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Abstract: Psidium guajava (Guava tree) is one of the most widely known species in the family
Myrtaceae. The Guava tree has been reported for its potential antioxidant, anti-inflammatory, an-
timicrobial, and cytotoxic activities. In the current study, the chemical compositions of the n-hexane
extract and the essential oil of P. guajava were investigated using the GC/MS analysis, along with
an evaluation of their antioxidant potential, and an investigation into the enzyme inhibition of
acetylcholinesterase (AChE), butyrylcholinesterase (BchE), tyrosinase, α-amylase, and α-glucosidase.
Moreover, molecular docking of the major identified active sites of the target enzymes were investi-
gated. The chemical characterization of the n-hexane extract and essential oil revealed that squalene
(9.76%), α-tocopherol (8.53%), and γ-sitosterol (3.90%) are the major compounds in the n-hexane
extract. In contrast, the major constituents of the essential oil are D-limonene (36.68%) and viridiflorol
(9.68%). The n-hexane extract showed more antioxidant potential in the cupric reducing antioxidant
capacity (CUPRAC), the ferric reducing power (FRAP), and the metal chelating ability (MCA) as-
says, equivalent to 70.80 ± 1.46 mg TE/g, 26.01 ± 0.97 mg TE/g, and 24.83 ± 0.35 mg EDTAE/g,
respectively. In the phosphomolybdenum (PM) assay, the essential oil showed more antioxidant
activity equivalent to 2.58 ± 0.14 mmol TE/g. The essential oil demonstrated a potent BChE and
tyrosinase inhibitory ability at 6.85 ± 0.03 mg GALAE/g and 61.70 ± 3.21 mg KAE/g, respectively.
The α-amylase, and α-glucosidase inhibitory activity of the n-hexane extract and the essential oil
varied from 0.52 to 1.49 mmol ACAE/g. Additionally, the molecular docking study revealed that
the major compounds achieved acceptable binding scores upon docking with the tested enzymes.
Consequently, the P. guajava n-hexane extract and oil can be used as a promising candidate for the
development of novel treatment strategies for oxidative stress, neurodegeneration, and diabetes
mellitus diseases.

Keywords: antioxidants; cholinesterase; enzyme inhibition; GC/MS; Myrtaceae; Psidium guajava;
tyrosinase
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1. Introduction

Secondary metabolites from natural sources are regarded as a provenance for alleviat-
ing and curing a plethora of ailments [1–5]. Neurodegenerative diseases refer to different
conditions in the breakdown and damage to the central nervous system (CNS), such as
dementia and Alzheimer’s disease (AD) with an impact on more than 20 million people
globally. Among the therapeutic approaches followed for the management of AD are the
development of therapeutic techniques based on the inhibition of key enzymes involved in
the pathogenesis of the disease as antioxidant and anticholinesterase agents (AChE) [6–8].
Where, the use of enzyme inhibitors has significant implications for disease prevention and
therapy. In addition, the management of diabetes is efficiently based on the inhibition of
two enzymes α-amylase and α-glucosidase. The efficient strategy to control blood sugar
levels is to delay the breakdown of carbohydrates in the small intestine in order to diminish
the postprandial increase in blood glucose [9,10].The use of synthetic drugs have many
diverse side effects, such as hypoglycemia, edema, mild anemia, hepatotoxicity, and weight
gain [11,12]; therefore, there is a great demand to explore a new agent from natural sources
for the management of neurodegenerative diseases, oxidative stress, and diabetes.

The family Myrtaceae is one of the most important commercial families in the world, it
has great economical and nutritional values that are linked to the management of different
illnesses [13]. It is a diverse botanical family that comprises characteristic genera, including,
but not limited to, Syzygium, Eucalyptus, Myricaria, Melaleuca, Eugenia, Myrtus, and Pisid-
ium [14–17]. It has an economic potential value due to its pleasant sensory properties and
bioactive constituents, and it is considered as a continuous source of antioxidant agents [18].

One of the most known genera of the Myrtaceae family is the genus Pisidium, which
includes about 150 species [19]. Pisidium guajava L. is the most famous species, having the
common name Guava tree, it is an evergreen shrub with curved wide spreading branches
and bears opposite green leaves with small petioles [20–22]. It is distributed throughout
the world’s tropical and subtropical regions [23,24]. It has a long history in traditional
medicine all over the world as treatment for diarrhea, diabetes, cough, stomach pain,
dysentery, toothache, indigestion, constipation, fever, and wound healing; it is notable that
different parts, such as leaves, flowers and barks are involved in traditional uses in the
form of decoction and infusions [25–27]. Another point is the outstanding pharmacological
properties of P. guajava, including, but not limited to, antioxidant, anti-inflammatory,
antimicrobial, cytotoxic, analgesic, cardioprotective, hepato-protective, and antidiabetic
activities [28–31].

Regarding the phytochemical composition of P. guajava, it is a rich source of flavonoids,
phenolic acids, triterpenoids, vitamins, and minerals [29,32]. Moreover, the volatile com-
ponents comprise mainly sesquiterpenes and monoterpenes [33,34]. The nutritional value
of P. guajava is particularly noticeable as a functional food ingredient [32]. The fruit is the
richest part with a high vitamin C content, so it is commonly used for colds and infections.
Regarding the essential oil of P. guajava, it has been demonstrated to provide various health
benefits, such as antimicrobial, antinociceptive, anti-inflammatory, insect repellent, and
insecticidal activities [35].

There have been several reports concerning the biological activities of different Pisid-
ium species [36]. For example, de Souza Cardoso et al. (2018) reported the antidiabetic
effects of phenolic compounds, especially anthocyanins in P. cattleyanum fruits [37]. An-
other study revealed the analgesic activity of the hydroalcoholic extract of the leaves of
P. cattleyanum [38]. Another study reported that the methanol extract of P. sartorianum
fruit pulp displayed a remarkable antifungal activity [39]. Therefore, we are interested in
conducting a comprehensive study to compare the volatile components of the n-hexane
extract and the essential oil of P. guajava based on the GC/MS analyzes. Additionally,
we want to investigate their antioxidant and enzyme inhibitory activities based on five
key enzymes (acetyl/butyryl-cholinesterase, tyrosinase, α-amylase, and α-glucosidase),
to assess the efficacy of the oil and the n-hexane extract as enzyme inhibitors. In addition,
molecular docking studies were performed to demonstrate the possible mechanism of
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action of the main compounds identified in n-hexane and essential oils and how they exert
their biological activities.

2. Results and Discussion
2.1. GC/MS Analysis of the n-Hexane Extract and Essential Oil of Psidium guajava

The results of the GC/MS analysis of the n-hexane extract and the essential oil of
P. guajava are represented in Figure 1 and Table 1. The chemical characterization of the
n-hexane extract and the essential oil revealed the identification of 40 compounds and
39 compounds accounting for (98.89%) and (99.30%), respectively. The n-hexane extract
was found to be rich in hydrocarbons; aromatic (34.01%) and aliphatic (10.93%); followed
by oxygenated sesquiterpenes (13.65%) and sesquiterpene hydrocarbons (8.75%). On the
other hand, the essential oil showed a high percentage of monoterpene hydrocarbons
(37.80%) and oxygenated sesquiterpenes (36.59%), followed by sesquiterpene hydrocarbons
(23.10%). In the n-hexane extract, squalene and α-tocopherol were the major compounds
accounting for (9.76%) and (8.53%), respectively, followed by D-limonene (4.83%), 1-epi-
cubenol (4.51%), n-dodecane (4.15%), γ-sitosterol (3.90%), and β-caryophyllene (3.80%).
Regarding the essential oil, it showed a high percentage of D-limonene (36.68%), followed
by viridiflorol (9.68%), β-caryophyllene (8.41%), caryophylla-4(12),8(13)-dien-5α-ol (6.48%),
selin-11-en-4-α-ol (6.35%), and β-selinene (4.10%). It is worth mentioning that D-limonene
and β-caryophyllene were common major compounds in both the n-hexane extract and
the essential oil of P. guajava. The chemical structures of the major constituents and the
distribution of volatile components as a percentage within the n-hexane extract and the
essential oil of P. guajava leaves are illustrated in Figures 2 and 3, respectively.

Table 1. Chemical composition (%) of the n-hexane extract (PGH) and essential oil (PGO) isolated
from Psidium guajava leaves using GC/MS analysis.

No.
Rt

(min)
Compound RIExp. a RILit

b Molecular
Formula

Content (%)

PGH PGO

1 7.16 α-Pinene 931 931 C10H16 - 0.99
2 8.99 n-Decane 999 1000 C10H22 1.44 -
3 9.94 p-Cymene 1024 1024 C10H14 - 0.13
4 10.09 D-Limonene 1029 1029 C10H16 4.83 36.68
5 12.15 n-Undecane 1099 1100 C11H24 3.61 -
6 14.15 2-Methylundecane 1164 1165 C12H26 0.70 -
7 14.98 trans-p-Mentha-1(7),8-dien-2-ol 1188 1185 C10H16O - 0.50
8 15.07 α-Terpineol 1191 1189 C10H18O - 0.64
9 15.25 n-Dodecane 1199 1200 C12H26 4.15 -

10 15.67 3,6-Dimethylundecane 1213 1210 C13H28 0.58 -
11 15.95 trans-Carveol 1221 1220 C10H16O - 0.15
12 16.20 cis-p-Mentha-1(7),8-dien-2-ol 1229 1235 C10H16O - 0.52
13 18.21 n-Tridecane 1299 1300 C13H28 0.45 -
14 20.43 α-Copaene 1378 1376 C15H24 0.51 0.59
15 21.65 β-Caryophyllene 1424 1424 C15H24 3.80 8.41
16 22.16 Alloaromadendrene 1443 1442 C15H24 0.42 1.60
17 22.54 Humulene (α-Caryophyllene) 1458 1455 C15H24 - 1.00
18 22.74 epi-β-Caryophyllene 1465 1466 C15H24 - 0.37
19 23.13 γ-Muurolene 1480 1479 C15H24 - 0.40
20 23.41 β-Selinene 1491 1486 C15H24 1.22 4.10
21 23.64 β-Guaiene 1500 1500 C15H24 1.05 2.94
22 23.75 α-Bisabolene 1504 1506 C15H24 - 1.12
23 23.92 β -Bisabolene 1511 1512 C15H24 - 1.33
24 24.11 γ-Cadinene 1519 1513 C15H24 - 0.23
25 24.33 cis-Calamenene 1528 1529 C15H22 - 0.67
26 24.56 Cubenene 1537 1533 C15H24 1.75 0.34
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Table 1. Cont.

No.
Rt

(min)
Compound RIExp. a RILit

b Molecular
Formula

Content (%)

PGH PGO

27 24.79 Ledol 1547 1549 C15H26O 1.27 -
28 25.28 Dodecanoic acid 1566 1566 C12H24O 1.20 0.88
29 25.54 Caryophyllene alcohol 1577 1572 C15H26O - 0.35
30 25.68 Caryophyllene oxide 1582 1583 C15H24O - 0.20
31 25.89 Viridiflorol 1591 1592 C15H26O 0.95 9.68
32 26.09 Globulol 1598 1590 C15H26O - 0.49
33 26.15 Benzene, (1-methylnonyl)- 1602 1616 C16H26 1.26 -
34 26.42 β-Atlantol 1613 1608 C15H24O - 1.29
35 26.51 β-Himachalene oxide 1616 1616 C15H24O - 0.81
36 26.60 Humulene epoxide II 1620 1620 C15H24O - 0.61
37 26.70 Alloaromadendrene oxide-(1) 1624 1625 C15H24O - 0.26
38 26.82 γ-Eudesmol 1630 1632 C15H26O 2.08 0.39
39 26.94 1-epi-Cubenol 1635 1630 C15H26O 4.51 1.38
40 27.08 Caryophylla-4(12),8(13)-dien-5β-ol 1640 1640 C15H24O - 1.87
41 27.17 Caryophylla-4(12),8(13)-dien-5α-ol 1645 1641 C15H24O 3.64 6.48
42 27.37 α-Cadinol 1653 1654 C15H26O - 0.97
43 27.61 Selin-11-en-4-α-ol 1663 1659 C15H26O - 6.35
44 27.69 Benzene, (1-ethylnonyl)- 1668 1670 C17H28 2.93 -
45 27.83 epi-β-Bisabolol 1672 1672 C15H26O - 0.69
46 27.96 Khusilol 1678 1676 C14H20O - 1.99
47 28.19 α-Bisabolone oxide A 1688 1686 C14H22O2 - 0.55
48 28.29 11αH-Himachal-4-en-1β-ol 1692 1699 C15H26O - 1.35
49 28.55 Benzene, (1-methyldecyl)- 1704 1715 C17H28 3.46 -
50 29.14 Benzene, (1-pentylheptyl)- 1728 1718 C18H30 3.60 -
51 29.25 Benzene, (1-butyloctyl)- 1733 1725 C18H30 3.71 -
52 29.52 Benzene, (1-propylnonyl)- 1744 1741 C18H30 2.70 -
53 30.01 Benzene, (1-ethyldecyl)- 1764 1767 C18H30 2.55 -
54 30.85 Benzene, (1-methylundecyl)- 1799 1797 C18H30 2.94 -
55 31.31 Benzene, (1-pentyloctyl)- 1822 1819 C19H32 3.19 -
56 31.46 Benzene, (1-butylnonyl)- 1830 1825 C19H32 2.65 -
57 31.73 Benzene, (1-propyldecyl)- 1844 1838 C19H32 1.76 -
58 32.23 Benzene, (1-ethylundecyl)- 1870 1866 C19H32 1.50 -
59 33.05 Benzene, (1-methyldodecyl)- 1912 1911 C19H32 1.76 -
60 37.04 Phytol 2115 2114 C20H40O 1.90 -
61 38.37 Palmitic acid, butyl ester 2187 2188 C20H40O2 0.75 -
62 41.38 Eicosanoic acid, methyl ester 2358 2339 C21H42O2 0.64 -
63 41.52 Linolenic acid, ethyl ester 2366 - C20H34O2 0.83 -
64 48.77 Squalene 2834 2835 C30H50 9.76 -
65 50.27 Hexacosanoic acid, methyl ester 2942 2940 C27H54O2 0.41 -
66 53.07 α-Tocopherol 3152 3149 C29H50O2 8.53 -
67 55.98 γ-Sitosterol 3352 3351 C29H50O 3.90 -

Monoterpene hydrocarbons 4.83 37.80
Oxygenated monoterpenes - 1.81
Sesquiterpene hydrocarbons 8.75 23.10
Oxygenated sesquiterpenes 13.65 36.59
Diterpenoids 1.90 -
Triterpenoids 9.76 -
Sterols 3.90 -
Aromatic Hydrocarbons 34.01 -
Aliphatic Hydrocarbons 10.93 -
Fatty acids and fatty acids derivatives 2.63 -
Others 8.53 -
Total identified compounds 98.89 99.30

Compounds listed in order of their elution on DB-5 GC column. Identification was based on comparison of
the compounds mass spectral data (MS) and retention indices (RI) with those of NIST Mass Spectral Library
(2011), Wiley Registry of Mass Spectral Data 8th edition and the literature [28,30]. a Retention index calculated
experimentally on Rtx-1MS column relative to n-alkane series (C8–C28). b Published retention indices.
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Figure 1. GC chromatogram of (A) n-hexane extract and (B) essential oil of P. guajava leaves. 
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Figure 2. Chemical structures of the major constituents identified in the n-hexane extract and essential
oil of Psidium guajava leaves using GC/MS analysis.
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Figure 3. Pie charts demonstrate the distribution of volatile components as a percentage within
(A) n-Hexane extract and (B) essential oil of P. guajava leaves.

Many reports have been conducted on the essential oil compositions of P. guajava
from varied geographical sources [30,33,40]. The major identified compounds in the essen-
tial oil isolated from the leaves collected from Brazil were β-caryophyllene, α-humulene,
aromadendrene oxide, δ-selinene, and selin-11-en-4α-ol [24]. In contrast, the essential
oil from the leaves collected from another source in India showed that β-caryophyllene,
L-calamenene, (-)-globulol, and α-copaene were the major constituents [30]. Moreover, the
chemical composition of the n-hexane extract of P. guajava, collected from Pakistan, showed
a high content of vitamin E, squalene, caryophyllene, and γ-sitosterol [25]. Another study
by Arian et al. reported that the essential oil of P. guajava leaves collected from Pakistan
was a rich source of β-caryophyllene, globulol, and trans-nerolidol [33]. Regarding, the
previous studies into the composition of the essential oil of P. guajava leaves indicated wide
variations relative to the different locations of collection.

2.2. Total Phenolic and Flavonoid Content of the n-Hexane Extract of P. guajava Leaves

Phenolics compounds are present in most natural products that induce many biological
activities [41–44]. The total phenolic and flavonoid content in the n-hexane extract of
P. guajava leaves, was quantitatively determined, according to Zengin and Aktumsek,
2014 [45]. The Phenolic and flavonoid contents were measured as gallic acid, and rutin
equivalents, respectively. The presence of 32.62 ± 0.19 mg GAE/g (gallic acid equivalent)
per mg of P. guajava n-hexane extract was recorded for the total phenolics content. While
the presence of 2.05 ± 0.14 mg RE/g (rutin equivalent) was recorded for the total flavonoids
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content. The results established the presence of considerable amounts of phenolics in the
n-hexane extract.

2.3. Antioxidant Potential of the n-Hexane Extract and Essential Oil Isolated from P. guajava Leaves

Natural antioxidants, especially polyphenols, are becoming increasingly popular
due to their beneficial effects on human health. Consequently, plant polyphenols may
be able to mitigate the negative effects of oxidative stress, which has been linked to a
variety of pathological processes, such as cancer, kidney disease, cardiovascular disease,
neurodegeneration, age-related diseases, and diabetes [46–51]. Many reports revealed the
potential of different essential oils as antioxidant agents [52], including but not limited to,
the essential oil of Cinnamomum zeylanicum, which showed over 78.0% anticholinesterase
and radical-scavenging activities [53]. Additionally, the essential oil of Rosmarinus officinalis
showed antioxidant activity using the DPPH and FRAP assays [54].

So, there is an increasing demand for the development of natural antioxidants. Several
assays were conducted in the current study to examine the in vitro antioxidant potentials
of the P. guajava leaves n-hexane extract and the essential oil.

The antioxidant potential of the n-hexane extract and the essential oil was performed
using different techniques as 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2-azino
bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), cupric reducing antioxidant capacity
(CUPRAC), ferric reducing power (FRAP), metal chelating ability (MCA), and phospho-
molybdenum (PM) assays. The findings represented in Table 2 show that the n-hexane
extract and the essential oil have antioxidant properties in the different assays. Concerning
the CUPRAC, FRAP, and MCA assays, the n-hexane extract revealed a higher antioxidant
potential, equivalent to 70.80 ± 1.46 mg TE/g, 26.01 ± 0.97 mg TE/g, and 24.83 ± 0.35 mg
EDTAE/g, respectively. By contrast, the essential oil showed more antioxidant potential
in the PM assay equivalent to 2.58 ± 0.14 mmol TE/g, while n-hexane extract showed
2.0 ± 0.07 mmol TE/g. Regarding the DPPH and ABTS assays, none of the n-hexane ex-
tract or the essential oil showed any antioxidant activity. Accordingly, it can be concluded
that the n-hexane extract and the essential oil from P. guajava leaves have promising an-
tioxidant properties. The higher antioxidant potential of the n-hexane extract could be
attributed to the presence of squalene as a major compound (9.76%), which is a well-known
triterpenoid hydrocarbon with an antioxidant potential through oxygen scavenging [55].
Furthermore, α-Tocopherol, which is the significant antioxidant isomer of vitamin E [56]
through the scavenging of free radicals, cell membrane maintenance, and structural restora-
tion [57], is present as a major constituent in the n-hexane extract (8.53%). Moreover, the
presence of phytosterol as γ-sitosterol plays an important role in the antioxidant activity
of P. guajava [25,58]. The results were in accordance with the previous studies, where the
monoterpene hydrocarbon D-limonene was reported to be a major compound in celery seed
oil, which showed a high antioxidant activity using the DPPH assay [59]. Additionally, the
antioxidant potential of the essential oil from Wedelia prostrata was attributed to the presence
of a high percentage of D-limonene [60]. Regarding squalene, Kraujalis et al. (2013) reported
its promising antioxidant activity in the lipophilic fraction of Amaranthus spp. prepared
using a supercritical carbon dioxide extraction technique [61]. Moreover, it was reported
that D-limonene has the ability to prevent lipidemic-oxidative stress [62,63]. Furthermore,
β-caryophyllene was previously reported as a free-radical-scavenging agent [64,65].

Table 2. Antioxidant potential of the n-hexane extract and essential oil isolated from P. guajava leaves.

Samples
DPPH ABTS CUPRAC FRAP MCA PM

(mg TE/g) (mg TE/g) (mg TE/g) (mg TE/g) (mg EDTAE/g) (mmol TE/g)

n-Hexane extract n.a. n.a. 70.80 ± 1.46 26.01 ± 0.97 24.83 ± 0.35 2.0 ± 0.07
Essential oil n.a. n.a. 18.17 ± 0.08 12.08 ± 0.17 9.02 ± 1.2 2.58 ± 0.14

Values expressed as means ± S.D. of three parallel measurements. Trolox equivalent (TE); Ethylenediaminete-
traacetic acid equivalent (EDTAE); not active (n.a.).
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The previous reports found that the antioxidant properties of the n-hexane extract and
the essential oil of P. guajava was carried out using different assays, such as DPPH, ABTS,
and FRAP assays and our results represented a comprehensive antioxidant profiling of
the n-hexane extract and the essential oil of P. guajava available to date, using a standard
equivalent way. Ashraf et al. (2016) reported the antioxidant properties of the hexane
extract of P. guajava using the DPPH assay and found a low scavenging of free radicals
(IC50 value = 426.8 ± 0.19 µg/mL) [25]. In another study, the antioxidant properties of the
essential oil of P. guajava were investigated using the DPPH, ABTS, and β-carotene bleaching
assays, which showed IC50 values of 17.66 ± 0.07, 19.28 ± 0.03, and 3.17 ± 0.01 µg/mL,
respectively [30]. The variability in the results could be attributed to the differences in
the harvest times, the maturity stage, and variations in the extraction procedure and the
extracting solvent. So, these reports confirmed the antioxidant activity of n-hexane extract
and the essential oil of P. guajava.

2.4. Enzyme Inhibitory Activity of the n-Hexane Extract and the Essential Oil Isolated from
P. guajava Leaves

The enzyme inhibitory activities of the n-hexane extract and the essential oil were
evaluated against different important enzymes, including acetylcholinesterase (AChE),
butyrylcholinesterase (BChE), tyrosinase, α-amylase, and α-glucosidase. The results are
represented in Table 3. It revealed that the essential oil showed a potent BChE inhibitory
ability 6.85 ± 0.03 mg GALAE/g by contrast the n-hexane extract did not display any
AChE or BChE inhibitory abilities. The strongest tyrosinase inhibition ability was de-
termined to be the essential oil (61.70 ± 3.21 mg KAE/g) whereas the n-hexane ex-
tract was 33.91 ± 2.25 mg KAE/g. Regarding the anti-diabetic enzyme inhibition, the
n-hexane extract and essential oil both displayed α-amylase inhibition equivalent to
0.52 ± 0.01 and 0.13 ± 0.01 mmol ACAE/g, respectively. In contrast to the α-amylase
inhibition, the essential oil displayed a higher α-glucosidase inhibition equivalent to
1.49 ± 0.01 mmol ACAE/g and the n-hexane extract displayed less α-glucosidase inhi-
bition (0.67 ± 0.03 mmol ACAE/g).

Table 3. Enzyme inhibitory effects of the n-hexane extract and the essential oil isolated from
P. guajava leaves.

Samples
AChE Inhibition BChE Inhibition Tyrosinase Inhibition α-Amylase

Inhibition
α-Glucosidase

Inhibition

(mg GALAE/g) (mg GALAE/g) (mg KAE/g) (mmol ACAE/g) (mmol ACAE/g)

n-Hexane extract n.a. n.a. 33.91 ± 2.25 0.52 ± 0.01 0.67 ± 0.03
Essential oil n.a. 6.85 ± 0.03 61.70 ± 3.21 0.13 ± 0.01 1.49 ± 0.01

Values expressed as means ± S.D. of three parallel measurements. Galanthamine equivalent (GALAE); Kojic acid
equivalent (KAE); Acarbose equivalent (ACAE); not active (n.a.).

The significant BChE inhibition by the essential oil could be attributed to the presence
of monoterpenes as the major components relative to the previous studies that correlate
the presence of several monoterpenes with the anticholinesterase properties [65–68]. To
the best of our knowledge no previous comprehensive studies were available concerning
the comparative study on the enzyme inhibition of the Guava essential oil and n-hexane
extract. Zhang et al. (2022) reported the significant α-amylase and α-glucosidase in-
hibitory activities of the essential oil of Guava collected from China with IC50 values of
13.99 ± 0.34 and 5.50 ±1.02 µg/mL, respectively [30]. Bouchoukh et al. (2019) reported
the anticholinesterase properties of different extracts of Guava; the chloroform, ethyl-
acetate and the n-butanol extracts showed AChE inhibitory activities with IC50 values of
177.11 ± 2.30, 56.11 ± 4.04, and 24.44 ±3.45 µg/mL, respectively; their BChE inhibitory
activities were found to have IC50 values of >200, 44.95 ± 2.67 and 21.87 ±10.48 µg/mL,
respectively [40].
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Bonesi et al. (2010) reported that trans-caryophyllene identified in oil, showed signif-
icant BChE inhibitory activity with an IC50 value of 78.6 ± 1.3 µg/mL [6]. Furthermore,
it acts as an antagonist to homomeric nicotinic acetylcholine receptors (α7-nAChRs) [69].
Additionally, the AChE inhibitory activity of Artemisia annua oil was attributed to the
presence of limonene, β-caryophyllene, and β-caryophyllene oxide as the major compo-
nents [70]. Zarrad et al. (2015) reported that the AChE inhibitory activity of limonene
correlated with its bicyclic monoterpene hydrocarbon containing an allylic methyl group,
which has an important role in its insecticidal activity [67]. A previous study by Chear
et al. (2016), reported that the combination of sterols and tocopherol played an important
role in the cholinesterase inhibitory activity in either AChE or BChE [71]. Recently, it was
shown that α-tocopherol has an inhibiting effect on α-glucosidase being beneficial to reduce
the risk factors associated with diabetes [72]. In addition, the presence of α-tocopherol in
Cosmos caudatus extract revealed the potential α-glucosidase inhibitory activity [73]. You
et al. (2011) reported the tyrosinase inhibitory activities of the different parts and different
extracts of Guava. The leaves, acetone, ethanol, methanol, and water extracts showed
tyrosinase inhibition by 49.67 ± 0.58, 69.56 ± 1.38, 47.33 ± 1.84, and 44.78 ± 1.75%, respec-
tively [74]. Development of tyrosinase inhibitors from natural sources is in great demand
due to their low side effects and higher efficacy making natural tyrosinase inhibitors a good
candidate for the incorporation in hypopigmenting agents. It is worth mentioning that
tyrosinase plays an important role in melanin synthesis [75–77].

2.5. Molecular Docking

This part was conducted to investigate the possible mechanism of action in which
the ten major compounds (D-limonene, β-caryophyllene, β-selinene, viridiflorol, 1-epi-
cubenol, caryophylla-4(12),8(13)-dien-5α-ol, selin-11-en-4-α-ol, squalene, α-tocopherol, and
γ-sitosterol) exert their biological effects. Accordingly, the 3D structures of AChE, BchE,
tyrosinase, α-amylase, and α-glucosidase were downloaded from the protein data bank
using the following IDs: 7D9O, 6ESJ, 5M8Q, 4GQQ, and 3WY2, respectively. After that,
the ten major compounds were docked into the active site vicinity of the five enzymes.
Interestingly, all the compounds achieved acceptable binding scores upon docking with the
five targets (Table 4). In the docking of AChE, γ-sitosterol, α-tocopherol, and selin-11-en-4-α-
ol the best scores for docking were achieved −15.4, −14.2, and −13.4 Kcal/Mol, respectively.
As Figure 4 reveals, γ-sitosterol interacted with AChE through mixed hydrophobic and
hydrogen bond interactions with Tyr341, Phe338, Trp86, Tyr133, and Glu203. Moreover,
α-tocopherol interacted with Trp86, Ser203 and 337; selin-11-en-4-α-ol interacted with
Tyr124, Tyr133, Ser203, Tyr337, and Tyr341. In the docking of BChE, α-tocopherol, squalene,
and viridiflorol achieved the best docking scores −13.9, −11.1, and −10.7 Kcal/Mol,
respectively. As depicted Figure 5 α-tocopherol bound to BChE through interactions
with Trp82, Tyr332, Met437, and His438; squalene interacted with Trp82, Tyr332, and
His438; viridiflorol interacted with Trp82, Thr120, and Glu197. In the docking of tyrosinase,
α-tocopherol, selin-11-en-4-α-ol, and viridiflorol achieved the best docking scores −9.5,
−9.5, and −9.3 Kcal/Mol, respectively. Figure 6 reveals the interaction of the best three
compounds with tyrosinase in which, α-tocopherol interacted with Glu216, Asn378, Gly389,
and His392, selin-11-en-4-α-ol interacted with His215, His377, Asn378, His381, and Gly389
and viridiflorol interacted with His318 and Gly388. Regarding the docking of α-amylase,
α-tocopherol, selin-11-en-4-α-ol, and β-selinene achieved the best docking scores −8.9,
−7.8, and −7.7 Kcal/Mol, respectively. Inspecting Figure 7, α-tocopherol was able to
interact with the residues of α-amylase through binding with Gly238, Ser244, and Ser245;
selin-11-en-4-α-ol interacted with Asp236, Ser245, Glu255, Lys257, and Gly285; β-selinene
interacted with Asp236, Ser245, Gly238, and Gly285. In the docking of α-glucosidase,
viridiflorol, α-tocopherol, and selin-11-en-4-α-ol achieved the best docking scores −13.6,
−12.5, and −12.5 Kcal/Mol, respectively. Figure 8 shows the interaction of the best three
compounds with α-glucosidase in which, viridiflorol interacted with Phe166, Glu271, and
Asp333; α-tocopherol interacted with Phe166, Asp202, Gly228, Met302, Tyr389, Phe397, and
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Asp333; selin-11-en-4-α-ol interacted with Phe166, Asp62, Tyr65, Phe147, and Arg400. In
conclusion, the docking results supported and justified the biological results giving rise to
a synergetic effect for all the components of the n-hexane extract and the essential oil.

Table 4. The docking scores achieved by the major identified compounds against different enzymes.

Compound
Docking Scores Kcal/mol

AChE
7D9O

BChE
6ESJ

Tyrosinase
5M8Q

α-Amylase
4GQQ

α-Glucosidase
3WY2

D-Limonene −9.2 −7.2 −7.3 −6.1 −7.9
β-Caryophyllene −9.3 −8.7 −7.2 −6.3 −7.9

β-Selinene −9.5 −7.7 −6.8 −7.7 −7.6
Viridiflorol −11.4 −10.7 −9.3 −6.3 −13.6

1-epi-Cubenol −10.2 −8.8 −6.9 −6.4 −8.3
Caryophylla-4(12),8(13)-dien-5α-ol −11.4 −9.1 −7.6 −6.8 −8.9

Selin-11-en-4-α-ol −13.4 −9.3 −9.5 −7.8 −12.5
Squalene −12.3 −11.1 −7.9 −6.4 −9.1

α-Tocopherol −14.2 −13.9 −9.5 −8.9 −12.5
γ-Sitosterol −15.4 −9.4 −8.2 −7.1 −9.3
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Figure 5. 2D binding modes of α-tocopherol (A); squalene (B); viridiflorol (C) to the active binding
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Figure 6. 2D binding modes of α-tocopherol (A); selin-11-en-4-α-ol (B); viridiflorol (C) to the active
binding sites of tyrosinase.
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Figure 7. 2D binding modes of α-tocopherol (A); selin-11-en-4-α-ol (B); β-selinene (C) to the active
binding sites of α-amylase.

Molecules 2022, 27, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 7. 2D binding modes of α-tocopherol (A); selin-11-en-4-α-ol (B); β-selinene (C) to the active 

binding sites of α-amylase. 

 

Figure 8. 2D binding modes of viridiflorol (A); α-tocopherol (B); selin-11-en-4-α-ol (C) to the active 

binding sites of α-glucosidase. 

 

 
 

 1 

B C 

A 

 

 
 

 1 

B

A 

C 

A 

Figure 8. 2D binding modes of viridiflorol (A); α-tocopherol (B); selin-11-en-4-α-ol (C) to the active
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3. Materials and Methods
3.1. Plant Material

Fresh leaves of P. guajava Linn. were collected from the Medicinal Plant Research
Station, Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo,
Egypt, in October 2021. The plant was authenticated by Professor Usama K. Abdel Hameed,
Department of Botany, Faculty of Science, Ain Shams University, Cairo, Egypt. A voucher
specimen, PHG-P-PG-409, was deposited at the Pharmacognosy Department, Faculty of
Pharmacy, Ain Shams University, Cairo, Egypt.

3.2. Isolation of the Essential Oil

The fresh leaves were finely cut and hydrodistilled for 5 h using a Clevenger apparatus.
The oil obtained is colorless with a pleasant aroma; the average yield was 0.2% (v/w). It
was isolated and kept in a sealed dark glass vial at −4 ◦C until the GC/MS analysis
was performed.

3.3. Preparation of the n-Hexane Extract

The dried leaves of Psidium guajava Linn. (100 g) were extracted with n-hexane three
times separately. The filtrate was completely evaporated in vacuo at 40 ◦C until dryness to
obtain the dried residue of the n-hexane extract (3.2 g). The extract was stored in a tight
container and stored in a refrigerator for further analysis.

3.4. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis

Gas chromatography/Mass spectrometry (GC/MS) analysis was carried out on a
Shimadzu GCMS-QP 2010 chromatograph (Kyoto, Japan) with Rtx-1MS capillary column
(30 m × 0.25 mm i.d. × 0.25 µm film thickness; Restek, Bellefonte, PA, USA). The oven
temperature was kept at 45 ◦C for 2 min (isothermal), programmed to 30 ◦C at a rate
of 5 ◦C/min, and kept constant at 300 ◦C for 5 min (isothermal); injector temperature
was 250 ◦C. The carrier gas used was helium, with a flow rate set at 1.40 mL/min. The
diluted samples (1% v/v) were injected with a split ratio of 15:1 and the injected volume
was 1 µL. The MS operating parameters were as follows: interface temperature 280 ◦C,
ion-source temperature 220 ◦C, EI mode 70 eV, scan range 35–500 amu. Identification
of the volatile constituents was made based on their retention indices, matching their
fragmentation patterns with the NIST Mass Spectral Library, the Wiley library database, and
the published data in the literature [78–81]. Retention indices (RI) were calculated relative
to the homologous series of n-alkanes (C8–C30) and injected under the same conditions.

3.5. Compounds Identification

The identification was accomplished by comparing the Kovats retention index and
the mass spectrometric data (molecular ion peaks and fragmentation patterns), to those
recorded in the NIST Mass Spectral Library and other published data for the reference
compounds under similar conditions [56,78–83].

3.6. Total Phenolic and Flavonoid Content

The total phenolic and flavonoid contents were determined using the Folin–Ciocalteu
and AlCl3 tests, respectively [45]. Results were presented as gallic acid equivalents (mg
GAEs/g dry extract) and rutin equivalents (mg REs/g dry extract) for the assays. All
experimental details are given in Supplementary Materials.

3.7. Antioxidant and Enzyme Inhibitory Assays

The antioxidant assays were performed using methods that have been previously
reported [84,85]. Trolox and EDTA were used as positive controls in the antioxidant assays.
The antioxidant potential was calculated as follows: mg Trolox equivalents (TE)/g extract
in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS) radical scavenging tests; cupric reducing antioxidant capacity
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(CUPRAC) and ferric reducing antioxidant power (FRAP), mmol TE/g extract in phos-
phomolybdenum assay, and mg ethylenediaminetetraacetic acid equivalents (EDTAE)/g
extract in metal chelating assay (MCA). All experimental details for the antioxidant assays
are given in Supplementary Materials.

The enzyme inhibition experiments were performed based on previously described
procedures [84,85]. Standard inhibitors were used as positive controls (galanthamine
for cholinesterases; kojic acid for tyrosinase; acarbose for amylase and glucosidase) in
the enzyme inhibitory assays. Amylase and glucosidase inhibition were expressed as
mmol acarbose equivalents (ACAE)/g extract, while acetylcholinesterase (AChE) and
butyrylcholinesterase (BChE) inhibition was expressed as mg galanthamine equivalents
(GALAE)/g extract. Tyrosinase inhibition was expressed as mg kojic acid equivalents
(KAE)/g extract. All experimental details for the enzyme inhibitory assays are given in
Supplementary Materials.

3.8. Molecular Docking

The X-ray 3D structures of AChE, BChE, tyrosinase, α-amylase, and α-glucosidase
were downloaded from the protein data bank “www.pdb.org (accessed on 3 August 2022)”
using the following IDs: 7D9O, 6ESJ, 5M8Q, 4GQQ, and 3WY2 [86–90], respectively. All
the docking studies were conducted using MOE 2019 [91], which was also used to generate
the 2D interaction diagrams between the docked ligands and their potential targets. The
ten identified major compounds were prepared using the default parameters and saved in
a single MDB file. The active site of each target was determined from the binding of the
corresponding co-crystalized ligand. Finally, the docking was finalized through docking
the MDB file containing the ten major compounds into the active site of the five enzymes.

4. Conclusions

Chemical investigation of Pisidium guava have proven that this plant species contains
a variety of volatile components present in the n-hexane extract and the essential oil, as
well as their antioxidant and enzyme inhibitory activities supported with an in-silico
study. The GC/MS analysis revealed that the n-hexane extract is a rich source of squalene
(9.76%), α-tocopherol (8.53%), and γ-sitosterol (3.90%) that correlates with its antioxidant
potential in the CUPRAC, FRAP, and MCA assays. On the other hand, the essential oil
was enriched with monoterpenes and sesquiterpenes, especially D-limonene (36.68%) and
viridiflorol (9.68%), which correlates with its antioxidant potential in different assays along
with its potency as a BChE and a tyrosinase inhibitor. Furthermore, the n-hexane extract
and the essential oil showed relevant α-amylase and α-glucosidase inhibitory activities.
Furthermore, the major compounds achieved promising docking scores in the active sites
of the tested target enzymes. According to these findings and the previous studies, the
n-hexane extract and essential oil of P. guajava can be considered a promising candidate for
the development of novel therapeutic agents for the management of Alzheimer’s, diabetes
mellitus, and oxidative stress disorders. Moreover, their efficacy as tyrosinase inhibitors
allows them to be incorporated in the development of hypopigmenting agents. However,
further investigations should be conducted concerning the pharmacodynamics as well as
the pharmacokinetics pathways accompanied with the in vivo studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27248979/s1.
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