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Abstract: Two compounds 1 and 2 were isolated from the culture broth of Lepista luscina. This is
the first time that compound 1 was isolated from a natural source. The structure of compound
1 was identified via 1D and 2D NMR and HRESIMS data. Compounds 1 and 2 along with 8-
nitrotryptanthrin (4) were evaluated for their biological activities using the A549 lung cancer cell line.
As a result, 1 and 2 inhibited the expression of Axl and immune checkpoint molecules. In addition,
compounds 1, 2 and 4 were tested for HIF inhibitory activity. Compound 2 demonstrated statistically
significant HIF inhibitory effects on NIH3T3 cells and 1 and 2 against ARPE19 cells.

Keywords: Lepista luscina; Axl; immune checkpoint molecules; hypoxia-inducible factor; tryptanthrin

1. Introduction

Natural products are an important source for valuable compounds with unique action
mechanisms because of their immense structural diversity and wide variety of biological
activities. There are approximately 1.5 million species of fungi as complex and diverse as
plants and animals on the earth, of which only about 10% have been named and described.
Fungi that form fruiting bodies have been attracting attention, because they produce
secondary metabolites with various pharmaceutical and biological activities.

Lung cancer is the leading cause of cancer morbidity and mortality worldwide. There-
fore, molecular target drug discovery and drug development for lung cancer are actively
carried out worldwide. Axl, a receptor-type tyrosine kinase, has been designated as a
leading candidate for targeted cancer therapy [1]. Programmed cell death ligands 1 (PD-L1)
and 2 (PD-L2) have been clinically reported as promising targets in cancer treatment [1,2].
Similarly, blocking of immune checkpoint molecules has caused clinical responses in lung
cancer patients in a recent clinical study [1]. There is ongoing research to explore the
possibility of cancer therapeutics that target these signaling pathways (Axl and immune
checkpoint molecules).

On the other hand, vascular diseases of the retina, including diabetic retinopathy and
age-related macular degeneration, are the leading cause of vision loss worldwide [3]. It
is well known that overexpression of vascular endothelial growth factor (VEGF) plays a
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central role in the pathogenesis of these diseases. To date, anti-VEGF therapy has been
widely used to treat pathologic neovascularization of the retina [4]. Hypoxia-inducible
factor (HIF) serves as a strong transcription regulator of VEGF induction under hypoxic
and other stress conditions [5]. HIF inhibitors, from anti-cancer drugs to natural products,
suppressed retinal neovascularization and ectopic VEGF expression in murine models [6–9].
Therefore, isolation of cancer and vascular disease therapeutics from natural products may
also contribute to drug discovery.

The genus of one fruiting-body-forming fungus, Lepista sp. (Tricholomataceae), is
widespread, with many edible species such as L. sordida and L. nuda. Approximately
60 species have been described in this genus, which is widely distributed in Asia, North
America and Europe [10]. Lepista sp. is also known to form fairy rings, which are common
in grasslands. “Fairy rings” are zones in which grass growth is stimulated and/or sup-
pressed by the interaction of fungi and plants worldwide [11]. In the previous studies, we
found a plant growth promoter, 2-azahypoxanthine (AHX) and a plant growth inhibitor,
imidazole-4-carboxamide (ICA), from the culture broth of L. sordida mycelia as causative
substances of fairy rings by the fungus [12,13]. Subsequently, 2-aza-8-oxohypoxanthine
(AOH) was discovered from AHX-treated rice as a metabolite of AHX [14], and the three
compounds were named “fairy chemicals” (FCs) after the article in Nature in 2014 that
covered our chemical research [15]. Lee et al. demonstrated that AHX has an inhibitory
effect on HIF activation in retinal cells [7]. AOH is effective as a cosmetic skin barrier
against water loss [16,17]. ICA suppressed the expression of Axl and immune checkpoint
molecules (PD-L1/PD-L2) [18]. L. nuda is reported to exhibit many biological activities
such as antioxidant, antimicrobial and cytotoxic activity [19,20]. The extracts of L. inversa
demonstrated cytotoxicity against various cancer cell lines [21] and clitocine was identified
as the active compound from L. inversa [22]. On the other hand, no research has been
performed on bioactive substances from our target in this study, L. luscina.

As mentioned above, we have recently been focusing on the search for Axl and PD-
L1/PD-L2 inhibitors and the inhibitors of HIF activation from natural products, especially
mushroom-forming fungi. Therefore, we attempted to isolate biologically active metabolites
from liquid cultures of the unexplored fungus L. luscina and evaluate their bioactivities.
In this study, we report the isolation of two compounds (Figure 1) and their inhibitory
activities against Axl, immune checkpoint molecules and HIF luciferase.
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Figure 1. Structures of compounds 1 and 2.

2. Results and Discussion
2.1. Identification of Compounds

Compound 1 was isolated as an yellow powder with the molecular formula C16H10N2O3
based on the molecular ion peak at m/z 279.0787 [M + H]+ (calcd. for C16H11N2O3, 279.0764)
in HRESIMS. The 1H- and 13C-NMR data { H-1 δH 8.43 (1H, dd, 8.0, 1.7), C-1 δC 127.4; H-2
δH 7.67 (1H, ddd, 8.0, 8.2, 1.1), C-2 δC 130.2; H-3 δH 7.84 (1H, ddd, 8.2, 8.1, 1.7), C-3 δC
134.9; H-4 δH 8.02 (1H, br d, 8.0), C-4 δC 130.7} in combination with the COSY correlations
(H-1/H-2, H-2/H-3, H-3/H-4) and HMBC correlations (H-1/C-3, C-4a, C-12; H-2/C-3,
C-4, C-12a; H-3/C-1, C-4, C-4a; H-4/C-2) together with an amido carbon (C-12) at δC
157.8 and an imino carbon (C-5a) at δC 144.8 revealed the presence of a quinazolinone
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moiety (Figure 2 and Figures S2–S6 and Table 1). The 1H- and 13C-NMR data {H-9 δH 7.31
(1H, d, 9.2, 2.5), C-9 δC 125.1; H-7 δH 7.38 (1H, d, 2.2), C-7 δC 108.4; H-10 δH 8.52 (1H, d,
9.2), C-10 δC 119.2} along with a carbonyl group (C-6) at δC 182.7 indicated the existence
of a 1,2,4-trisubstituted benzoyl moiety. The moiety confirmed COSY (H-9/H-10) and
HMBC correlations (H-7/C-6, C-8, C-9, C-10a; H-9/C-7, C-10a; H-10/C-6a, C-8, C-10a).
The presence of a methoxy group at C-8 was suggested by 1H-NMR (δH 3.90, s, 3H) and
HMBC correlation (-OCH3/C-8). Although no HMBC correlations were observed between
the two moieties, the position of the linkage of them was determined via the chemical
shift of C-10a (δC 140.5). As a result, this compound was identified as 8-hydroxyindolo
[2,1-b]quinazoline-6,12-dione (1). This compound has already been synthesized; however,
this was the first reported isolation of 1 from a natural source [23].
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Table 1. Data for 1 with regard to 1H and 13C NMR in CDCl3.

Position δH (J in Hz) δc

1 8.43 (dd, 8.0, 1.7) 127.4
2 7.67 (ddd, 8.0, 8.2, 1.1) 130.2
3 7.84 (ddd, 8.2, 8.1, 1.7) 134.9
4 8.02 (br d, 8.1) 130.7
4a - 146.6
5a - 144.8
6 - 182.7
6a - 123.0
7 7.38 (d, 2.2) 108.4
8 - 158.8
9 7.31 (dd, 9.2, 2.9) 125.1
10 8.52 (d, 9.2) 119.2

10a - 140.5
12 - 157.8

12a - 123.9
-OCH3 3.90 (s) 56.0

Compound 2 was identified to be indolo [2,1-b]quinazoline-6,12-dione, tryptanthrin,
via interpretation of MS, NMR data and X-ray crystallography analysis (Table 2 and
Figure S7). Compound 2 is a well-known alkaloid with an indolequinazolinone structure,
and mainly exists in blue plants such as Strobilanthes cusia and indigo; however, this is the
first isolation of 2 from a mushroom-forming fungus [24–27]. In addition, the alkaloid 2
has been isolated from the yeast Candida lipolytica, which proliferated when grown in L-
tryptophan-containing medium [28]. Some studies revealed that 2 and its derivatives have
a wide range of biological activities, such as anti-inflammatory activity [29], insecticidal
activity [30], anti-allergy activity [31], a protective effect on colitis [32] and anti-bacterial
activities [33]. Very recently, antiviral properties of 2 against HCoV-NL63 infection were
reported [34]. Compound 2 is also an active ingredient of traditional Japanese herbal
remedies for fungal infections [24]. Recently, there has been a lot of research on the anti-
cancer effects of 2 [35–41]. The compound induces apoptosis of tumor cells [39,40] and
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inhibits the drug-resistance-related gene in breast and colon cancer cells [36,37]. It also
reduces the activity of cyclooxygenase-2 [41].

Table 2. Comparison of 13C NMR data for compound 2 with those reported in CDCl3.

Position
Compound 2 Thyptanthrin [33]

δc δc

1 127.5 127.6
2 130.2 130.3
3 135.1 135.2
4 130.7 130.8
4a 146.6 146.7
5a 144.3 144.4
6 182.5 182.5
6a 121.9 122.0
7 125.4 125.4
8 127.2 127.2
9 138.3 138.3
10 118.0 118.0

10a 146.3 146.4
12 158.1 158.1

12a 123.7 123.8

2.2. Metabolic Pathway of Tryptanthrin (2) and Its Analogues (1 and 3)

High-performance liquid chromatography (HPLC) analysis with photodiode array
(PDA) suggested the presence of the demethyl analogue of 1, 8-methoxyindolo [2,1-
b]quinazoline-6,12-dione (3), in the hexane soluble part of culture broth of L. luscina, al-
though the compound could not be isolated due to the small amount of it (Figure S1).
Recently, tandem mass spectrometry has been widely used for identification of various
compounds due to its inherent accuracy and excellent sensitivity. Therefore, we attempted
to identify the structure using LC-MS/MS as previously reported [42]. The MS spectrum
of protonated tryptanthrin (2) (m/z 249) is shown in Figure 3. The MS/MS spectrum of
protonated 2 shows fragment ions at m/z 130. Fragmentation on the quinazoline moiety
produces ions at m/z 130 from the cleavage of the indole moiety [42]. The MS/MS spectra of
protonated 1 and 3 show product ions at m/z 160 and 146, respectively. The ions at m/z 160
and 146 were found to be characteristic ions for the presence of a methoxy and a hydroxyl
group at the phenyl groups of the indole moieties, respectively. All the data allowed us to
conclude that compound 3 is 8-hydroxytryptanthirin.

Although there are numerous studies for the biological activities of tryptanthrin (2)
and its derivatives, any biological activities of 1 remain unknown to date. Considering
the oxidation process of aromatic rings, compound 1 should be biosynthesized from 2
via 8-hydroxytryptanthirin (3). Compound 3 was found as a metabolite of tryptanthrin
(2) in rat and it was proposed that 3 might be formed from 2 by cytochrome P450 in rat
liver microsomes [42]. However, this was the first reported detection of this compound
from a source other than animals. In order to confirm the biosynthetic pathway of 1 from
2, a CYP-inhibitor, 1-aminobenzotriazole, was added to the culture broth of L. luscina.
As a result, the production of compounds 1 and 3 was inhibited and compound 2 was
accumulated in the presence of the inhibitor (Figure 4). The result suggests that the CYP
enzyme(s) is involved in the biosynthetic pathway.
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2.3. Biological Activities

The compound 8-Nitroindolo [2,1-b]quinazoline-6,12-dione, 8-nitrotryptanthrin (4),
has potent human indoleamine 2, 3-dioxygenase 2 (hIDO2) inhibitory activity [43], anti-
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tubercular activity [44] and antitrypanosomal activity [45]. In this study, we assessed the
effects of compounds 1 and 2 along with their analogue (4) on the human A549 cell line.
The cells were treated with each compound (1, 2 and 4). Compounds 1 and 4 demonstrated
cytotoxicity on the cells (data not shown). As shown in Figure 5, compound 2 inhibited
expressions of all the genes (Axl, PD-L1 and PD-L2). Compounds 1 and 4 significantly sup-
pressed the expression of Axl. Axl plays an important role in the epithelial–mesenchymal
transition, which is an important step for the initiation of metastasis and development
of resistance to drugs and chemotherapy [37]. The expression mechanisms between Axl
and immune checkpoint molecules (PD-L1 and PD-L2) would be different from each
other. However, a recent study found the correlation between Axl and immune checkpoint
molecules in lung adenocarcinomas; Axl positively contributes to the expression of im-
mune checkpoint molecules in the regulation of immune microenvironment and tumor
proliferation [37]. Therefore, if the expression of these molecules was downregulated by a
compound, the compound might become a promising candidate as an anticancer agent. The
results in this study indicate that the tryptanthrin moiety without functional groups at C-8
played an important role in the suppression of PD-L1 and PD-L2 and tryptanthrin (2) was
the most promising candidate for cancer therapy (Figure 5). There are only a few studies
showing the presence of Axl and immune checkpoint molecules inhibitors in natural prod-
ucts. Recently, our group reported the isolation of compounds that decrease the expression
of Axl and immune checkpoint molecules from the mushrooms Leucopaxillus giganteus,
Pleurocybella porrigens and Agaricus blazei [46–48]. Our findings indicate that mushrooms
are a potential source of natural Axl and PD-L1/PD-L2 inhibitors.
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negative control. Statistical analysis was performed using Fisher’s test (*: p < 0.05, **: p < 0.01 vs. NC,
n = 4).

Compounds 1, 2 and 4 were evaluated for HIF inhibitory activity via HIF luciferase
assay (Figure 6). CoCl2 was used to induce HIF activation, and halofuginone and doxoru-
bicin were used as positive controls for HIF inhibition. The NIH3T3 cell line was used
because it is a widely used cell line for general understanding of the role of HIF and it is
easy to develop a HIF-luciferase reporter stable cell line [49]. Compound 2 demonstrated
significant inhibitory activity on HIF activation induced by CoCl2 in the cells. We also
tested in vitro cell models for ophthalmic drug development such as the ARPE-19 cell line
(human retinal pigmented epithelium cells) and 661W cell line (mouse immortalized cone
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photoreceptor cells with some features of retinal ganglion precursor-like cells) [50–52]. In
ARPE-19 cells, compounds 1 and 2 demonstrated statistically significant HIF inhibitory
effects. These results indicate that compound 2 (tryptanthrin) has the strongest inhibitory
effect on HIF-activation among the three compounds.
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CoCl2 treatment, n = 3). Doxorubicin (DXR) and halofuginone (HF) were used for HIF inhibitory
positive controls.

In previous reports, 1 demonstrated higher anti-tobacco mosaic virus activity than that
of 2 [23]. Furthermore, compounds 2 and 4 exhibited EC50 of 23.0 and 0.82 µM towards anti-
trypanosomal activity, respectively [45]. Thus, tryptanthrin derivatives (1 and 4) displayed
stronger biological activities than that of 2. These derivatives possess a functional group
(methoxy or nitro) at C-8 in the tryptanthrin moiety that seems to be important for their
activities [23,45]. In contrast, in this study, tryptanthrin (2) demonstrated stronger activities
in both the bioassays than 1 and 4, which have an additional methoxy group and nitro
group compared to 2, respectively. These results indicate that both the electron-donating
group and the electron-withdrawing one in 1 and 4 attached to 2 negatively affect the
immune checkpoint- and HIF-inhibitory activities.

3. Materials and Methods
3.1. General Experimental Procedures

One- and two-dimensional 1H NMR spectra were recorded on a JNM-ECZ500R spec-
trometer at 500 MHz, and 13C NMR spectra were recorded on the same instrument at
125 MHz (JEOL, Tokyo, Japan). HRESIMS spectra were measured on a JMS-T100LP mass
spectrometer (JEOL, Tokyo, Japan). HPLC separations were performed with a Jasco Chro-
matography Data Station ChromNAV system using reverse-phase HPLC columns (ODS-P,
InertSustain, Tokyo, Japan). Silica gel plates (Merck F254), ODS gel plates (Merck F254)
and silica gel 60 N (Kanto Chemical, Tokyo, Japan) were used for analytical TLC and flash
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column chromatography. All solvents used throughout the experiments were obtained
from Kanto Chemical Co. (Tokyo, Japan).

3.2. Fungal Material

The mycelia of L. luscina (NBRC 31053) were pre-cultured on potato dextrose agar
(PDA) to obtain the actively growing cultures, and the inoculated mycelia were incubated
at 25 ◦C for a month. After growth, 10 pieces (6 mm diameter) cut from the four-week-
cultured mycelia were inoculated into 500 mL Erlenmeyer flasks containing 300 mL of
YG (0.3% yeast extract and 1% D-glucose) medium, and the cultures were incubated for
3 weeks (25 ◦C, 120 rpm). The cultivation was performed twice.

3.3. Extraction and Isolation

First culture broth (1.8 L) was filtered and evaporated under reduced pressure. The
concentrate was divided into n-hexane, ethyl acetate (EtOAc) and water-soluble parts.
The n-hexane-soluble part (5.0 mg) was separated via reverse-phase HPLC (OSP-P, 50%
MeCN) to give compounds 1 (1.1 mg) and 2 (2.6 mg). Second culture broth (2.4 L) was
also extracted using the same liquid–liquid extraction method, and the hexane soluble part
(19.5 mg) was subjected to reverse-phase HPLC (OSP-P, 50% MeCN) to afford compounds
1 (2.2 mg) and 2 (5.0 mg).

3.4. X-ray Crystallography Analysis

Compound 2 was crystallized in hexane/CHCl3/MeOH. A single crystal was mounted
on a MiTeGen loop with Paraton-N (Hampton Research, Aliso Viejo, CA, USA), and was
flash frozen to 173 K in a liquid nitrogen cooled stream of nitrogen. Data collection was
carried out on a Rigaku VariMax diffractometer using a multi-layer mirror monochromated
Mo microfocus sealed X-ray source (1.2 kW) and a CCD detector. Data collection and
reduction were performed using the CrysAlis PRO software package. The structure was
solved via direct method and ShelXT, and refined using the SHELX97 tool [53,54]. All of
the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were placed in
calculated positions and allowed to ride on the carrier atoms. Crystallographic data were
deposited at the Cambridge Crystallographic Data Centre and allocated the deposition
number CCDC 2216457. The data can be obtained free of charge via www.ccdc.cam.ac.
uk/produts/csd/request (accessed on 31 October 2022). The size of the crystal used for
measurement was 0.34 mm × 0.15 mm × 0.10 mm. Crystal data and the detailed structure
determination of 2 are summarized in Table S1. The structure analyzed was essentially the
same with the paper previously reported [55].

3.5. Feeding Studies Using CYP-Inhibitor 1-Aminobenzotriazole

Two fungal pieces (6.0 mm diameter) were inoculated into each of two 100 mL Erlenmeyer
flasks containing 30 mL of YG medium. Thirty microliters of 3 mM 1-aminobenzotriazole
filtered through a membrane filter was added into the cultures, and the mycelia were
incubated for 5 weeks (25 ◦C, 120 rpm). The amount of compound 1 in the culture broth
was analyzed via LC-MS/MS.

3.6. LC-MS Spectrometry

LC-MS/MS analyses were performed with an UPLC system (Nihon Waters, Tokyo,
Japan) coupled with a tandem Xevo TQ-S micro mass spectrometer (Nihon Waters, Tokyo,
Japan). The UPLC mobile phases consisted of 0.1% formic acid in DW (A) and 0.1%
formic acid in acetonitrile (B) (60% solvent B; flow rate, 0.2 mL/min; column oven, 40 ◦C,
injection volume, 2 µL). The column used for the separation was an Inertsil ODS-4, 3 µm
(φ 2.1 × 100 mm, GL Science). For 1 detection, MS analysis was performed in the positive
mode with the following source parameters: cone voltage, 76 V; collision energy, 28 V (m/z
279 > 236). For 2 detection, MS analysis was performed in the positive mode with the
following source parameters: cone voltage, 32 V; collision energy, 28 V (m/z 249 > 130). For
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3 detection, MS analysis was performed in the positive mode with the following source
parameters: cone voltage, 76 V; collision energy, 28 V (m/z 265 > 146). The following source
parameters were common to all the compounds: capillary voltage, 3.0 kV; desolvation
temperature, 500 ◦C; desolvation gas flow, 1000 L/h; cone gas flow, 50 L/h.

3.7. Axl and Immune Checkpoint Molecules Assay

The human A549 alveolar epithelial cell line was purchased from the American Type
Culture Collection (Rockville, MD, USA) and cultured in DMEM, supplemented with
10% heat-inactivated fetal bovine serum, 2 mM L-glutamine and 100 U mL penicillin plus
100 U mL streptomycin. All cells were cultured at 37 ◦C in 75 cm2 flasks in an atmosphere
composed of 5% CO2 and 95% air. Confluent cells were passaged after 5–7 days.

A549 cells in 0.1% BSA-DMEM were seeded in 24-well plates. Test compound
(20 µg/mL) was added to the wells, and the plates were incubated for 24 h. Total RNA was
extracted using Sepasol®-RNA I Super G (Nacalai, Kyoto, Japan) following the instructions
of the manufacturer. One µg of total RNA was denatured at 65 ◦C for 10 min, and then
reverse-transcribed using ReverTra Ace Reverse Transcriptase (TOYOBO, Osaka, Japan)
and oligo (dT) primer in a volume of 20 µL according to the manufacturer’s protocol.

Each gene contains forward and reverse sequences (5′ > 3′) as GGAGCGAGATCC-
CTCCAAAAT and GGCTGTTGTCATACTTCTCATGG for the GADPH gene, TGCCATTGA-
GAGTCTAGCTGAC and TTAGCTCCCAGCACCGCGAC for the Axl gene, GGACAAGCAGT-
GACCATCAAG and CCCAGAATTACCAAGTGAGTCCT for the PD-L1 gene, and AC-
CGTGAAAGAGCCACTTTG and GCGACCCCATAGATGATTATGC for the PD-L2 gene,
respectively. The cDNA was amplified using PCR and the conditions were as follows: 94 ◦C,
1 min; 60 ◦C, 1 min; and 72 ◦C, 1 min for 28–35 cycles. PCR products were electrophoresed
on a 1.5% agarose gel and then stained with ethidium bromide solution. Semi-quantitative
RT-PCR results were quantified by using ImageJ software.

Data are expressed as the mean ± standard error of the mean (SEM). The statistical
difference was calculated via analysis of variance with post hoc analysis using Fisher’s
predicted least significant difference test. All statistics were performed using the StatView
5.0 package (Abacus Concepts, Berkeley, CA, USA).

3.8. HIF Luciferase Assay

Murine cell lines of fibroblast NIH3T3 and cone photoreceptor 661W were cultured in
DMEM (Cat #08456-36, Nacalai Tesque, Kyoto, Japan) media supplemented with 10% FBS
and 1% streptomycin-penicillin at 37 ◦C under an atmosphere containing 5% CO2. A hu-
man cell line of retinal epithelial ARPE-19 was cultured in DMEM/F-12 (Cat #C11330500BT,
Gibco, NY, USA) media with the same supplements as above. These cell lines were
continuously maintained for in vitro experiments. A luciferase assay was performed as
previously described [56]. Briefly, NIH3T3, 661W and ARPE-19 cell lines were trans-
fected with a HIF-luciferase reporter gene construct (Cignal Lenti HIF Reporter, Qiagen,
Venlo, The Netherlands). The HIF-luciferase construct encodes a firefly luciferase gene
under the control of the HRE, which binds HIF. The cell lines were also co-transfected
with a cytomegalovirus-renilla luciferase construct as an internal control and seeded at
1.0 × 104 cells/well/70 µL (NIH3T3 and ARPE-19) or 0.8× 104 cells/well/70 µL (661W) in
a white sterile HTS Transwell-96 receiver plate (Corning, Corning, NY, USA). At 24 h of cell
stabilization, the cells were treated with CoCl2 (200 µM, cobalt (II) chloride hexahydrate,
Wako, Saitama, Japan) to activate HIF. To evaluate the inhibitory effects of test compounds
(1 mg/mL) against HIF activation, the cells were co-treated with each compound and CoCl2.
After incubation for 24 h at 37 ◦C in a 5% CO2 incubator, luminescence was measured using
a Dual-Luciferase Reporter Assay System (Promega, Madison, WI, USA). For the expected
HIF inhibitory positive controls, 0.2 µM of halofuginone (Cayman Chemical, Ann Arbor,
MI, USA) and 1 µM of doxorubicin (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan)
were used.
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4. Conclusions

We isolated compounds 1 and 2 from the culture broth of Lepista luscina and de-
tected 3 in the broth via LC-MS, and clarified that 1 is biosynthesized from 2 via 8-
hydroxytryptanthirin (3) and the CYP enzyme(s) is involved in the biosynthetic path-
way. Compound 2 inhibited the expression of Axl and immune checkpoint molecules. In
addition, 2 demonstrated HIF inhibitory activity against NIH3T3 cells. Based on these
findings, tryptanthrin (2), a potent inhibitor, can be used as a lead compound for the further
development of therapeutic agents.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27248925/s1, Figure S1: HPLC profile of metabolites of
L. luscina; Figure S2: 1H NMR spectrum of 1; Figure S3: 13C NMR spectrum of 1; Figure S4: COSY
spectrum of 1; Figure S5: HMBC spectrum of 1; Figure S6: HMQC spectrum of 1; Figure S7: ORTEP
drawings of 2; Table S1: Crystallographic table of 2.
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