ 45.6, 53.1, 68.4, 70.2, 72.3 (q, 2JCF = 31.8 Hz, C-4), 93.6, 117.6, 123.3 (q,
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1JCF = 288.9 Hz, CF3), 124.0, 124.4, 126.5 (2C), 129.09, 129.14, 129.2 (2C), 130.0, 132.6, 149.0,
171.9. HRMS (ESI) m/z: [M + H]+ calcd for C20H18F3N2O5 423.1162, found 423.1160.

Methyl
(1S*,3S*,3aS*,4S*,9bR*)-3-(4-methoxyphenyl)-3a-nitro-3-phenyl-4-(trifluoromethyl)-1,2,3,3a,4,9b-
hexahydrochromeno[3,4-c]pyrrole-1-carboxylate (endo-9b). Yield 208 mg (92%), white powder,
mp 163–165 ◦C. IR (ATR): ν 3321 (NH), 1742 (C=O), 1547, 1362 (NO2). 1H NMR (500 MHz)
δ 3.07 (dd, J = 11.2, 7.6 Hz, 1H, NH), 3.83 (s, 3H, MeO), 4.02 (s, 3H, MeO2C), 4.07 (dd,
J = 7.6, 3.0 Hz, 1H, H-1), 4.54 (d, J = 3.0 Hz, 1H, H-9b), 4.79 (d, J = 11.2 Hz, 1H, H-3), 5.07 (q,
J = 7.0 Hz, 1H, H-4), 6.95 (d, J = 8.7 Hz, 2H, H-3,5 4-MeOC6H4), 7.06 (dd, J = 8.1, 1.0 Hz, 1H,
H-6), 7.15 (td, J = 7.6, 1.0 Hz, 1H, H-8), 7.22 (d, J = 8.7 Hz, 2H, H-2,6 4-MeOC6H4), 7.28 (td,
J = 8.1, 1.0 Hz, 1H, H-7), 7.51 (dd, J = 7.6, 1.0 Hz, 1H, H-9); 19F NMR (471 MHz) δ 96.7 (d,
J = 7.0 Hz, CF3); 13C NMR (126 MHz) δ 45.5, 53.1, 55.3, 68.4, 70.0, 72.4 (q, 2JCF = 31.4 Hz,
C-4), 93.5, 114.6 (2C), 117.5, 123.4 (q, 1JCF = 288.7 Hz, CF3), 124.0, 124.4 (2C), 127.7 (2C),
129.1 (2C), 149.0, 160.9, 172.0. HRMS (ESI) m/z: [M + H]+ calcd for C21H20F3N2O6 453.1268,
found 453.1272.

Methyl
(1R*,3S*,3aS*,4S*,9bR*)-3-(4-methoxyphenyl)-3a-nitro-3-phenyl-4-(trifluoromethyl)-1,2,3,3a,4,9b-
hexahydrochromeno[3,4-c]pyrrole-1-carboxylate (endo’-9b). This product was obtained accord-
ing to the general procedure at −20 ◦C for 5 h and was not isolated in pure form. 1H NMR
(400 MHz) δ 2.67 (br. s, 1H), 3.36 (s, 3H, MeO2C), 3.83 (s, 3H, MeO), 4.83 (d, J = 9.0 Hz,
1H, H-1), 4.90 (d, J = 9.0 Hz, 1H, H-9b), 5.13 (q, J = 7.0 Hz, 1H, H-4), 5.30 (s, 1H, H-3), 6.94
(d, J = 8.7 Hz, 2H, H-3,5 4-MeOC6H4), 6.98 (dd, J = 8.0, 1.0 Hz, 1H, H-6), 7.02–7.08 (m, 2H,
H-7,8), 7.15 (dd, J = 7.6, 1.4 Hz, 1H, H-9), 7.27 (d, J = 8.7 Hz, 2H, H-2,6 4-MeOC6H4); 19F
NMR (376 MHz) δ 98.0 (d, J = 7.0 Hz, CF3).

Methyl
(1R*,3R*,3aS*,4S*,9bR*)-3-(4-methoxyphenyl)-3a-nitro-3-phenyl-4-(trifluoromethyl)-1,2,3,3a,4,9b-
hexahydrochromeno[3,4-c]pyrrole-1-carboxylate (exo-9b). This product was obtained according
to the general procedure without AgOAc and was not isolated in pure form. 1H NMR
(400 MHz) δ 3.02 (dd, J = 10.8, 10.0 Hz, 1H, NH), 3.74 (s, 3H, CO2Me), 3.87 (s, 3H, MeO),
4.07 (dd, J = 10.0, 5.8 Hz, 1H, H-1), 4.38 (d, J = 5.8 Hz, 1H, H-9b), 4.51 (d, J = 10.8 Hz, 1H,
H-3), 4.67 (q, J = 7.2 Hz, 1H, H-4) (other signals overlapped with signals of major isomers).
19F NMR (471 MHz) δ 95.8 (d, J = 7.2 Hz, CF3).

Methyl
(1S*,3S*,3aS*,4S*,9bR*)-3-(3,4-dimethoxyphenyl)-3a-nitro-3-phenyl-4-(trifluoromethyl)-1,2,3,3a,4,9b-
hexahydrochromeno[3,4-c]pyrrole-1-carboxylate (endo-9c). Yield 222 mg (92%), white powder,
mp 150–152 ◦C. IR (ATR) ν 3386 (NH), 1745 (C=O), 1547, 1363 (NO2). 1H NMR (400 MHz)
δ 3.07 (dd, J = 10.8, 7.5 Hz, 1H, NH), 3.83 (s, 6H, 2MeO), 4.03 (s, 3H, MeO2C), 4.07 (dd,
J = 7.5, 3.0 Hz, 1H, H-1), 4.55 (d, J = 3.0 Hz, 1H, H-9b), 4.78 (d, J = 10.8 Hz, 1H, H-3), 5.10
(q, J = 7.0 Hz, 1H, H-4), 6.76 (d, J = 1.8 Hz, 1H, H-2 3,4-(MeO)2C6H3), 6.87 (dd, J = 8.3, 1.8
Hz, 1H, H-6 3,4-(MeO)2C6H3), 6.91 (d, J = 8.3 Hz, H-5 3,4-(MeO)2C6H3), 7.06 (dd, J = 8.2,
1.0 Hz, 1H, H-6), 7.17 (td, J = 7.6, 1.0 Hz, 1H, H-8), 7.28 (td, J = 8.2, 1.0 Hz, 1H, H-7), 7.51
(dd, J = 7.6, 1.0 Hz, 1H, H-9); 19F NMR (376 MHz) δ 96.9 (d, J = 7.0 Hz, CF3); 13C NMR (126
MHz) δ 45.4, 53.1, 55.9, 56.1, 68.3, 70.3, 72.4 (q, 2JCF = 31.5 Hz, C-4), 93.4, 109.3, 111.5, 117.6,
119.3, 123.4 (q, 1JCF = 288.9 Hz, CF3), 124.0, 124.4, 124.9, 129.08, 129.11, 149.0, 149.6, 150.4,
172.0. HRMS (ESI) m/z: [M + H]+ calcd for C22H22F3N2O7 483.1374, found 483.1374.

Methyl
(1S*,3S*,3aS*,4S*,9bR*)-3a-nitro-4-(trifluoromethyl)-3-(3,4,5-trimethoxyphenyl)-1,2,3,3a,4,9b-hexah
ydrochromeno[3,4-c]pyrrole-1-carboxylate (endo-9d). Yield 218 mg (85%), white powder, mp
115–117 ◦C. IR (ATR) ν 3326 (NH), 1747 (C=O), 1549, 1334 (NO2). 1H NMR (400 MHz)
δ 3.01 (dd, J = 10.4, 7.2 Hz, 1H, NH), 3.88 (s, 3H, MeO), 3.89 (s, 6H, 2MeO), 4.03 (s, 3H,
MeO2C), 4.07 (dd, J = 7.2, 3.1 Hz, 1H, H-1), 4.56 (d, J = 3.1 Hz, 1H, H-9b), 4.75 (d, J = 10.4 Hz,
1H, H-3), 5.13 (q, J = 7.0 Hz, 1H, H-4), 6.50 (s, 2H, H-2,6 3,4,5-(MeO)2C6H2), 7.07 (dd, J = 8.2,
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1.2 Hz, 1H, H-6), 7.18 (td, J = 7.7, 1.2 Hz, 1H, H-8), 7.29 (td, J = 8.2, 1.0 Hz, 1H, H-7), 7.51
(dd, J = 7.7, 1.0 Hz, 1H, H-9); 19F NMR (376 MHz) δ 96.9 (d, J = 7.0 Hz, CF3); 13C NMR
(126 MHz) δ 45.3, 53.1, 56.4 (2C), 60.9, 68.3, 70.5, 72.5 (q, 2JCF = 31.6 Hz, C-4), 93.3, 103.8
(2C), 117.6, 123.3 (q, 1JCF = 288.8 Hz, CF3), 124.0, 124.5, 128.2, 129.1, 129.2, 149.0, 153.8 (3C),
172.0. HRMS (ESI) m/z: [M + H]+ calcd for C23H24F3N2O8 513.1479, found 513.1472.

Methyl
(1S*,3S*,3aS*,4S*,9bR*)-3-(benzo[d][1,3]dioxol-5-yl)-3a-nitro-4-(trifluoromethyl)-1,2,3,3a,4,9b-hex
ahydrochromeno[3,4-c]pyrrole-1-carboxylate (endo-9e). Yield 203 mg (87%), white powder, mp
168–170 ◦C. IR (ATR) ν 3336 (NH), 1736 (C=O), 1544, 1362 (NO2). 1H NMR (400 MHz) δ
2.97 (dd, J = 10.7, 7.6 Hz, 1H, NH), 4.01 (s, 3H, MeO2C), 4.05 (dd, J = 7.6, 3.0 Hz, 1H, H-1),
4.55 (d, J = 3.0 Hz, 1H, H-9b), 4.75 (d, J = 10.7 Hz, 1H, H-3), 5.11 (q, J = 7.0 Hz, 1H, H-4),
6.01 (d, J = 1.4 Hz, 1H, OCH2O), 6.02 (d, J = 1.4 Hz, 1H, OCH2O), 6.76–6.82 (m, 2H, H-4,7
benzo[d][1,3]dioxol-5-yl), 6.85 (d, J = 7.9 Hz, 1H, H-6 benzo[d][1,3]dioxol-5-yl), 7.05 (dd,
J = 8.2, 1.1 Hz, 1H, H-6), 7.17 (td, J = 7.7, 1.1 Hz, 1H, H-8), 7.27 (td, J = 8.2, 1.1 Hz, 1H, H-7),
7.50 (d, J = 7.7, 1.1 Hz, 1H, H-9); 19F NMR (376 MHz) δ 96.7 (d, J = 7.0 Hz, CF3); 13C NMR
(126 MHz) δ 45.3, 53.1, 68.2, 70.0, 72.3 (q, 2JCF = 31.4 Hz, C-4), 93.3, 101.6, 106.6, 108.8, 117.6,
120.5, 123.4 (q, 1JCF = 289.0 Hz, CF3), 124.0, 124.4, 126.3, 129.09, 129.13, 148.5, 148.99, 149.02,
171.9. HRMS (ESI) m/z: [M + H]+ calcd for C21H18F3N2O7 467.1061, found 467.1064.

Methyl
(1S*,3S*,3aS*,4S*,9bR*)-8-chloro-3-(4-methoxyphenyl)-3a-nitro-4-(trifluoromethyl)-1,2,3,3a,4,9b-
hexahydrochromeno[3,4-c]pyrrole-1-carboxylate (endo-9f). Yield 219 mg (90%), white powder,
mp 191–193 ◦C. IR (ATR) ν 3316 (NH), 1745 (C=O), 1547, 1360 (NO2). 1H NMR (500 MHz)
δ 3.06 (dd, J = 11.0, 7.7 Hz, 1H, NH), 3.83 (s, 3H, MeO), 4.01–4.05 (m, 4H, MeO2C, H-1),
4.50 (d, J = 3.3 Hz, 1H, H-9b), 4.74 (d, J = 11.0 Hz, 1H, H-3), 5.07 (q, J = 6.9 Hz, 1H, H-4),
6.95 (d, J = 8.6 Hz, 2H, H-3,5 4-MeOC6H4), 7.01 (d, J = 8.7 Hz, 1H, H-6), 7.20 (d, J = 8.6 Hz,
2H, H-2,6 4-MeOC6H4), 7.24 (dd, J = 8.7, 2.3 Hz, 1H, H-7), 7.49 (d, J = 2.3 Hz, 1H, H-9); 19F
NMR (471 MHz) δ 96.8 (d, J = 6.9 Hz, CF3); 13C NMR (126 MHz, CDCl3) δ 45.3, 53.3, 55.3,
68.1, 70.1, 72.5 (q, 2JCF = 31.7 Hz, C-4), 93.1, 114.7 (2C), 119.1, 123.2 (q, 1JCF = 288.9 Hz, CF3),
124.1, 125.8, 127.7 (2C), 128.7, 129.4, 129.5, 147.7, 161.0, 171.6. HRMS (ESI) m/z: [M + H]+

calcd for C21H19ClF3N2O6 487.0878, found 487.0879.

Methyl
(1S*,3S*,3aS*,4S*,9bR*)-8-bromo-3-(4-methoxyphenyl)-3a-nitro-4-(trifluoromethyl)-1,2,3,3a,4,9b-
hexahydrochromeno[3,4-c]pyrrole-1-carboxylate (endo-9g). Yield 250 mg (94%), white powder,
mp 191–192 ◦C. IR (ATR) ν 3315 (NH), 1746 (C=O), 1546, 1361 (NO2). 1H NMR (500 MHz)
δ 3.06 (br. s, 1H, NH), 3.83 (s, 3H, MeO), 4.01–4.05 (m, 4H, MeO2C, H-1), 4.50 (d, J = 3.3 Hz,
1H, H-9b), 4.73 (s, 1H, H-3), 5.07 (q, J = 6.9 Hz, 1H, H-4), 6.94 (d, J = 8.7 Hz, 2H, H-3,5
4-MeOC6H4), 6.97 (d, J = 8.8 Hz, 1H, H-6), 7.20 (d, J = 8.7 Hz, 2H, H-2,6 4-MeOC6H4), 7.38
(dd, J = 8.8, 2.2 Hz, 1H, H-7), 7.63 (d, J = 2.2 Hz, 1H, H-9); 19F NMR (471 MHz) δ 96.8
(d, J = 6.9 Hz, CF3); 13C NMR (126 MHz) δ 45.2, 53.3, 55.3, 68.1, 70.1, 72.4 (q, 2JCF = 31.7
Hz, C-4), 93.0, 114.6 (2C), 116.8, 119.4, 123.2 (q, 1JCF = 288.9 Hz, CF3), 124.0, 126.2, 127.7
(2C), 131.7, 132.3, 148.2, 160.9, 171.6. HRMS (ESI) m/z: [M + H]+ calcd for C21H19BrF3N2O6
531.0373, found 531.0374.

Methyl
(1S*,3S*,3aS*,4S*,9bR*)-6,8-dibromo-3-(4-methoxyphenyl)-3a-nitro-4-(trifluoromethyl)-1,2,3,3a,4,9b-
hexahydrochromeno[3,4-c]pyrrole-1-carboxylate (endo-9h). Yield 284 mg (93%), white powder,
mp 189–191 ◦C. IR (ATR) ν 3321 (NH), 1750 (C=O), 1547, 1362 (NO2). 1H NMR (400 MHz)
δ 3.07 (dd, J = 10.8, 7.7 Hz, 1H, NH), 3.80 (s, 3H, MeO), 4.00 (dd, J = 7.7, 3.2 Hz, 1H, H-1),
4.03 (s, 3H, MeO2C), 4.53 (d, J = 3.2 Hz, 1H, H-9b), 4.72 (d, J = 10.8 Hz, 1H, H-3), 5.18 (q,
J = 6.8 Hz, 1H, H-4), 6.96 (d, J = 8.6 Hz, 2H, H-3,5 4-MeOC6H4), 7.22 (d, J = 8.6 Hz, 2H,
H-2,6 4-MeOC6H4), 7.61 (d, J = 1.9 Hz, 1H, H-9), 7.67 (d, J = 1.9 Hz, 1H, H-7); 19F NMR
(376 MH) δ 97.0 (d, J = 6.8 Hz, CF3); 13C NMR (126 MHz) δ 45.5, 53.5, 55.3, 68.1, 70.3, 73.1
(q, 2JCF = 32.2 Hz, C-4), 93.2, 112.9 114.8 (2C), 116.9, 122.9 (q, 1JCF = 288.5 Hz, CF3), 123.8,
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127.5, 127.7 (2C), 130.9, 135.3, 145.5, 161.1, 171.3. HRMS (ESI) m/z: [M + H]+ calcd for
C21H18Br2F3N2O6 608.9478, found 608.9475.

Methyl
(1S*,3S*,3aS*,4S*,9bR*)-8-methoxy-3-(4-methoxyphenyl)-3a-nitro-4-(trifluoromethyl)-1,2,3,3a,4,9b-
hexahydrochromeno[3,4-c]pyrrole-1-carboxylate (endo-9i). Yield 215 mg (89%), white powder,
mp 125–127 ◦C. IR (ATR) ν 3368 (NH), 1744 (C=O), 1547, 1348 (NO2). 1H NMR (400 MHz) δ
3.07 (dd, J = 11.3, 7.8 Hz, 1H, NH), 3.82 (s, 3H, MeO), 3.83 (s, 3H, MeO), 4.02 (s, 3H, MeO2C),
4.07 (dd, J = 7.8, 3.2 Hz, 1H, H-1), 4.49 (d, J = 3.2 Hz, 1H, H-9b), 4.78 (d, J = 11.3 Hz, 1H,
H-3), 5.03 (q, J = 7.0 Hz, 1H, H-4), 6.83 (dd, J = 9.0, 2.8 Hz, 1H, H-7), 6.95 (d, J = 8.7 Hz,
2H, H-3,5 4-MeOC6H4), 6.98 (d, J = 9.0 Hz, 1H, H-6), 7.01 (d, J = 2.2 Hz, 1H, H-9), 7.21
(d, J = 8.7 Hz, 2H, H-2,6 4-MeOC6H4); 19F NMR (376 MHz) δ 97.0 (d, J = 7.0 Hz, CF3); 13C
NMR (126 MHz) δ 45.9, 53.1, 55.3, 55.7, 68.3, 70.1, 72.6 (q, 2JCF = 31.4 Hz, C-4), 93.8, 113.1,
114.6 (2C), 115.2, 118.4, 123.4 (q, 1JCF = 289.2 Hz, CF3), 124.4, 124.8, 127.7 (2C), 142.8, 156.2,
160.9, 171.9. HRMS (ESI) m/z: [M + H]+ calcd for C22H22F3N2O7 483.1374, found 483.1374.

Methyl
(1S*,3S*,3aS*,4S*,9bR*)-6-ethoxy-3-(4-methoxyphenyl)-3a-nitro-4-(trifluoromethyl)-1,2,3,3a,4,9b-
hexahydrochromeno[3,4-c]pyrrole-1-carboxylate (endo-9j). Yield 216 mg (87%), white powder,
mp 123–125 ◦C. IR (ATR) ν 3348 (NH), 1752 (C=O), 1557, 1361 (NO2). 1H NMR (400 MHz)
δ 1.48 (t, J = 7.0 Hz, Me), 3.06 (dd, J = 10.9, 7.6 Hz, 1H, NH), 3.83 (s, 3H, MeO), 4.01 (s, 3H,
MeO2C), 4.05 (dd, J = 7.6, 3.2 Hz, 1H, H-1), 4.17 (d, J = 7.0 Hz, OCH2), 4.52 (d, J = 3.2 Hz,
1H, H-9b), 4.81 (d, J = 10.9 Hz, 1H, H-3), 5.19 (q, J = 7.0 Hz, 1H, H-4), 6.82–6.89 (m, 1H, H-8),
6.94 (d, J = 8.7 Hz, 2H, H-3,5 4-MeOC6H4), 7.06–7.10 (m, 2H, H-7,9), 7.25 (d, J = 8.7 Hz, 2H,
H-2,6 4-MeOC6H4); 19F NMR (376 MHz) δ 97.1 (d, J = 7.0 Hz, CF3); 13C NMR (126 MHz)
δ 14.7, 45.7, 53.1, 55.3, 64.7, 68.4, 70.2, 72.7 (q, 2JCF = 31.5 Hz, C-4), 94.0, 112.3, 114.6 (2C),
120.1, 123.3 (q, 1JCF = 288.8 Hz, CF3), 124.3, 124.4, 125.3, 127.8 (2C), 139.1, 148.1, 160.9, 172.0.
HRMS (ESI) m/z: [M + H]+ calcd for C23H23F3N2NaO7 519.1350, found 519.1347.

3.4. Synthesis of Compounds 10a–g

General procedure. A mixture of the appropriate 3-nitro-2-(trichloromethyl)-2H-
chromene 4 (0.5 mmol), azomethine 5 (0.55 mmol), Et3N (7 µL, 5 mg, 0.05 mmol) and AgOAc
(5.8 mg, 0.05 mmol) was stirred in dichloromethane (2 mL) for 5 h at room temperature
(TLC control, EtOAc−hexane (1:3)). Upon completion of the reaction, the residue was
evaporated under reduced pressure to complete dryness. The residue was purified by by
silica gel column chromatography using (eluent−EtOAc−hexane (1:3)) to give products 10
as white powders.

Methyl
(S)-2-[((E)-benzylidene)amino]-2-((2S*,3R*,4R*)-3-nitro-2-(trichloromethyl)chroman-4-yl)acetate
(10a). Yield 101 mg (43%), mp 225–227 ◦C. IR (ATR) ν 1737 (C=O), 1552, 1311 (NO2). 1H
NMR (400 MHz) δ 3.86 (s, 3H, MeO2C), 4.14 (br. d, J = 2.3 Hz, 1H, H-4’), 4.53 (d, J = 2.3 Hz,
1H, H-2), 5.22 (d, J = 1.4 Hz, 1H, H-2’), 6.29 (br. d, J = 1.4 Hz, 1H, H-3’), 7.04 (d, J = 8.0 Hz,
1H, H-8’), 7.09 (t, J = 7.5 Hz, 1H, H-6’), 7.20–7.29 (m, 2H, H-5’,7’), 7.39 (t, J = 7.3 Hz, 2H,
H Ph), 7.46 (tt, J = 7.3, 1.3 Hz, 1H, H Ph), 7.63 (dd, J = 7.3, 1.3 Hz, 2H, H Ph), 8.02 (s, 1H,
=CH); 13C NMR (126 MHz) δ 42.7, 53.2, 76.1, 78.8, 82.7, 95.5, 117.6, 118.4, 123.1, 127.8, 128.7
(2C), 128.8, 128.9 (2C), 132.1, 134.5, 153.8, 166.6, 169.9. HRMS (ESI) m/z: [M + H]+ calcd for
C20H18Cl3N2O5 471.0276, found 471.0276.

Methyl
(S)-2-[((E)-4-methoxybenzylidene)amino]-2-((2S*,3R*,4R*)-3-nitro-2-(trichloromethyl)chroman-4-
yl)acetate (10b). Yield 170 mg (66%), mp 155–157 ◦C. IR (ATR) ν 1737 (C=O), 1553, 1310
(NO2). 1H NMR (500 MHz) δ 3.82 (s, 3H, MeO), 3.85 (s, 3H, MeO2C), 4.11 (br. s, 1H, H-4’),
4.48 (d, J = 2.3 Hz, 1H, H-2), 5.25 (d, J = 1.6 Hz, 1H, H-2’), 6.29 (br. d, J = 1.6 Hz, 1H, H-3’),
6.89 (d, J = 8.7 Hz, 2H, H-3,5 4-MeOC6H4), 7.03 (d, J = 8.0 Hz, 1H, H-8’), 7.09 (t, J = 7.5 Hz,
1H, H-6’), 7.20–7.27 (m, 2H, H-5’,7’), 7.54 (d, J = 8.7 Hz, 2H, H-2,6 4-MeOC6H4), 7.92 (s, 1H,
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=CH); 13C NMR (126 MHz) δ 42.7 (C-4’), 53.1 (MeO), 55.4 (MeO), 76.0 (C-2), 78.7 (C-3’),
82.6 (C-2’), 95.6 (CCl3), 114.2 (C-3,5 4-MeOC6H4), 117.5 (C-5’), 118.6 (C-4a’), 123.0 (C-6’),
127.5 (C-1 4-MeOC6H4), 127.8 (C-8’), 128.7 (C-7’), 130.4 (C-2,6 4-MeOC6H4), 153.8 (C-8a’),
162.8 (C-4 4-MeOC6H4), 165.7 (C=N), 170.2 (C=O). HRMS (ESI) m/z: [M + H]+ calcd for
C21H20Cl3N2O6 501.0381, found 501.0372.

Methyl
(S)-2-[((E)-benzo[d][1,3]dioxol-5-ylmethylene)amino]-2-((2S*,3R*,4R*)-3-nitro-2-(trichloromethyl)
chroman-4-yl)acetate (10c). Yield 146 mg (55%), mp 189–191 ◦C. IR (ATR) ν 1732 (C=O),
1552, 1339 (NO2). 1H NMR (500 MHz) δ 3.85 (s, 3H, MeO2C), 4.11 (br. d, J = 2.4 Hz, 1H,
H-4’), 4.48 (d, J = 2.4 Hz, 1H, H-2), 5.21 (d, J = 1.8 Hz, 1H, H-2’), 6.00 (s, 2H, OCH2O), 6.26
(dd, J = 1.8, 1.0 Hz, 1H, H-3’), 6.78 (d, J = 8.0 Hz, 1H, H-7 benzo[d][1,3]dioxol-5-yl), 7.01
(dd, J = 8.0, 1.5 Hz, 1H, H-6 benzo[d][1,3]dioxol-5-yl), 7.05 (dd, J = 8.3, 1.1 Hz, 1H, H-8’),
7.09 (dd, J = 7.6, 1.1 Hz, 1H, H-6’), 7.20 (d, J = 1.5 Hz, 1H, H-4 benzo[d][1,3]dioxol-5-yl),
7.21–7.27 (m, 2H, H-5’,7’), 7.87 (s, 1H, =CH); 13C NMR (126 MHz) δ 42.6, 53.1, 75.9, 78.7,
82.6, 95.5, 101.7, 106.5, 108.2, 117.6, 118.5, 123.1, 125.9, 127.8, 128.8, 129.3, 148.5, 151.1, 153.8,
165.5, 170.1. HRMS (ESI) m/z: [M + H]+ calcd for C21H18Cl3N2O7 515.0174, found 515.0181.

Methyl
(S)-2-((2S*,3R*,4R*)-6-chloro-3-nitro-2-(trichloromethyl)chroman-4-yl)-2-[((E)-4-methoxybenzylid
ene)amino]acetate (10d). Yield 161 mg (60%), mp 127–129 ◦C. IR (ATR) ν 1743 (C=O), 1556,
1337 (NO2). 1H NMR (500 MHz) δ 3.83 (s, 3H, MeO), 3.85 (s, 3H, MeO2C), 4.08 (br. s, 1H,
H-4’), 4.44 (d, J = 1.8 Hz, 1H, H-2), 5.29 (d, J = 1.3 Hz, 1H, H-2’), 6.26 (br. s, 1H, H-3’), 6.90 (d,
J = 8.6 Hz, 2H, H-3,5 4-MeOC6H4), 6.98 (d, J = 8.8 Hz, 1H, H-8’), 7.19 (dd, J = 8.8, 2.1 Hz, 1H,
H-7’), 7.59 (d, J = 2.1 Hz, 1H, H-5’), 7.59 (d, J = 8.6 Hz, 2H, H-2,6 4-MeOC6H4), 7.99 (s, 1H,
=CH); 13C NMR (126 MHz) δ 42.5, 53.2, 55.5, 75.7, 78.3, 82.8, 95.3, 114.3 (2C), 119.0, 120.4,
127.4, 127.5, 127.9, 129.0, 130.5 (2C), 152.4, 162.9, 166.1, 169.8. HRMS (ESI) m/z: [M + H]+

calcd for C21H19Cl4N2O6 534.9992, found 534.9993.

Methyl
(S)-2-((2S*,3R*,4R*)-6-bromo-3-nitro-2-(trichloromethyl)chroman-4-yl)-2-[((E)-4-methoxybenzylid
ene)amino]acetate (10e). Yield 194 mg (67%), mp 158–160 ◦C. IR (ATR) ν 1743 (C=O), 1557,
1337 (NO2). 1H NMR (500 MHz) δ 3.83 (s, 3H, MeO), 3.85 (s, 3H, MeO2C), 4.08 (s, 1H,
H-4’), 4.44 (s, 1H, H-2), 5.30 (s, 1H, H-2’), 6.26 (s, 1H, H-3’), 6.90 (d, J = 8.3 Hz, 2H, H-3,5
4-MeOC6H4), 6.93 (d, J = 8.8 Hz, 1H, H-8’), 7.32 (d, J = 8.8 Hz, 1H, H-7’), 7.39 (s, 1H, H-5’),
7.59 (d, J = 8.3 Hz, 2H, H-2,6 4-MeOC6H4), 7.99 (s, 1H, =CH); 13C NMR (126 MHz) δ 42.4,
53.2, 55.5, 75.7, 78.3, 82.7, 95.3, 114.3 (2C), 115.2, 119.4, 120.9, 127.4, 130.50 (2C), 130.53, 131.8,
152.9, 162.9, 166.1, 169.8. HRMS (ESI) m/z: [M + H]+ calcd for C21H19BrCl3N2O6 578.9487,
found 578.9486.

Methyl
(S)-2-((2S*,3R*,4R*)-6,8-dibromo-3-nitro-2-(trichloromethyl)chroman-4-yl)-2-[((E)-4-methoxybenz
ylidene)amino]acetate (10f). Yield 165 mg (50%), mp 112–115 ◦C. IR (ATR) ν 1735 (C=O),
1561, 1341 (NO2). 1H NMR (500 MHz) δ 3.81 (s, 3H, MeO), 3.84 (s, 3H, MeO2C), 4.11 (br. s,
1H, H-4’), 4.43 (d, J = 1.8 Hz, 1H, H-2), 5.35 (d, J = 1.6 Hz, 1H, H-2’), 6.25 (br. s, J = 1.5 Hz,
1H, H-3’), 6.92 (d, J = 8.6 Hz, 2H, H-3,5 4-MeOC6H4), 7.35 (d, J = 1.6 Hz, 1H, H-5’), 7.60
(d, J = 8.6 Hz, 2H, H-2,6 4-MeOC6H4), 7.62 (d, J = 1.6 Hz, 1H, H-7’), 8.03 (s, 1H, =CH);
13C NMR (126 MHz) δ 42.6, 53.3, 55.5, 75.5, 78.3, 83.2, 94.8, 114.4 (2C), 115.0, 122.9, 127.3,
128.1, 129.7, 130.6 (2C), 134.9, 149.8, 163.0, 166.5, 169.6. HRMS (ESI) m/z: [M + H]+ calcd for
C21H18Br2Cl3N2O6 656.8592, found 656.8590.

Methyl
(S)-2-((2S*,3R*,4R*)-6-methoxy-3-nitro-2-(trichloromethyl)chroman-4-yl)-2-[((E)-4-methoxybenzy
lidene)amino]acetate (10g). Yield 106 mg (40%), mp 168–170 ◦C. IR (ATR) ν 1746 (C=O), 1562,
1326 (NO2). 1H NMR (500 MHz) δ 3.80 (s, 3H, MeO), 3.83 (s, 3H, MeO), 3.85 (s, 3H, MeO2C),
4.08 (dd, J = 2.3, 1.7 Hz, 1H, H-4’), 4.46 (d, J = 2.3 Hz, 1H, H-2), 5.18 (d, J = 1.7 Hz, 1H,
H-2’), 6.25 (dd, J = 1.7, 1.0 Hz, 1H, H-3’), 6.89 (d, J = 8.8 Hz, 2H, H-3,5 4-MeOC6H4), 6.75 (d,
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J = 2.9 Hz, 1H, H-5’), 6.79 (dd, J = 8.9, 2.9 Hz, 1H, H-7’), 6.90 (d, J = 8.9 Hz, 1H, H-8’), 7.59
(d, J = 8.8 Hz, 2H, H-2,6 4-MeOC6H4), 7.95 (s, 1H, =CH); 13C NMR (126 MHz) δ 42.9, 53.1,
55.4, 75.8, 75.9, 78.6, 82.9, 95.6, 112.3, 114.2 (2C), 114.6, 118.3, 119.2, 127.5, 130.4 (2C), 147.9,
155.2, 162.8, 165.6, 170.2. HRMS (ESI) m/z: [M + H]+ calcd for C22H22Cl3N2O7 531.0487,
found 531.9486.

3.5. Biology
3.5.1. Cell Cultures

The human cervical carcinoma (HeLa) cell line was purchased from the Bank of Cell
Cultures of the Institute of Cytology of the Russian Academy of Sciences, St. Petersburg,
Russia. The normal human dermal fibroblasts (HDF) cell line was obtained from the
Institute of Medical Cell Technologies, Ekaterinburg, Russia.

3.5.2. Assessment of In Vitro Cytotoxic Activity

The cells were seeded in 96-well microplates at a seeding density of 2× 105 cells per mL
and cultured for 24 h in DMEM medium with glutamine (1%) in the presence of 10% fetal
bovine serum and gentamicin (50 mg/L) at 37 ◦C in a humidified atmosphere containing
5% CO2. Then the tested compounds were added to the wells in various concentrations
(10−7 M, 10−6 M, 10−5 M, 10−4 M). Cells with compounds were incubated for 72 h, after
which cell viability was assessed using the standard MTT test [43] based on the reduction
of the yellow tetrazole salt by living cell mitochondrial dehydrogenases to formazan
crystals, soluble in DMSO. Experiments were performed in triplicates with negative control
(culture medium), positive control (camptothecin, 3 mM) and solvent control (DMSO). The
results of the MTT test were evaluated by comparing the optical density of the formazan
solution measured on a flatbed scanner Tecan Infinite M200 PRO (Tecan Austria GmbH,
Austria) at a wavelength of 570 nm in the experimental and control wells and control
wells and calculating the cytotoxicity index (IC). The cytotoxicity index was determined
for each concentration of the studied substances by AAT Bioquest-calculator: https://
www.aatbio.com/tools/ic50-calculator (accessed on 15 November 2022). The parameters
of the arithmetic mean value and the standard error were calculated. The differences in
the average values according to the Mann-Whitney U test with p < 0.05 were considered
reliable. For the statistical analysis, Microsoft Excel 2019 (Microsoft corp., Redmond, DC,
USA) and Statistika 13.3 (Tibco, Palo Alto, CA, USA) were used.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/xxx/s1: X-ray diffraction experiments; NMR spectra of compounds 8–10 [44,45].
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