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Abstract: Iron is one of the most abundant elements in the Universe and Earth’s surfaces, and
undergoes a redox change of approximately 0.77 mV in changing between its +2 and +3 states. Many
contemporary terrestrial organisms are deeply connected to inorganic geochemistry via exploitation
of this redox change, and iron redox reactions and catalysis are known to cause significant changes in
the course of complex abiotic reactions. These observations point to the question of whether iron may
have steered prebiotic chemistry during the emergence of life. Using kinetically naive in silico reaction
modeling we explored the potential effects of iron ions on complex reaction networks of prebiotic
interest, namely the formose reaction, the complexifying degradation reaction of pyruvic acid in
water, glucose degradation, and the Maillard reaction. We find that iron ions produce significant
changes in the connectivity of various known diversity-generating reaction networks of proposed
prebiotic significance, generally significantly diversifying novel molecular products by ~20%, but also
adding the potential for kinetic effects that could allow iron to steer prebiotic chemistry in marked
ways.

Keywords: iron chemistry; prebiotic chemistry; origins of life; combinatorial chemistry; chemical
reaction networks; iron-sulfur world; formose reaction; Maillard reaction; pyruvic acid; glucose

1. Introduction

Iron (atomic symbol Fe) is the most abundant element overall by mass on Earth [1]),
and is also one of the most abundant elements in Earth’s crust (~6.3%, [2]). Iron is also a
central player in bioinorganic chemistry, being involved in a large number of intracellular
and environmental biochemical redox transformations [2,3] and playing an important
though under-appreciated role in modern anthropic chemistry [4].

The environmentally prevalent oxidation state of iron is governed by the redox en-
vironment (e.g., [5]). While it is suspected that iron in Earth’s core is largely present in
the Fe0 or metallic state, the iron in Earth’s upper mantle and crust is present in either
the ferrous (Fe (II) or Fe2+) or ferric (Fe (III) or Fe3+) state. Converting Fe (II) to Fe (III)
requires approximately −770.1 mV [6] at standard temperature and pressure. This energy
difference is approximately enough to compensate for various functional group changes,
for example, the reduction/oxidation of ketones (which ranges from 60–350 mV, with more
typical values of species of biochemical interest falling in the 200 mV range [7]). However,
such energetic couplings are rarely direct in biochemistry and often mediated by cofactor
or membrane potential-based processes, and their redox potentials can be highly variable
(e.g., [8]).

Given iron’s environmental ubiquity and importance in contemporary biochemistry, it
is also widely believed that iron catalysis may have been important for life’s emergence
(e.g., [9]). Different models suggest various roles for iron in life’s origin. For example, the
Iron-Sulfur World model [10] suggests a role for both iron and sulfur as primitive energy
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sources for the emergence of life. Weber [11] demonstrated the catalysis of hexose and
hydroxy acid synthesis from glyceraldehyde in the presence of aqueous Fe3+. Barge et al. [9]
reported the reduction of pyruvate to lactate and its reductive amination to alanine in the
presence of iron oxyhydroxide. Muchowska et al. [12] have reported an iron-catalyzed
reaction network with pyruvate and glyoxylate that produces many intermediates and
reactions of core biological pathways, such as the Krebs cycle. Furthermore, studies have
found marked effects of iron (II) and (III) on the progress and outcome of complex reactions
such as the Maillard reaction [13], which is a generic term for reactions of amines with
reducing sugars which tend to generate complex product mixtures.

While the idea of iron-mediated prebiotic chemistry has been frequently discussed for
over 30 years, few studies have explored the possible effects of iron on complex prebiotic
reaction networks. There are two major impediments to understanding the impacts of
iron on prebiotic chemistry. First, kinetic data from carefully controlled studies of aqueous
organic reactivity in the presence of dissolved iron species are limited in the chemical
literature. Chemical transformations that are possible in the absence of iron may also be
catalyzed by iron species; similarly, reactions that are impossible in the absence of iron
may become possible when the iron is present. Second, prebiotic chemistry includes a
number of reactions that generate high chemical diversity seeded by simple likely prebiotic
reactants, including HCN oligomerization [14], the formose reaction [15] and Miller-Urey
type reactions [16], among others. Such reactions may produce hundreds to millions of
distinct product types (e.g., [17]). Complex chemical reaction networks, such as those which
gave rise to the complex organic suites observed in carbonaceous meteorites (e.g., [18]), are
often assumed to have been important for the origins of life [19].

Recently, it has been shown that large complex reaction networks (CRNs) can be
accurately and efficiently modeled using graph theory-based reaction network expansion
techniques [20] to produce complex reaction network representations (CRNRs). These
CRNRs are computed using reaction rules that are in silico representations of known real-
world chemical reaction mechanisms. This reaction network expansion technique allows
rapid CRNR modification by introducing new reaction rules. While such techniques are
“kinetically naive”, e.g., they are not able to predict kinetics, and are practically computa-
tionally limited by the mass and number of compounds/reactions they can model, they can
nevertheless accurately reproduce complex reported product suites, match high-resolution
mass spectra of such reaction mixtures, and reproduce compositional trends in extended
Van Krevelen and Kendrick plots from experimental data [20].

We examine here the effects on prebiotic CRNRs of adding reaction rules involving
iron ions, which can allow for easy comparison and identification of likely changes in
network topology caused by their inclusion or omission. The workflow used here (see
Figure 1) explores how the inclusion of known organic transformation reaction mechanisms
mediated by iron may affect the structure of CRNRs of possible prebiotic interest and, thus,
the potential effects of iron catalysis at the origins of life.
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Figure 1. Overview of the workflow explored here. Generic organic transformations mediated by
iron were collected from the experimental chemical literature and converted to machine readable
form. These were then used to construct CRNR using the MØD software package. These modeled
CRNRs were then analyzed with regard to their products and network topology using computational
tools.
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2. Methods
2.1. Reaction Network Generation

We used the MØD software package [21] to elaborate the CRNRs investigated here.
MØD is a chemical reaction network generator that uses reaction mechanisms as rules.
These rules are used to generate reaction networks of input graphs (reactants) which are
transformed into output graphs (products). Various constraints can be imposed on the
rule set to ensure that the generated reaction network is specific and not a generalized
combinatorial set of all possible graphs, i.e., it accurately represents real-world chemistry.
We note that previous applications of these methods, even using 200 AMU expansion
cutoffs, manage to faithfully reproduce diverse product suites detected in real world
chemistry, match high-resolution mass spectra of real reactions, and faithfully predict
trends in real chemistry-derived Van Krevelen and Kendrick plots [20], attesting to these
methods’ ability to predict real world chemistry. We briefly review the use of these methods
here, more complete information can be found in [20]. This pipeline is open-source, written
mostly in Python, and can be accessed along with relevant documentation at https://
github.com/Reaction-Space-Explorer/reac-space-exp (accessed on 10 July 2021).

In MØD reaction mechanisms are compiled in GML format. Molecules are represented
as graphs, where edges represent bonds and vertices represent atoms. During a reaction,
removal and addition of edges within a graph (representing a molecule), represents the
making and breaking of chemical bonds as occurs in a chemical reaction.

A typical MØD reaction representation is shown in Figure 2. Here, the bonds in the L
(for “left”) graph are those to be broken and those in the R (for “right”) graph are those to
be created, and K (for the German “Kontext”) represents a common context graph of bonds
that remain unaltered in the reaction. The molecule(s) represented in L are the reactant(s)
and the molecule(s) resulting from the graph transformation in R are the product(s) of the
reaction.

MØD operates by employing a library of user-provided reaction rules which are
applied to a set of initial reactants, giving rise to an initial set of products. In constructing
reaction networks, a starting set of compounds is loaded into the program, then each is
compared against the set of allowed reaction rules to see if a reaction is possible. If a reaction
is possible, the reactant, reaction mechanism and products are stored into memory. If a
reaction is not possible, the program proceeds to the next compound and makes the same
determination. Here, the input reactants are referred to as the “generation zero” (or G0)
molecules or set, while the initial set of products are referred to as “generation one” (or G1).
After the computation of the first set reactions and their products, the G0 and G1 molecules
are combined and a second round of reactions from the library is computed, yielding a G2
product set, and this process iterated. This process can in principle be continued for any
number of iterations (or generations) decided by the user, causing the network to grow at
each step. In practice, the networks may grow to be so large that their computation becomes
cumbersome. After completion of all desired (or possible) reaction iterations, the entire
network can be saved in a format that can be analyzed using other computational tools
and further analyses such as comparison with experimental data, computing molecular
descriptors, and evaluation for particular reaction sequences or cyclic reaction motifs.

To control the combinatorial explosion of reaction networks, an upper mass limit of
200 units was imposed here. This number is somewhat arbitrary but practical, as it allows
for multiple reaction iterations to be computed starting from relatively low molecular
weight reactants, for example species of prebiotic interest including HCN, HCHO, NH3,
simple sugars, amino acids, etc., using modest computational resources. For illustration, a
comparison of the relative computation times for the generations of the alkaline degradation
of glucose are reported in [20], and range from a fraction of a second for G1 to several
days for G5, with computation time typically increasing exponentially with each iteration.
This approach also allows for fairly exhaustive exploration of the small molecule chemical
space of these reactions. Although applying such molecular weight limits does not thus
allow for the discovery of long polymers, it does allow for fairly exhaustive exploration
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of monomer synthesis pathways. Modeling the elongation of monomers into polymers
can be accomplished using these methods, but doing so alongside the exploration of the
concomitant small molecule chemistry would be computationally inefficient.
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Figure 2. (A). proposed mechanism for the observed conversion of glyceraldehyde to lactic acid
in the presence of mineral surface-bound iron (III) (mineral surface indicated by the orange box)
adapted from [11]. In this reaction iron plays the role of catalyst, as it is not consumed or altered
during the reaction; (B). A generic representation of the reaction mechanism presented in (A) in the
MØD-based workflow. The MØD algorithm looks for compounds with substructures matching L
and transforms the bonds between them as per the rule to produce the substructure in R. The context
K is analogous but not identical to the “intermediate” of a conventional reaction mechanism. Here,
bonds colored in blue represent bonds broken in the course or the reaction and those in green are
bonds created by the reaction. Atom coloring is merely a guide for the eye. Asterisks represent “wild
card” atoms which may be of any specified type, allowing such mechanisms to be generally applied
to any molecule containing the specified substructure. In this reaction mechanism Fe3+ is a catalytic
species that must be present for the Fe3+-catalyzed reaction to proceed, but which is not altered or
consumed in the reaction. An equivalent “uncatalyzed” reaction mechanism can be written lacking
Fe3+.

In this study, rules were applied to several sets of input “reactant” graphs over a
number of iterations to produce two types of networks for each input reactant set: one
including iron-dependent reaction rules and another lacking them. This parallel reaction
network expansion allows for a facile comparison of the effects of the addition of iron
species on the network.

2.2. Reaction Mechanism Selection

To model the effects of iron catalysis on complex prebiotic organic reaction networks,
we first systematically searched the chemical literature using Scifinder (https://scifinder.
cas.org (accessed on 15 July 2021); [22]) for reactions that satisfied the following two criteria
(guided in part by the work of [11,12,23,24]): 1. involved aqueous Fe3+ and/or Fe2+ ions
and 2. were conducted in anoxic water under “moderate” temperature and pH values, i.e.,
between 25 ◦C to 120 ◦C and pH between 2 and 12 (e.g., [25]). Note that while organisms
have been found living at lower temperatures, there are few examples of studies of aqueous
iron chemistry at lower temperatures in the literature; thus, this reaction search is defined

https://scifinder.cas.org
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by reactions detectable over practical laboratory timescales. Presumably, reactions that
occur at higher temperatures will also proceed, albeit more slowly, at lower ones. We did
not include reactions promoted by Fenton reagents (e.g., peroxides and Fe2+) in water to
avoid oxygen-dependent and radical-based chemistry or reactions promoted by iron-sulfur
and other multi-elemental complexes, though such chemistry is of interest for future studies.
More general and inclusive reaction networks can, of course, be constructed and evaluated
using these methods.

We classified reactions into two categories: 1. exclusively iron-catalyzed reactions and
2. reactions that can also occur in the absence of iron, e.g., for which iron species merely
play the role of catalyst (see Figure 2). For example, the oxidation of a hydroxyl group by
Fe3+ would be classified in the first category as an iron-dependent reaction that specifically
involves the exchange of electrons between iron and carbon, while reactions such as aldol
condensations which can be catalyzed by iron species would be classified into the second
category.

Further examples of reactions as encoded in MØD illustrating these differences are
shown in Figure 3. Note that the reaction mechanisms induced by iron ions were coded
separately to differentiate between the distribution of products produced in iron-free and
iron-containing reaction mechanisms.
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Figure 3. Examples of iron-independent (A) and iron-dependent (B) reactions as encoded in MØD.
(A). Aldol condensation reaction; (B). A two-electron oxidation of an aldehyde accompanied by the
reduction of two iron (III) atoms to two iron (II) atoms.

It should be noted that these methods do not keep track of the balance of atoms in the
system, but rather assume there is sufficient mass in the system for a reaction to occur if the
mechanistic conditions for its occurrence are satisfied, namely that suitable reactants exist
in the network. For example, there need not be a balancing mechanism to regenerate Fe2+

from Fe3+ or vice versa, although numerous reactions may in practice accomplish this.

2.3. Data Visualization

The data generated in MØD was output in comma-delimited text files and processed
using Pandas [26]—a python data analysis library, matplotlib and MS Excel for generating
plots, and Gephi [27] to produce network plots and network metric calculations to quantify
the differences between iron-containing and iron-free CRNRs. Specifically, Gephi allows
for facile computation of network metrics including node degree (the number of edges (or
reactions) connected to each node (or molecule)), node in-degree and out-degree (measuring
the number of times a node/molecule occurs in the network as a reaction product or
reactant, respectively), among other metrics.
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2.4. Reaction Network Exploration

We specifically explored four complex reaction network types to understand the
potential effect of iron ions on CRNs: the formose reaction (e.g., [15]), the reaction of
concentrated pyruvic acid (which degrades and self-condenses in water to give a complex
product suite, e.g., [28]), glucose degradation (e.g., [20,29]) and the Maillard reaction
(e.g., [30]), which is a generic name given to extreme diversity generating reactions derived
from amines and reducing sugars. Notably, with the exception of the Maillard reaction,
these reactions exclusively involve CHO chemistry since the addition of heteroatoms such
as S, and particularly N, requires resolving more complex issues such as the treatment of
tautomerism in the construction of CRNRs.

The four reactions modeled were seeded with the following input reactants:

1. Formose Reaction Network

• HCHO + H2O
• HCHO + H2O + Fe2+ + Fe3+ + H+ + OH−

2. Concentrated Pyruvic Acid Network

• Pyruvic Acid + H2O
• Pyruvic Acid + H2O + Fe2+ + Fe3+ + H+ + OH−

3. Glucose Degradation Reaction Network

• Glucose + H2O
• Glucose + H2O + Fe2+ + Fe3+ + H+ + OH−

4. Glucose-Glycine Maillard Reaction Network

• Glycine + Open Chain Glucose + H2O
• Glycine + Open Chain Glucose + H2O + Fe2+ + Fe3+ + H+ + OH−

Note that the dissociation of water into H+ and OH− could equally be included as
a reaction so that the initial reactant inputs could be simpler, but this would postpone
reactions which are proton (H+) or hydroxyl (OH−) dependent by one iteration. Since this
method is generally qualitative, this choice is simply expedient. Likewise, glucose can be
input as its open chain or hemiacetal form, which interconvert in one reaction step.

Reactions were expanded over 1–6 iterations, depending on the computational inten-
sity each generated, which is a function of the ways the starting molecules’ functionalities
interact with the employed reaction library as the network iterates. As noted above, reac-
tion iteration typically causes exponential network growth, thus reaction networks were
iterated so as to allow for the greatest diversity of products to be produced within the
bounds of practical desktop computation.

3. Results and Discussion

We first report the distribution of products from the modeled CRNs and how that
distribution changes in the presence of iron species. We quantified the differences in terms
of product counts, reaction counts, and the relative compositions of networks containing
iron compared to networks lacking iron.

3.1. Product Diversity

The presence of Fe2+ or Fe3+ in the CRNRs increases the overall product count in all
the modeled reactions (Table 1 and Figure 4), which is not surprising since the inclusion of
novel mechanisms increases the number of possible reactions and products. The number of
products formed in the iron-containing pyruvic acid CRNR after five generations contains
~2.6 more species than the iron-free network, making it the most iron-sensitive of the
reaction networks studied here. The formose CRNR grew by ~38% after the inclusion
of iron species. In the four generations of the glucose degradation reaction CRNR, iron
increased product diversity by ~19%. In the three iterations of the Maillard reaction CRNR,
the product count increased by ~14% with the inclusion of iron, making it the least iron-
sensitive network studied.
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Table 1. Total number of products produced in the networks studied.

Reaction # of
Iterations

Iron-Free
Network

Iron-
Containing

Network

Formose Reaction 5 23,459 32,523
Pyruvic Acid Reaction 5 9081 23,232

Glucose Degradation Reaction 4 7891 9438
Glucose-Glycine Maillard Reaction 3 2923 3417
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Figure 4. Plots showing the measured and projected increase of products in four model reactions in
the absence (blue) or presence (red) of iron species as a function of reaction generation. The hatched
bars in plots C and D show the predicted number of compounds for generations beyond those
computed.

Figure 5 shows curve fitting to the results which allows for extrapolation of the data to
ranges beyond what is computationally tractable.

For all modeled reactions, product growth is roughly exponential, mainly due to
the way new reaction mechanisms are able to be applied to new products. Curve fitting
allows for the estimation of the product count for the glucose degradation and Maillard
reaction networks beyond what can practically be computed. In general, all of these
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CRNRs grow roughly exponentially (by a factor of ~10) as a function of reaction generation.
Iron-containing networks grow in diversity slightly faster than iron-free networks.
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The mass constraint set on the networks, which limits the number of compounds that
can be formed in each CRNR, is imposed for computational practicality. It should be borne
in mind that such product mass constraints always eventually saturate since at some point
all possible products within a constrained mass range are discovered, and if some product
requires a higher molecular weight precursor, it will never form in these simulations. To
examine this effect, we ran the formose reaction simulation for 15 generations with an
upper mass limit of 100 as opposed to 200 AMU. Figure 6 confirms the saturation of the
CRNR using this lower MW limitation.

Using a 100 AMU cutoff, the formose CRNR saturates after 13 generations because no
new compounds can form without violating the product mass limit condition. In real-world
chemistry, networks such as these can grow exponentially if there is no upper limit on
the product mass as long as feedstocks are available. While we have not systematically
performed the same analysis for ranges of AMU limits between 100 and 200 AMU, or
beyond 200 AMU, we expect the output data to always find the limit of the species which
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can be discovered using these methods. Indeed, Figure 4A already suggests that saturation
of reaction-discoverable chemical space does not occur after five generations for the formose
reaction (contrast there being 52 novel product species after five generations using a
100 AMU cutoff vs. >30,000 for a 200 AMU cutoff). Interestingly, this perfunctory analysis
suggests that mapping the generation and interconversion of low MW species in diversity
generating reactions is already achievable, while that of even moderate MW species is
still not computationally tractable, which may have implications for understanding the
structure of modern metabolism. If the origin of life depends on interactions among
molecules in the >200 AMU MW range (which would, for reference, already include such
low complexity compounds as di- and tripeptides), it will not be easily predictable using
these techniques and will require a more clever understanding of interfacial molecular
recognition and reaction feedback mechanisms.
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erable in this network.

3.2. Reaction Diversity

The compound nodes in a CRN are connected to each other by edges representing
reaction mechanisms derived from real-world studies. The addition of iron-catalyzed
mechanisms to the reaction rule database increases the number of rules that are applied in
each reaction network. However, the magnitude of the increase varies depending on the
input reactants.

In the formose reaction network, 32 encoded rules were applied over five genera-
tions, producing a total of 54,525 reaction edges in the absence of iron which increased to
81,049 edges after addition of the six encoded iron-containing rules (see Table 2). This is
an ~49% increment in the number of reaction edges, while the compound count increased
by only 38%. It should be made clear that some reactants enable the application of novel
mechanisms more than others, and some compounds are inherently more reactive (e.g.,
more rules can be applied to them) than others. This increment is visible in the reaction
count distribution across iterations, and indicates that some compound nodes are used
multiple times (Figure 7).

In the pyruvic reaction network, the total reaction edge count increases from 17,446 to
45,367 by the inclusion of iron, an increase of ~160%, which is similar to the growth in the
node count (~150%). Most of this increase occurs in the fifth generation.

In the four generations of the glucose degradation reaction network, the iron-containing
network produces ~22% more reaction edges, growing from a total of 19,271 to 23,661 edges.
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Table 2. Total frequencies of reaction-rule application in the studied networks.

Reaction # of
Iterations

Iron-Free
Network

Iron-
Containing

Network

Formose Reaction 5 54,525 81,049
Pyruvic Acid Reaction 5 17,446 45,367

Glucose Degradation Reaction 4 19,271 23,661
Glucose-Glycine Maillard Reaction 3 8856 10,460
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In the three generations of the Maillard reaction, the edge count grows from a total of
8856 to 10,460 (an ~18% increase).

The addition of iron-containing reactions affects the edge distribution of the networks;
however, this occurs unevenly due to the unique frequency with which different rule types
can be applied to each unique reactant set in each generation. For example, the formose
reaction network consists of 16% aldol condensation edges in an iron-free CRNR, but only
13% of the total edges are attributable to aldol condensations in the formose CRNR in the
presence of iron. This decrease in edge count percentage is attributable to the contribution
of new reaction rules added to the iron-containing network.
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In the pyruvic acid reaction network, 31 unique reaction rules were applied 17,446 times
in the absence of iron. In comparison, these same 31 rules applied together with six
iron-specific rules produced 45,367 edges. Common rules in both the iron-free and iron-
containing networks have comparable total edge counts, but the inclusion of iron lowers
their relative percentage contribution to the overall network. For example, the aldol con-
densation rule makes up 17% of total rules applied in the iron-free network, while in the
iron-containing network, this rule contributes only 16.5% of the total rule applications.

The iron-containing glucose degradation network used a total of 38 rules producing
23,661 edges over three generations, which represents an ~20% increase in edge count over
the iron-free network. In this network, two particular reaction rules (both variations of
β-decarboxylation) were applied more than twice as frequently compared to the iron-free
network.

In addition to adding new edges and nodes to networks, the addition of iron also
alters the relative frequency of rule application. In all the reaction networks, the reaction
rules lacking iron increase because the application of iron-containing rules produces new
substrates to which rules can be applied. That is, the iron rules “catalyze” other reaction
mechanisms by providing substrates for their application. The addition of iron causes up
to a 3.5× increase in the application frequency of non-iron-containing rules. Tables 3 and 4
below summarize reaction rule applications across the networks.

Table 3. Frequencies of reaction rule applications in the formose reaction network. (% change =
(frequency in the iron-containing network/frequency in the iron-free network) × 100). The addition
of iron to the formose reaction network adds up to 2365 new unique iron-induced reactions, but also
provides new products that can react with other compounds in the network using iron-independent
reaction mechanisms, changing the frequency of all non-iron reaction mechanisms.

Reaction Name Iron-Free Network Iron-Containing Network % Change

1. β-γ Unsaturated Acid Decarboxylation 12 54 350%

2. α-β Unsaturated Acid Decarboxylation 5 17 240%

3. α-Keto Acid Decarboxylation 78 187 140%

4. Ring Closure 5 membered O, O 398 946 138%

5. Michael Addition 0.2, Inverse 221 520 135%

6. Ring Closure 6 membered O, O 227 527 132%

7. Ring Closure 7 membered O, O 82 190 132%

8. β Decarboxylation 106 222 109%

9. Benzilic Acid Rearrangement, Inverse 365 670 84%

10. Benzilic Acid Rearrangement 326 592 82%

11. Knoevenagel H, Inverse 1830 3189 74%

12. Canizzaro 242 417 72%

13. Hemiacetal Formation for 5 membered rings, Inverse 348 586 68%

14. Hemiacetal Formation for 5 membered rings 2482 4082 64%

15. Canizzaro 2, HCHO (oxidation) 2731 4326 58%

16. Hemiacetal Formation for 6 membered rings, Inverse 135 211 56%
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Table 3. Cont.

Reaction Name Iron-Free Network Iron-Containing Network % Change

17. Keto-enol migration twice 1884 2936 56%

18. Retro Aldol 3756 5849 56%

19. Elimination + enol to keto 3825 5926 55%

20. Hemiacetal Formation for 6 membered rings 1500 2320 55%

21. Canizzaro 2, HCHO (reduction) 1691 2545 51%

22. Hemiacetal Formation for 7 membered rings 599 896 50%

23. Knoevenagel C, Inverse 1623 2384 47%

24. Elimination2 3966 5758 45%

25. Hydration of C=C(O) 522 753 44%

26. Hemiacetal Formation for 7 membered rings, Inverse 52 75 44%

27. Knoevenagel H 5494 7576 38%

28. Hydration of C(=O)C 1731 2359 36%

29. Michael Addition 0.2, 4327 5508 27%

30. Knoevenagel C 5228 6484 24%

31. Aldol Condensation 8739 10,579 21%

32. Iron-induced Rules 0 2365 -

a. Fe+2 to Fe+3, α Keto Reduction of a Carboxylic Acid 0 187 -

b. Fe+2 to Fe+3, Conversion of α Hydroxy Group of an aldehyde to α
Keto group, Inverse 0 636 -

c. Fe+2 to Fe+3, Conversion of α Keto Group of an Acid to α Hydro
group 0 183 -

d. Fe+3 to Fe+2, Aldehyde to acid 0 412 -

e. Fe+3 to Fe+2, Conversion of α Hydro Group of an Acid to α Keto
group 0 251 -

f. Fe+3 to Fe+2, Conversion of α Hydroxy Group of an aldehyde to α
Keto group 0 566 -

g. Fe+3, β elimination from a sugar & Conversion to Acid 0 130 -
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Table 4. Frequencies of reaction rule applications in the other three studied networks. The top five
reactions most enhanced by the presence of iron are shown. An expanded version of this table is
attached in the Supplementary Materials (Spreadsheet S1).

Network Reaction Iron-Free
Network

Iron-
Containing

Network
% Change

Pyruvic
Reaction

Ring Closure 7 membered O, O 40 194 385%
Hemiacetal Formation for 7 membered rings 87 321 269%

Ring Closure 6 membered O, O 170 543 219%
Hemiacetal Formation for 6 membered rings 297 925 211%

Michael Addition, Inverse 318 979 208%

Glucose
Degradation

Reaction

β-γ Unsaturated Acid Decarboxylation 2 6 200%
α-β Unsaturated Acid Decarboxylation 3 8 167%

α-Keto Acid Decarboxylation 11 19 73%
Ring Closure 7 membered O, O 29 49 69%

Benzilic Acid Rearrangement, Inverse 65 103 58%

Glucose-
Glycine
Maillard
Reaction

Strecker Degradation Dicarbonyl, C, H, C, H 52 88 69%
Strecker Degradation Dicarbonyl, C, H, H, C 52 88 69%
Strecker Degradation Dicarbonyl, H, H, C, H 13 22 69%
Strecker Degradation Dicarbonyl, H, H, H, C 13 22 69%

Amide Formation Hydrolysis, C 9 15 67%

3.3. Catalysis

To detect compounds most potentially affected by iron catalysis, the set of compounds
produced in the iron-free network was compared with an iron-containing network to find
the product overlap. A compound is defined as catalyzed if it is obtained in an earlier
generation in an iron-containing network relative to an iron-free one since it requires fewer
reaction steps to be produced. The results are shown in Table 5.

Table 5. Comparison of the number of compounds catalyzed by iron species in each CRNR. Per-
centage Catalysis = Number of compounds catalyzed/ Total Number of compounds in the iron-free
reaction network.

CRN # Generations # Catalyzed
Compounds % Catalyzed

Formose Reaction 5 1634 7%
Pyruvic Reaction 5 765 8.4%

Glucose Degradation Reaction 4 231 3%
Glucose-Glycine Maillard Reaction 3 33 1.1%

Among the networks studied, iron catalysis is most pronounced in the pyruvic acid
reaction network, which likely depends on the nature of the input reactants and the
interplay between the available reactive motifs and reaction rules. The percentage catalysis
for the Glucose Degradation Reaction and Maillard Reaction is lesser compared to the
other two networks because of their lesser numbers of generations. Furthermore, different
reactants pose different reaction contexts leading to differences in catalysis intensity.

3.4. Graph Metric Comparisons

A CRN is directional, meaning reactant nodes point to product nodes. In a network
graph, the degree of a node represents the number of edges it is connected to, which is, in
some sense, a metric of the “importance” of that node [31]. Here, this could be interpreted
as how often a given compound influences the chemistry of its neighbors. Since chemical
reactions are directional in nature, the degree of nodes in reaction network graphs can also
be measured in terms of their in-degree and out-degree. In-degree counts the number of
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edges pointing toward a node, and out-degree counts the number of edges pointing away
from a node [31]. In-degree in a CRNR measures the number of times a node occurs as a
reaction product, while out-degree measures the number of times a node is a reactant.

Comparing degree metrics of the iron-free and iron-containing networks probes the
change in the relative importance of different compounds in the network. It also informs
if a node is catalyzed by iron-dependent rules since in-degree quantifies the number of
edges entering a node. Degree metrics for the top ten nodes for each network are shown in
Figure 8.
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Figure 8. Total (in- plus out-) degree comparisons the studied reaction networks. Blue bars: iron-
free reactions, red bars: iron-containing reactions. With few exceptions, the order of the degree of
comparison does not change significantly in the networks. The magnitude of the degree for the
common compounds of the networks always increases in the iron-containing network. Note that the
comparisons are drawn only for the ten highest-degree compounds of the iron-containing network.
Refer to SI (Spreadsheet S2) for the degree of all products produced in all the networks.

As might be expected, water is generally the most connected node [32], and HCHO
is usually a close second. Generally speaking, the input reagents benefit from “founder
effects” when measuring graph degree metrics, i.e., simply by being the earliest members
of the network, they accrue edges for more generations. This effect can also be seen in the
iron-containing graphs in which Fe2+ and Fe3+ assume the third and fourth-place positions
in terms of node degree in the Formose and Pyruvic Acid networks. Fe2+ and Fe3+ appear
in the fifth and sixth positions in the Glucose Degradation network and in the sixteenth and
nineteenth positions in the Maillard Reaction Network (see SI). Other important species as
measured by node degree generally reflect how commonly applied reaction rules involve
those species, and for the formose reaction network includes methanol, formic acid, and
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CO2, the first two of which are produced by the Cannizzaro reaction and the last by various
decarboxylation reactions.

3.5. Gephi Visualization of the Networks

As the CRNRs are very large, containing tens of thousands of chemical species, Gephi-
an open-source graph network visualization and exploration software package [27] offers
a useful way to visualize their connectivity and development across generations. Gephi
automatically optimizes the spatial layout of networks to enable their easy visualization,
but as a result, iron-free and iron-containing CRNRs may not end up having similar layouts.
Figure 9 shows a graphic representation of all nodes and edges of the CRNRs studied
here. Nodes are colored according to the generation of the first appearance and sized by
total node degree. For easy visualization, the edges of reactions involving iron species are
colored red.
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As can be seen, in iron-containing networks, the density and connectivity of networks
grows considerably, as visible in the large number of nodes and their general tighter
packing. The red-colored regions in Figure 9 highlight iron-involving reactions. It should
be noted that these plots do not reflect reaction yields or kinetics, though node degree may
reflect these properties.

It is important to note that for the reasons described above, the number of potential
products generally grows exponentially in CRNRs, at least where they are not capped in
their exploration by imposing growth limits. This being the case, the initial input mass
of reagents would need to be spread over more and more compounds, suggesting these
types of complexity-generating reactions should end up with a very large set of very rare
products. Generally speaking, this is the case (see, for example, [18,20]), though there is
also usually a gradient of products in terms of abundance, such that a handful of product
compounds may account for a major fraction of the mass balance (see for example [29,33]).
The ability to detect the major or minor components of product mixtures typically hinges
on the analytical tools employed, e.g., abundant compounds may be most easily tracked
using various types of chromatography and NMR spectroscopy, while the abundance of
rare species may be better tracked by “one-shot” techniques like electrospray ionization
mass spectrometry (e.g., [18]).

It is apparent from these plots and the various other analyses presented above (see, for
example, Table 5) that iron ions can have significant though variable effects on the course of
complex reactions. Even so, they may not completely govern the overall evolution of such
networks, depending on the placement and frequency of individual iron-steered reactions.

4. Conclusions

This work presents an effort to explore in silico how the addition of metal catalysis
(specifically iron) may modify the evolution of CRNRs. Here, reaction mechanisms involv-
ing iron added were vetted using literature review as enabled by the Scifinder database.
While this database is extensive, it is likely that data mining under-represents the extent
of iron-catalyzed small molecule catalysis, as there likely remain many undiscovered and
unreported iron-involving reaction mechanisms. Furthermore, this type of modeling does
not take into account the effects of pH, temperature, or concentration on the relative rates
of reactions, all of which can significantly skew relative product concentrations, it merely
presents a road map of possible reactions. As such, such models offer good first-order ways
to explore potential CRN product diversity, which can be useful for experimental studies.

Nevertheless, such CRNRs may discover the most obvious and likely robust reaction
mechanism network effects since many of the underlying mechanisms have already been
discovered. These CRNRs can also be queried to find autocatalytic reaction loops (see [20])
and reaction sequences which cycle iron between its +2 and +3 redox states to effect
autocatalytic outcomes. We plan to explore the aspects of these CRNRs in future work.
As such, the in silico exploration of complex abiotic organic reaction sequences which
involve iron species offers a way to explore how early chemical evolution became coupled
to inorganic geochemistry.

Supplementary Materials: The code for generating and analyzing CRNs is available at (https:
//github.com/sahilrajiv/chem-network-catalysis (accessed on 8 October 2022)). The following
supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules2
7248870/s1, Spreadsheet S1: Reaction Rule Application Count, Spreadsheet S2: Product Node Degree
Data.
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