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Abstract: Background: Curcumin is a natural product obtained from the rhizome of Curcuma longa.
Rosemary (Rosmarinus officinalis) is a medicinal and aromatic plant that is widely spread in the
Mediterranean region. Both Curcumin and rosemary essential oil are natural products of high
medicinal and pharmacological significance. The hepatoprotective effect of both natural products is
well-established; however, the mechanism of such action is not fully understood. Thus, this study is an
attempt to explore the hepatoprotective mechanism of action of these remedies through their effect on
MEK and ERK proteins. Furthermore, the effect of rosemary essential oil on the plasma concentration
of curcumin has been scrutinized. Materials and methods: The major constituents of REO were
qualitatively and quantitatively determined by GC/MS and GC/FID, respectively. Curcumin and
rosemary essential oil were given to mice in a pre-treatment model, followed by induction of liver
injury through a high dose of paracetamol. Serum liver enzymes, lipid peroxidation, antioxidant
activities, the inflammatory and apoptotic biomarkers, as well as the MEK and ERK portions, were
verified. The plasma levels of curcumin were determined in the presence and absence of rosemary
essential oil. Results: The major constituents of REO were 1,8-cineole (51.52%), camphor (10.52%),
and α-pinene (8.41%). The results revealed a superior hepatoprotective activity of the combination
when compared to each natural product alone, as demonstrated by the lowered liver enzymes, lipid
peroxidation, mitigated inflammatory and apoptotic biomarkers, and enhanced antioxidant activities.
Furthermore, the combination induced the overexpression of MEK and ERK proteins, providing
evidence for the involvement of this cascade in the hepatoprotective activity of such natural products.
The administration of rosemary essential oil with curcumin enhanced the curcuminoid plasma level.
Conclusion: The co-administration of both curcumin and rosemary essential oil together enhanced
both their hepatoprotective activity and the level of curcumin in plasma, indicating a synergistic
activity between both natural products.

Keywords: α-pinene; camphor; 1,8-cineole; Curcuma longa; hepatotoxicity; paracetamol; Rosmarinus
officinalis

1. Introduction

Curcumin (Cur) is a hydrophobic polyphenol derived from the rhizome of turmeric
(Curcuma longa L., Zingiberaceae). Cur retains a comprehensive range of biological, medici-
nal, and pharmacological activities and has been used for many diseases and syndromes [1].
Cur has demonstrated to have antioxidant [2], antimicrobial [3], anti-malarial [4], and
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anticancer [5] activities. Furthermore, the anti-thrombotic [6], anti-hyperlipidemic [7], hy-
poglycemic [8], anti-inflammatory agent [1], anti-rheumatic [9], and myocardial infarction
protective [10] effects of Cur were also well documented. Cur is well-recognized for its
hepatoprotective activity, which was emphasized using different in vivo hepatic injury and
hepatic carcinoma models such as alcohol-induced hepatic fibrosis [11], aflatoxin-induced
liver injury [12], heavy metals-induced liver damage [13], and paracetamol (Para) induced
liver toxicity [14]. Although the hepatoprotective activity of Cur is well investigated, the
mechanism of action of this protective activity is still unclear and needs further inspections.
However, with all these pharmacological actions, the main difficulty of translating these
beneficial effects of Cur to human medicinal purposes is its low bioavailability [15]. Diverse
formulations were applied to escalate Cur solubility, thereby improving its bioavailability
as well as its pharmacokinetic profile [16]. Microemulsions [17,18], nanotechnological
procedures such as nano-emulsions [19,20], and liposomes [21] are a few such examples
of ways to increase Cur bioavailability. Natural Cur is commercially available as a mix-
ture of three curcuminoids: Cur (nearly 75%), demethoxycurcumin (nearly 15%), and
bisdemethoxycurcumin (nearly 5%) [22]. The antioxidant potency of those curcuminoids
is arranged from Cur as the best, to bisdemethoxycurcumin as the lowest, as the number
of methoxy groups decreases [23]. Similarly, the antiulcer potency and anti-inflammatory
activity of the curcuminoids follow the same pattern of the antioxidant activity [24,25].
However, the curcuminoids’ activity pattern is totally reversed if the anticancer activity is
the purpose, with bisdemethoxycurcumin as the most potent anticancer agent [26].

Rosemary (Rosmarinus officinalis L., Lamiaceae) is a medicinal and aromatic plant
widely spread in the Mediterranean region, but is now cultivated all over the world. Tra-
ditionally, it has been used as a stimulant and mild analgesic and has been prescribed
for headaches, poor blood circulation, inflammatory diseases, and physical and mental
fatigue [27]. The pharmacological effects of R. officinalis are mainly due to its distinguished
antioxidant activity. These potent antioxidant properties can be attributed to its major
diterpenes, carnosol and carnosic acid, as well as to the essential oil components [28].
Rosemary essential oil (REO) is a colorless or pale yellow liquid with the characteristic
odour of the plant. The essential oil of R. officinalis retains numerous health benefits and
therapeutic effects. The oil relieved dyspepsia and mild spasms of the gastrointestinal
tract (GIT), as well as relieving minor peripheral circulatory disorders [29]. Furthermore,
several pharmacological activities can be attributed to the oil components such as antide-
pressant [30], anti-inflammatory [31], and anticancer effects [32]. The hepatoprotective
effects of R. officinalis are well documented and have been observed in different experi-
mental models of liver injury. The rosemary methanol extract has been effective against
carbon tetrachloride-induced acute liver damage [33], whereas the rosemary water extract
prevented azathioprine-induced acute liver injury in rats [34]. Furthermore, the hepatopro-
tective of REO is mentioned in a few reports. For example, Raskovic et al. [35] demonstrated
the ability of REO to prevent carbon tetrachloride-induced hepatotoxicity by limiting the
rate of lipid peroxidation [35]. Additionally, Pinho et al. [36] investigated the oil effect on
acetaminophen-induced liver injury [36]; however, for all these studies, the mechanism by
which the oil exerts these effects was not clear and needs more investigation.

The Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-
signal-regulated kinase (ERK) cascade is one of the most important pathways. This path-
way links signals from cell surface mitogen to transcription factors, which regulate gene
expression and cell cycle, division, and survival. MEK can originate from two gene iso-
forms: MEK1 and MEK2 [37]. MEK1-deficient mice exhibit a lupus-like syndrome [38],
and its deletion leads to embryonic lethality, whereas the interruption of MEK2 has no
consequences [37]. The activation of the MEK1 isoform plays a critical role in the ERK1/2 ac-
tivation [39], stimulates epidermal proliferation, and regulates the fibroblast migration [40].
The triggering of MEK1 increases the proliferative potential of thyroid epithelial cells [41].
The extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) are members of the



Molecules 2022, 27, 8910 3 of 18

mitogen-activated protein kinase family, which can encourage cell survival through post-
translational modification and inactivation of the cell death machinery component [42].

To the knowledge of the authors, mechanisms of the hepatoprotective effect of Cur and
REO have not been thoroughly studied. In the present study, the effect of the REO and Cur
combination on Para-induced liver-injured mice was scrutinized. The effect of these natural
products on the expression of the MEK/ERK cascade was explored to interpret the liver
protective effects. Finally, the effect of REO on the plasma level of Cur was investigated.

2. Results
2.1. Analysis of Volatile Components in REO

Any essential oil is composed of a mixture of different oxygenated and non-oxygenated
hydrocarbons, from which some components dominate. Volatile components from R. offici-
nalis leaves were separated and identified using GC and GC/MS, and their relative abundance
is listed according to their retention indices in Table 1, Figure 1. The extraction yield of REO
was 1.8% v/fresh weight, in which thirteen components (with average composition of >1%)
were identified, representing 94.06% of total oil components, with monoterpene hydrocar-
bons as the major constituents of the oil (90.04%). Importantly, 1,8-cineole (51.52%) constitutes
the major component of REO and together with camphor (10.52%) and α-pinene (8.41%),
they represent the most abundant monoterpenes (Table 1). Oxygenated monoterpenes have
relatively higher concentrations than non-oxygenated monoterpenes hydrocarbons, repre-
senting 69.75% of the total oil components. Sesquiterpenes are shown in relatively low levels
in the oil by the presence of β-caryophyllene (4.57%). Most non-identified components are
present as traces with less than 0.01% relative abundances. These results are in accordance
with other reports published on the composition of rosemary oil elsewhere [43], especially
with supercritical fluid extracted rosemary oil from Egypt [44].

Table 1. Major volatile constituents of rosemary essential oil (REO). All the mentioned volatile
constituents have percentages of more than 1%. The quantitative values are expressed as mean ± SEM
of six independent leaf samples (n = 6). Rt: retention time, RI: retention index.

Compound Name Rt RI Area Percentage

α-pinene 7.081 915 8.41 ± 0.182
β-pinene 8.670 979 3.24 ± 0.156
β-myrcene 9.159 985 1.45 ± 0.057
p-cymene 10.266 1017 2.87 ± 0.128

β-phellandrene 10.401 1021 1.58 ± 0.092
1,8-cineole 10.59 1026 51.52 ± 1.473

Linalool 13.159 1101 1.34 ± 0.054
Camphor 14.526 1138 10.52 ± 0.321
Borneol 14.743 1155 3.12 ± 0.124

p-cymen-8-ol 16.101 1176 2.74 ± 0.187
Verbenone 16.178 1188 1.96 ± 0.095

Bornyl acetate 18.613 1270 1.29 ± 0.065
β-caryophyllene 23.789 1415 4.57 ± 0.153

Monoterpene 90.04
Sesquiterpene 4.75

Oxygenated monoterpenes 69.75
Total percentage 94.61

2.2. The Protective Effects of Cur and REO on Para-Induced Liver Injury

In order to confirm the induction of liver injury-induced Para, serum ALT, AST, ALP,
and LDH activities were assessed. Para significantly elevated the levels of serum ALT, AST,
ALP, and LDH by 7.6-, 3.1-, 2.5-, and 4.9-folds (p < 0.05), respectively, in comparison to the
normal group (Figure 2), signifying the damage of hepatocytes and the successful induction
of liver injury. The pre-treatment of animals with Cur or REO significantly attenuated
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ALT, AST, ALP, and LDH levels (p < 0.05) compared to the Para untreated group (Figure 2).
There is no significant difference between the effect of both Cur and REO on the serum of
ALT and LDH, whereas Cur alone causes a significant reduction in ALP and AST compared
to REO alone (Figure 2). However, the combination of both natural drugs causes a further
reduction of serum levels of ALT, AST, ALP, and LDH when related to Cur, REO, and Para
groups (Figure 2).
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2.3. Protective Effect of Cur and REO on Para-Induced Histopathological Changes

Figure 3 demonstrates that mice hepatic tissue stained with H&E showed regular
architectures of hepatic parenchyma in the control group. The Para group showed massive
necrosis (yellow arrows) with a few zones of surviving hepatocytes around the central
vein (black arrow), mild hydropic degeneration (blue arrows), central vein, and hepatic
sinusoid congestion and hemorrhage. The Cur and REO groups exhibited less necrosis with
better-surviving hepatocytes around the central vein, fewer hydropic degeneration around
the central vein, and hepatic sinusoid congestion and hemorrhage. The combination group
restored hepatic damage characterized by binucleated hepatocytes (head arrows) with
mild congestion.
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2.4. Protective Effect of Cur and REO on Para-Induced Oxidative Stress and Antioxidant
Enzymes Activity

Cur and REO’s antioxidant potential were confirmed by determining MDA, GSH,
SOD, and CAT levels in liver homogenates as biomarkers of oxidative stress and antioxidant
enzymes. Consumption of Para-induced a 2.48-fold increase in MDA level compared to the
Para alone group, suggesting the oxidative damage of cell membranes. This was accompa-
nied by a significant reduction of GSH concentration, reaching 8.40 ± 1.1 nmol GSH/mg
versus 14.52 ± 1.33 nmol GSH/mg, SOD reaching 20.82 ± 2.76 versus 64.74 ± 2.12 U/mg
protein, and CAT reaching 252.78 ± 30.19 versus 866.00 ± 27.44 U/g protein compared to
Para-induced hepatic injury group. Pre-treatment with Cur alone significantly reduced
MDA (p < 0.05) levels as well as elevated GSH SOD and CAT levels (Figure 4). Interestingly,
pretreatment with combined Cur and REO significantly (p < 0.001) reversed the oxidative
stress-related biochemical parameters in liver homogenates and normalized MDA and
GSH, as well as increased SOD and CAT significantly compared to each Cur or REO alone.

2.5. Protective Effect of Cur and REO on Para-Induced Inflammation

The anti-inflammatory potential of Cur and REO was confirmed through the mea-
surement of numerous inflammatory cytokines biomarkers, including IL-1β, IL-6, TNF-α
and NF-κB levels in liver homogenates. Para consumption intensified IL-1β, IL-6, TNF-α
and NF-κB levels by 3.9-, 3-, 3.3-, and 5.4-fold increase compared to the normal group,
suggesting severe hepatic inflammation status. Pre-treatment with Cur or REO significantly
reduced IL-1β, IL-6,TNF-α, and levels of NF-κB hepatic levels (Figure 5). Remarkably,
pretreatment with the combination of Cur and Reo treatment significantly reduced IL-1β,
IL-6, TNF-α and NF-κB hepatic levels more than each one alone, signifying a reversal of
the inflammation associated with Para liver toxicity.
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2.6. Protective Effect of Cur and REO on Para-Induced Apoptosis

The anti-apoptotic prospective of Cur and REO and their combination were studied
through the measurement of apoptotic markers including caspase-3, Bcl2, Bax and Bax/Bcl2
ratio in liver homogenates. Para-induced hepatic injury was associated with apoptosis
intensification as demonstrated by the intensified caspase-3, Bax as well as the ration of
Bax/Bcl2 ratio compared to the normal group, suggesting severe hepatic apoptosis state.
Pre-treatment with Cur or REO significantly reduced caspase-3, Bcl2, Bax and levels of
Bax/Bcl2 ratio hepatic levels (Figure 6). Pretreatment with the combination of Cur and REO
treatment significantly reduced caspase-3, Bcl2, Bax and levels of Bax/Bcl2 ratio hepatic
levels more than each one alone, signifying deterrence of the apoptosis intensification
accompanying the Para hepatic toxicity.
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combination group restored hepatic damage characterized by binucleated hepatocytes 
(head arrows) with mild congestion. 

designates statistically significant compared to the Cur and REO groups (p < 0.05) using
one-way ANOVA followed by Tukey’s post hoc test.

2.7. Effect of Cur and REO on MEK1 Expression

To investigate whether the MEK pathway is involved in the mechanism of hepatopro-
tective effect for both Cur and REO, the level of total MEK1 expression in liver homogenates
was inspected. Pretreatment with Cur or REO induced the over-expression of MEK1 by 3.27-
and 4.37-folds, respectively, in comparison to the control. On the other side, pretreatment
with the combination of Cur and REO resulted in a 6.53-fold increase in expression of MEK1
in comparison to the control group (Figure 7).
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2.8. Effect of Cur and REO on ERK1 Expression

To reveal the effect of the above observed over-expression of MEK1 by Cur and REO
on ERK1, the total ERK1 protein expression in the liver homogenate was determined.
The western blot analysis revealed that the administration of Cur and REO resulted in
2.06- and 1.94-folds increase in the total ERK1 protein level compared to the control group,
respectively (Figure 7). Interestingly, pretreatment with the combined Cur and REO resulted
in 5.85-folds increase in ERK1 expression in comparison to the control group (Figure 7).

2.9. High-Performance Liquid Chromatography (HPLC) Analysis of Cur in the Presence and
Absence of REO

Blood samples were taken from the different animal groups under investigation to
determine the effect of REO on the plasma concentrations of Cur. The results indicated low
concentrations of Cur in the plasma of animals administrated Cur alone, although the drug
has been given to the animals for 10 successive days. When both Cur and REO were given
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to the animals, the Cur plasma concentration increased by 14.6-fold more than Cur alone,
Figure 8.
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Figure 8. The HPLC analysis of curcumin (Cur) and rosemary essential oil (REO) in the plasma of
animals under investigation. Blood plasma was prepared and analyzed as described in the Section 4.
REO: plasma samples from animals administered REO only. Cur: plasma samples from animals
administered Cur only. Cur + REO: plasma samples from animals administered both Cur and REO.
ST: standard Cur injection. DCur: demethoxycurcumin, BDCur: bisdemethoxycurcumin [26].

3. Discussion

Many studies were carried out to emphasize the hepatoprotective activity of many
natural products; however, only a few studies were conducted for the rationale of disclosing
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the mechanism of action. REO and Cur are both distinguished for their hepatoprotective
activity on many models of liver injury, yet, the precise mechanisms of action of these
natural products are still unclear. The study hereby aims to reveal part of the mechanism of
action of Cur, REO, and their synergistic combination through investigating their effect on
the MEK/ERK signaling pathway.

Para consumption resulted in hepatocellular damage represented by high levels of
serum liver enzymes; ALT, AST, ALP, and LDH. The liver protection effect of Cur and
REO was clearly disclosed by the significant decline in serum liver enzymes ALT, AST,
ALP, and LDH levels. Cur hepatoprotection activity was documented against numerous
liver disorders, for instance, nonalcoholic fatty liver disease [45], aflatoxin B1-induced
liver injury [46], and CCl4-induced liver fibrosis [47], among other models. Furthermore,
the hepatoprotective potential of REO is verified against carbon tetrachloride [35] and
hexavalent chromium-induced [48] liver injury. Remarkably, the combination of Cur and
REO exhibited superior outcomes than each one alone, indicating a synergistic hepatopro-
tective effect.

Meanwhile, Para induced a dramatic increase in lipid peroxidation, reflected by the
elevated level of MDA, diminished GSH level, and SOD and CAT activities in the hepatic
homogenate. On the other hand, pretreatment with Cur and REO caused a significant
drop in the level of MDA concomitant with an increased level of GSH and SOD, and CAT
activities. These results are in accordance with the published data on the antioxidant effect
of Cur [13,14] and REO [36,44,49] elsewhere. The combination of Cur and REO displayed
better results than each one alone, indicating synergistic antioxidant activities and lipid
peroxidation mitigation against hepatocellular injury induced by Para.

In the current study, Para consumption intensified inflammatory cytokines biomark-
ers, including IL-1β, IL-6, TNF-α and NF-κB levels, and apoptosis indicators, including
caspase -3, Bax and Bax/Bcl2 suggesting severe hepatic inflammation and apoptosis, as
similarly mentioned in previous studies [50,51]. On the other hand, the anti-inflammatory
and anti-apoptotic potential of each of Cur and REO alone was confirmed through the
reduction in IL-1β, IL-6, TNF-α, NF-κB, caspase -3, Bax and Bax/Bcl2 ratio levels. The
anti-inflammatory and anti-apoptotic activity of Cur was documented in several extrahep-
atic [52–54] and hepatic diseases [1,12,55]. Likewise, REO presented anti-inflammatory
and anti-apoptotic characteristics in various animal models [31,56]. Remarkably, pretreat-
ment with combined Cur and REO treatment significantly reduced IL-1β, IL-6, TNF-α,
NF-κB, caspase -3, Bax, and Bax/Bcl2 ratio levels more than each one alone, signifying the
synergistic anti-inflammatory and anti-apoptotic effects.

Several mechanisms have been reported for Cur as an anti-inflammatory, cytopro-
tective, and antitumor agent. The reported mechanisms depended on the suppression
of pro-inflammatory mediators [57], induction of HSP-70 that has cytoprotective effects,
inhibition of HSP-90 that has anti-proliferative and pro-apoptotic activities [58,59], or in-
duction of HSP-30 that has protection from oxidative stress [60]. The hepatoprotective
activity of REO against carbon tetrachloride [35], cyclophosphamide [61], and hexavalent
chromium-induced [48] liver injury was established; still, the mechanism of action was not
identified. Thus, in the current study, we tried to propose a mechanism of action through
which both Cur and REO may act to achieve this hepatoprotective effect.

ERK is attached to MEK in the cytoplasm [62]. Upon stimulation, ERK1/2 dissociates
from MEK1/2 [63]. It was reported that ERK activation may exert an anti-apoptotic [60]
and has a protective effect of glutamate treatment via restoration of the glutathione lev-
els [64]. It also has a shielding effect against hydrogen peroxide-induced apoptosis in
the cardio-myoblast [65]. Other cellular action of ERK1/2 pathway activation includes
its cytoprotective effect against oxidative stress [66]. ERK1/2 has a signaling role in the
regulation of proliferation during the liver regeneration process [67] and protects renal
epithelial cells against oxidative stress-induced damage [68].

The results of the current study illustrate the ameliorative effect of the combination
of Cur and REO pretreatment on the expression of both MEK1 and ERK1 proteins. Para
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Induced a slight but non-significant increase in the level of these proteins, especially in ERK
expression, when compared to the untreated group, and this elevation can be explained
by the necessity of cells to counter the Para toxic effect. The combination of both natural
components has potentiated the liver for the production of a massive amount of these
proteins that can play important role in apoptosis regulation and the protective effect from
Para-induced liver cell damage. Accordingly, the hepatoprotective effect of Cur and REO
was proven to involve the Ras/Raf/MEK/ERK cascade in the current study. This cascade
has a critical role in coordinating cell survival, cell cycle progression, and differentiation in
response to various signals from different receptor tyrosine kinases and other cell surface
receptors [69]. The decontrolled Ras/Raf/MEK/ERK signaling pathway is an essential
therapeutic target in many epithelial cancers [40]. Additionally, other signal transduction
pathways interact with the Raf/MEK/ERK pathway to positively or negatively control its
activity or to adjust the phosphorylation status of downstream targets [70].

Despite its efficacy and safety, Cur has not been widely used as a therapeutic agent,
mainly for problems related to its bioavailability [1] and solubility [71]. The pharmacoki-
netic studies of Cur have exhibited poor absorption, fast metabolism, and elimination of
Cur as major reasons for its poor bioavailability [15]. This problem has been the target of
many research projects, which may be overcome through several approaches [72]. The use
of compounds that can hinder the metabolic pathways of Cur is one of the major tactics
implemented to improve Cur bioavailability. An example of these metabolic blockers is
piperine, which produced an increase in the bioavailability of Cur in humans by 2000%
when both drugs were co-administrated [73]. Other synergistically acting drugs with Cur
included quercetin [74], genistein [75], and epigallocatechin gallate (a green tea compo-
nent) [76]. Pharmaceutical formulation into nanoparticles, liposomes, or micelles, solved,
in part, the problem of Cur bioavailability [15]. A microemulsion system of Cur, which
consists of an oil (Capryol 90) and a surfactant (Cremophor RH40), increased the relative
absorption of Cur in rats by 22.6-fold [77]. The inclusion of Cur in a lipophilic matrix has
increased the relative human absorption of Cur by 19.2-fold [78]. The approach of using
co-administered essential oils was also implemented to affect Cur’s bioavailability. Eugenol
and terpineol, both essential oil components, were used as enhancers for Cur penetration to
the skin [79]. Comparing the production of essential oils in underground parts to the aerial
parts of plants reveals that they are rarely produced under the soil level. However, turmeric,
the plant which produces Cur in its rhizomes, is known for the presence of essential oil
in its underground parts [80,81]. Turmeric rhizome essential oil is highly oxygenated; the
major principles in this oil belong to the sesquiterpene turmerone derivatives (40%) [81].
The combination of curcuminoids and volatile oils of turmeric rhizome resulted in a 6.9-fold
increase in human absorption of Cur [82]. The patent number US8153172B2 for the United
States of America patent office (USAPO) discussed “A composition having a curcuminoid
and an essential oil of turmeric, wherein the essential oil is present in an amount sufficient
to cause an enhancement of bioavailability of curcumin”. However, the approach of using
essential oil as enhancers for Cur bioavailability is still uncommon and needs develop-
ment. In the current study, the administration of REO with Cur resulted in a significant
increase in Cur plasma concentration. This effect could be a result of enhanced absorption
(i.e., the essential oil solubilized Cur), or due to hindering in metabolism or elimination
of the compound. The presence of the oxygenated hydrocarbons in the REO (Table 1) can
act as hydrophilic carriers for Cur, thus enhancing its absorption and bioavailability. The
percentage of oxygenated compounds in REO is similar to that of turmeric essential oil
and can act in a similar way in increasing the absorption rate of Cur. This study is consid-
ered an initial investigation of the REO effect on Cur and should be followed by a whole
pharmacokinetic study to investigate, in-depth, the effect of the oil on Cur bioavailability.



Molecules 2022, 27, 8910 12 of 18

4. Materials and Methods
4.1. Plant Material

The fresh healthy leaves of rosemary (R. officinalis L.) were collected from the Medicinal
Plants Experimental Garden of the Faculty of Pharmacy, Zagazig University, Egypt, in
March 2015. The identity of the plants was confirmed by Dr. A. H. Abdel-Baset, plant tax-
onomist, Egyptian Agricultural museum, Cairo, Egypt. Voucher specimens were deposited
in the herbarium of the Department of Pharmacognosy, Faculty of Pharmacy, Zagazig
University, Egypt, under number L236.

4.2. Isolation of REO

The fresh R. officinalis leaves (100 g) were cut into small pieces (approximately 1 cm in
length) and immediately subjected to hydrodistillation using a Clevenger-type apparatus
for 3 h [83]. The volatile fraction (yield: 1.8% v/fresh weight) was recovered by decantation
and dried over anhydrous sodium sulphate. The essential oil samples were kept in brown
vials in the refrigerator at 4 ◦C until the commencement of analyses.

4.3. Gas Chromatography Analysis

Gas chromatography/flame ionization (GC/FID) analysis was done using a GC-2010
Plus gas chromatograph (Shimadzu Corporation, Kyoto, Japan) equipped with an FID-2010
Plus detector. The following conditions were applied: column, RTX-5MS®fused silica
capillary (30 m × 0.25 mm i.d and 0.25 µm film thickness); carrier gas He (2 mL/min);
temperature 300 ◦C, injection temperature 250 ◦C; oven temperature program: initial
temperature 45 ◦C, 2 min isothermal, 300 ◦C, 4 ◦C/1 min, then 20 min isothermal; the
split ratio was 1:15, the injection volume is 5 µL. Gas chromatography/mass spectrometry
(GC/MS) data were recorded on a GCMS-QP2010 Plus, Shimadzu Corporation, Kyoto,
Japan. The ionization energy for the mass spectrometer was 70 eV. The split ratio was 1:30;
other conditions were identical to those mentioned for GC/FID.

Kovat’s retention indices (RI) were calculated with respect to a set of co-injected
standard hydrocarbons (C10-C28). Compounds were identified by comparing their spectral
data and retention indices with the Wiley Registry of Mass Spectral Data, 10th edition
(April 2013), the NIST 11 Mass Spectral Library (NIST11/2011/EPA/NIH), and data from
the literature [84].

4.4. Animals and Ethical Approval

Thirty albino mice weighing (20 ± 5 gm) were obtained from the College of Veterinary
Medicine, King Faisal University, Al-Hasa, KSA. The experimental protocol was permitted
by the Institutional Animal Care and Use Committee of King Faisal University (approval
number KFU-REC-2022-OCT-ETHICS212). All the experiments were executed in harmony
with the relevant procedures and regulations of the Ethical Conduct for the Use of Animals
in Research at King Faisal University. The animals were housed in well-ventilated large
spacious polypropylene cages and had 12 h light/dark cycles throughout the experimental
period. All animals received water and rodent standard pellets during the experiment.

4.5. Experimental Protocol

Mice were divided into five groups (n = 6). Group 1 is the control group, and group
2 represents the Para-induced hepatotoxicity group (Para). Animals in the control and
the Para groups received normal saline for ten days. In the third group (Cur), mice were
administered Cur (20 mg/kg) once daily orally by gavage for ten days. In the fourth
group (REO), mice were given REO (20 mg/kg) [27] once a day orally by gavage for ten
days. The fifth group represented the combination group (Cur + REO) in which mice were
administered both REO (10 mg/kg) and Cur (10 mg/kg) orally once daily for ten days. On
the last day of the experiment, liver toxicity was induced in fasted animals in groups 2, 3, 4,
and 5 by giving Para (450 mg/kg) IP [85]. The mice were anesthetized and sacrificed 3 h
after Para injection.



Molecules 2022, 27, 8910 13 of 18

4.6. Blood and Tissue Collection and Processing

Blood samples were collected by retro-orbital sinus puncture using capillary tubes
under diethyl ether anesthesia from all animals. Collected blood samples were left to clot
for 10 min at room temperature and centrifuged at 2000 rpm for 15 min at 4 ◦C to obtain
the serum. Liver homogenates (10%) were prepared on ice with ice-cold Tris-Hcl (10 mM,
pH 7.4) in the presence of protease inhibitors. The resulting suspension was centrifuged at
10,000 rpm for 10 min, and the supernatants were collected for further analysis.

4.7. Histopathological Investigation

For hepatic histopathological assessment, a portion of mouse hepatic tissues was
fixed with 10% formalin and processed; sections (4 µm) were obtained and stained with
hematoxylin and eosin (H&E). Digital images were collected under a light microscope at
100× magnification. The histological changes were quantified as normal, moderate, and
severe based on the hepatic cytoplasm inflammation, centrilobular necrosis, cellular hyper-
trophy, vacuolization, and steatosis [86]. The histopathological changes were quantified by
two independent histopathologists and scored double blindly.

4.8. Hepatic Function Tests Determination

Colorimetric kits were used to determine the serum level of the hepatic function
enzymes, including alanine aminotransferase (ALT), aspartate aminotransferase (AST),
alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) following the manufac-
turer’s instructions.

4.9. Hepatic Oxidative Stress Status Determination

A Malondialdehyde (MDA; ab238537) ELISA kit and GSH Assay Kit (ab239727) Col-
orimetric kit were acquired from Abcam Inc. (Cambridge, UK). Superoxide dismutase
(SOD; MBS036924) and catalase (MBS726781) ELISA kits were obtained from My BioSource
(San Diego, CA, USA). All the procedures were executed in agreement with the manufac-
turer’s directions.

4.10. Determination of Inflammation and Apoptotic Signaling Markers

Inflammation markers, including TNF-α (ab46070), IL-1β (ab100768), IL-6 (ab100772),
and NF-κB (ab176648) ELISA kits were obtained from Abcam Co. (Eugene, OR, USA). As
for the apoptotic signaling markers, cleaved caspase-3 (KHO1091) was purchased from
Thermo Fisher Scientific Inc. (Waltham, MA, USA), whereas Bcl2 (MBS2881713) and Bax
(MBS935667) ELISA kits were acquired from My BioSource (San Diego, CA, USA). These
markers were measured according to the manufacturer’s instructions using the microplate
reader SpectraMax i3X (Molecular devices San Jose, CA, USA).

4.11. Western Blot Analysis

Western blot analysis was conducted as described elsewhere [87]. Briefly, the liver
protein homogenate was separated by sodium dodecyl sulfate gel electrophoresis and
transferred to a PVDF membrane. The membrane was blocked by incubation in Tris-
buffered saline (TBS) containing 3% bovine serum albumin for 1 h at room temperature.
After washing with TBS containing 0.1% Tween-20, the membranes were incubated with
primary antibodies for 2 h at room temperature and then incubated with the secondary
antibody (HRP-conjugated antibodies). The chemiluminescence produced from the luminol
reagent was detected with LI-COR C-DiGit Chemiluminescence Scanner.

4.12. HPLC Determination of Cur in Serum

The sample preparation and HPLC separation were conducted according to
Jäger et al. [88]. Blood samples, collected after Para administration for 3 h, were centrifuged
(2000× g) for 10 min to separate plasma. A measured 0.2 mL of plasma was mixed with
100 µL of β-Glucuronidase/Arylsulfatase (1000 U, Merck, 10127698001 St. Louis, MO,
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USA) in phosphate buffer (0.1 M, pH 6.80) and incubated (37 ◦C, 1 h). After incubation,
the solution was mixed with 1 mL of ethyl acetate, vortexed (1 min), sonicated (15 min),
and then centrifuged (15,000× g, 6 min). The ethyl acetate layer was then evaporated at
30 ◦C under reduced pressure. The ethyl acetate extraction was repeated three times for
each sample. The residue was dissolved in 100 µL of methanol.

Natural Cur (extracted from Curcuma longa, family Zingiberaceae) was purchased
from Merck (product number C1386, St. Louis, MO, USA). The stock solution of Cur in
methanol (100 µg/mL) was prepared, from which a serial dilution (50 pg/mL to 10 µg/mL)
was spiked into the plasma of normal control animals. A prepared 50 ng/mL solution of
salbutamol was used as an internal standard. A five-point calibration curve was established
by plotting the peak area ratio of Cur serial dilutions to internal standard versus the
Cur concentration, from which regression equations were determined to calculate the
concentration of Cur.

Prepared samples and standard Cur were injected into a Shimadzu Prominence HPLC
system provided with a CBM-20A controller, LC-20A solvent unit, SIL-20A auto-sampler,
CTO-20A column oven, and SPD-20A UV-VIS detector. Separation was conducted on Luna-
C18 (L1, Phenomenex, 150 mm × 4.6 mm × 5 µm). The mobile phase was a combination of
acetonitrile-methanol-water (40:20:40, v/v) in isocratic mode. The flow rate was adjusted at
1 mL/min, and the UV detector was adjusted to 360 nm.

4.13. Statistical Analysis

Data were expressed as mean ± standard deviation (SD) for five animals in each group.
Statistically significant differences between the groups were determined using one-way
ANOVA followed by Tukey’s multiple comparison test. In all cases, probability values of
p < 0.05 were taken as statistically significant.

5. Conclusions

REO and Cur are both natural products of high value due to their medicinally and
pharmacologically proven activities, including their hepatoprotective actions. However,
the mechanism through which these remedies can act still needs to be determined. The
hereby study sheds light on these mechanisms by investigating these natural products’
effect on the MEK/ERK signaling cascade. The components of REO were analyzed using
GC, accompanied by FID and MS detectors. The analysis indicated the abundance of
monoterpenes in the essential oil, particularly 1,8-cineole, camphor, and α-pinene. Both
REO and Cur modulated the levels of serum liver enzymes: ALT and ALP; lipid peroxi-
dation proteins; and MDA and GSH, in liver homogenate. Pretreatment with REO and
Cur demonstrated an over-expression of both MEK1 and ERK1 proteins, indicating the
contribution of these natural products in the Raf/Ras/MEK/ERK flow. The two natural
remedies exhibited all the above solitary actions, and their activity was amplified after
combination, maybe due to the synergistic effect of REO, a hepatoprotective agent itself, or
through enhancing Cur bioavailability. The enhanced plasma concentration of Cur after the
co-administration of REO was proven in this study; however, further studies are required
to study the essential oil’s whole effect on Cur’s pharmacokinetics. Future exploration of
the impact of the major contents of the REO (1,8-cineole, camphor, and α-pinene) along
with Cur is also recommended as a result of this study.
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