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Abstract: Inorganic arsenic is a well-known environmental toxicant and carcinogen, and there
is overwhelming evidence for an association between this metalloid poisoning and hepatic dis-
eases. However, the biological mechanism involved is not well characterized. In the present study,
we probed how inorganic arsenic modulates the hepatic polarization of macrophages, as well as
roles of PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy participates in regulating
the metalloid-mediated macrophage polarization. Our results indicate that acute arsenic expo-
sure induced macrophage polarization with up-regulated gene expression of inducible nitric oxide
synthase (Inos) and arginase-1 (Arg1), monocyte chemotactic protein-1 (Mcp-1) and macrophage
inflammatory protein-2 (Mip-2), tumor necrosis factor (Tnf )-α, interleukin (Il)-1β and Il-6, as well as
anti-inflammatory factors Il-4 and Il-10. In parallel, we demonstrated the disrupted hepatic redox
balance typically characterized by the up-regulation of hydrogen peroxide (H2O2) and glutathione
(GSH), and activation of PINK1/Parkin-mediated mitophagy in the livers of acute arsenic-exposed
mice. In addition, our results demonstrate that it might be the PINK1/Parkin-mediated mitophagy
that renders hepatic macrophage refractory to arsenic-induced up-regulation of the genes Inos,
Mcp-1, Mip-2, Tnf-α, Il-1β, Il-6 and Il-4. In this regard, this is the first time the protective effects of
PINK1/Parkin-mediated mitophagy in inorganic arsenic-induced hepatic macrophage polarization
in vivo have been reported. These findings add novel insights into the arsenical immunotoxicity and
provide a basis for the preve.ntive and therapeutic potential of PINK1/Parkin-mediated mitophagy
in arsenic poisoning.
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1. Introduction

Inorganic arsenic is a ubiquitous element in nature [1]. Large quantities of epidemio-
logical surveys and toxicological experiments have been devoted to clarify the relationship
between arsenic-related diseases and metalloid poisoning surveys [2]. The latest research
shows that inorganic arsenic has obvious immunotoxicity effects and can be used as an
exogenetic stimuli to induce inflammatory responses and precancerous lesions of the
liver, which is closely related to the formation of liver fibrosis and other diseases [3].
Inflammatory responses are thought to be started mainly by white blood cells such as
neutrophils, mononuclear macrophages and natural killer (NK) cells. Compared to other
organs, macrophages are abundant in the liver, at a rate of about 40 macrophages per
100 hepatocytes [4]. In recent years, it has been found that macrophages can be polarized
into two different subsets of macrophages in different environments, in which classically
activated macrophages have a strong ability to destroy microorganisms and tumor cells,
and can secrete large numbers of proinflammatory cytokines such as tumor necrosis factor
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(TNF)-α, interleukin (IL)-1β and IL-6. Moreover, anti-inflammatory cytokines, such as IL-4
and IL-10, secreted by alternatively activated macrophages, play vital roles in the recovery
of inflammation [5]. However, few studies have attempted to unravel the links between
inorganic arsenic exposure and the polarization of macrophages in liver.

Oxidative stress as the main mechanism of arsenic poisoning has been widely recog-
nized by scholars. Mitochondria dysfunction by excessive reactive oxygen species (ROS),
of which more than 90% derived from oxidative phosphorylation on mitochondria inner
membrane [6], could initiate inflammatory responses, which is of interest with regards
to various diseases, including carcinogen [7]. Autophagy is a special mechanism for the
non-selective removal of damaged cell components and harmful substances to maintain
the stability of the intracellular environment [8], while mitophagy is a newly discovered
cytoprotective mechanism that selectively scavenges dysfunctional mitochondria and thus
antagonizes the outbreak of ROS-dependent inflammatory pathways [9]. Among various re-
ported mitophagy, PTEN-induced kinase 1 (PINK1), a molecular receptor of mitochondrial
damage, is particularly sensitive to depolarization of mitochondrial membrane potential
(MMP) and can recruit and phosphorylate the E3 ubiquitin-protein ligase Parkin. Parkin
then initiates ubiquitination voltage-dependent anion channel protein 1 (VDAC1) and
other substrate proteins on the outer membrane of mitochondria. With the help of au-
tophagy receptor sequestosome-1 (SQSTM1/p62), the ubiquitin-labeled mitochondria bind
to microtubule-associated protein light chain 3 (LC3). Then, they are wrapped in double-
layer autophagy vesicles to form mitochondrial autophagosomes, which are eventually
fused with lysosomes and degraded by hydrolases [10]. Nevertheless, the method in which
PINK1/Parkin-mediated mitophagy exerts itself in inorganic arsenic-mediated hepatic
macrophage polarization remains largely unknown.

In this study, C57BL/6 mice were treated by a single oral administration of sodium
arsenite (NaAsO2). Then, redox-related indexes, macrophage phenotypic molecules,
chemokines and pro/anti-inflammatory cytokines were determined to probe hepatic redox
status and macrophage polarization, respectively. Furthermore, we observed the effects of
PINK1/parkin-mediated mitophagy upon arsenic exposure in the liver and attempted to
confirm the effects of PINK1/Parkin-mediated mitophagy in arsenic-regulated macrophage
polarization by restraining PINK1 expression with inhibitor ciclosporin A (CsA) in vivo.
On the basis of intuitively understanding the hepatic immunotoxicity of inorganic arsenic,
we attempt to provide new theoretical clues and an experimental basis for prevention and
treatment of arsenic poisoning.

2. Results
2.1. Inorganic Arsenic Up-Regulates Expression of Hepatic Macrophage Phenotypic Molecules and
Chemokines in Mice

The enzymes inducible nitric oxide synthase (iNOS) and arginase-1 (Arg1) are com-
monly used as specific phenotypic molecules for macrophage polarization [11]. In the
present study, western blotting and real-time qPCR were performed to verify the effects of
acute arsenic exposure on macrophage differentiation in the liver. As shown in Figure 1A,B,
our data suggested that acute arsenic exposure time-dependently up-regulated protein
expression of iNOS and Arg1 after 48 h. Simultaneously, treatment with the metalloid
increased the gene expression of Inos after 48 h, while the transcription of gene Arg1 started
earlier, at 6 h. As key chemokines, MCP-1 and MIP-2 play vital roles in recruiting immune
cells to pathologic sites, indirectly reflecting progress and regress of inflammation [12,13].
As shown in Figure 1C,D, our data showed that gene expression of Mip-2 was drastically
up-regulated upon acute arsenic exposure, and peaked at 6 h, which was 2.43 folds that of
the control group. Consistent with gene expression of Inos, the metalloid also induced the
gene expression of Mcp-1, which peaked at 48 h.
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typic molecule iNOS and Arg1 were determined by western blotting, of which protein densities are 
shown, gene expression of Inos and Arg1 (B), as well as chemokine Mip-2 and Mcp-1 (C,D) were 
determined by real-time qPCR, of which relative mRNA levels normalized to Gapdh are shown at 
different time points after an oral administration of NaAsO2. Data are presented as mean ± SD (n = 
4). * denotes p < 0.05 compared with the control group. ** denoted p < 0.01 compared with the control 
group. *** denotes p < 0.001 compared with the control group. 

2.2. Inorganic Arsenic Induces Gene Expression of Hepatic Inflammatory Cytokines in Mice 
Accompanied with up-regulated phenotypic molecules and chemokines, one addi-

tional peculiarity of macrophages is that they release a plethora of cytokines to communi-
cate with other cells, thereby orchestrating immune responses. Next, we examined effects 
of the metalloid on gene expression of inflammatory cytokines by using real-time qPCR. 
As shown in Figure 2A–C, our data indicated that treatment with acute arsenic exposure 
time-dependently up-regulated transcription activity of the proinflammatory cytokines 
Tnf-α and Il-β in liver, which both peaked at 24 h (Figure 2A,B). Similarly, the metalloid 
induced the gene expression of Il-6 at 6 h, then time-dependently decreased till 72 h (Fig-
ure 2C). After having confirmed up-regulation of proinflammatory cytokines, we next de-
tected the expression of anti-inflammatory cytokines. Analogously, acute oral administra-
tion of arsenite also activated the transcription of genes Il-4 and Il-10. In particular, the 
gene Il-10 was 1.82 folds that of control group at 24 h. Together with all above results, we 
confirmed the hepatic macrophage polarization after a single oral administration of 
NaAsO2. 

Figure 1. Up-regulated expression of macrophage phenotypic molecules and chemokines in the livers
of acute arsenic-exposed mice. (A) hepatic protein expression of macrophage-specific phenotypic
molecule iNOS and Arg1 were determined by western blotting, of which protein densities are shown,
gene expression of Inos and Arg1 (B), as well as chemokine Mip-2 and Mcp-1 (C,D) were determined
by real-time qPCR, of which relative mRNA levels normalized to Gapdh are shown at different
time points after an oral administration of NaAsO2. Data are presented as mean ± SD (n = 4).
* denotes p < 0.05 compared with the control group. ** denoted p < 0.01 compared with the control group.
*** denotes p < 0.001 compared with the control group.

2.2. Inorganic Arsenic Induces Gene Expression of Hepatic Inflammatory Cytokines in Mice

Accompanied with up-regulated phenotypic molecules and chemokines, one addi-
tional peculiarity of macrophages is that they release a plethora of cytokines to communicate
with other cells, thereby orchestrating immune responses. Next, we examined effects of
the metalloid on gene expression of inflammatory cytokines by using real-time qPCR. As
shown in Figure 2A–C, our data indicated that treatment with acute arsenic exposure time-
dependently up-regulated transcription activity of the proinflammatory cytokines Tnf-α
and Il-β in liver, which both peaked at 24 h (Figure 2A,B). Similarly, the metalloid induced
the gene expression of Il-6 at 6 h, then time-dependently decreased till 72 h (Figure 2C).
After having confirmed up-regulation of proinflammatory cytokines, we next detected
the expression of anti-inflammatory cytokines. Analogously, acute oral administration of
arsenite also activated the transcription of genes Il-4 and Il-10. In particular, the gene Il-10
was 1.82 folds that of control group at 24 h. Together with all above results, we confirmed
the hepatic macrophage polarization after a single oral administration of NaAsO2.
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mRNA levels normalized to Gapdh are shown at different time points after an oral administration 
of NaAsO2. Data are presented as mean ± SD (n = 4). * denotes p < 0.05 compared with the control 
group. ** denotes p < 0.01 compared with the control group. *** denotes p < 0.001 compared with the 
control group. 
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time course of redox-related indexes H2O2, GSH and MDA in the liver of mice treated by 
a single oral administration of NaAsO2. As shown in Figure 3A, we found that acute arse-
nic exposure time-dependently induced the accumulation of H2O2, a main type of ROS, in 
the liver [14]. H2O2 levels peaked at 6 h, which was 2.06 folds that of control group. GSH, 
the most effective antioxidant, existed in various tissues [15], increased in the liver at 24 
h, and was higher than the control group by 87.38% (Figure 3B). MDA, an end production 
of lipid peroxidation [16], slightly increased at 6 and 24 h, which was not significant from 
control group (Figure 3C). These data together verified that acute arsenic exposure could 
induce hepatic redox imbalance in mice. 

Figure 2. Enhanced gene expression of inflammatory cytokines in the livers of acute arsenic-exposed
mice. (A–C) gene expression of proinflammatory cytokine Tnf-α, Il-1β and Il-6, (D,E) as well as anti-
inflammatory cytokines Il-4 and Il-10 in liver were determined by real-time qPCR, of which relative
mRNA levels normalized to Gapdh are shown at different time points after an oral administration
of NaAsO2. Data are presented as mean ± SD (n = 4). * denotes p < 0.05 compared with the control
group. ** denotes p < 0.01 compared with the control group. *** denotes p < 0.001 compared with the
control group.

2.3. Inorganic Arsenic Induces Hepatic Redox Imbalance in Mice

In consideration of the proinflammatory property of ROS, it is then reasonable to
speculate whether the metalloid can initiate ROS-dependent inflammatory responses in
the liver. To judge the hepatic redox states upon arsenic exposure, we first determined the
time course of redox-related indexes H2O2, GSH and MDA in the liver of mice treated by a
single oral administration of NaAsO2. As shown in Figure 3A, we found that acute arsenic
exposure time-dependently induced the accumulation of H2O2, a main type of ROS, in the
liver [14]. H2O2 levels peaked at 6 h, which was 2.06 folds that of control group. GSH, the
most effective antioxidant, existed in various tissues [15], increased in the liver at 24 h, and
was higher than the control group by 87.38% (Figure 3B). MDA, an end production of lipid
peroxidation [16], slightly increased at 6 and 24 h, which was not significant from control
group (Figure 3C). These data together verified that acute arsenic exposure could induce
hepatic redox imbalance in mice.
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Figure 3. Imbalanced redox homeostasis in the liver of acute arsenic-exposed mice. (A–C) redox-
related indexes H2O2, GSH and MDA in the liver were detected by biochemical kits at different time
points after an oral administration of NaAsO2. Data are presented as mean ± SD (n = 4). *** denotes
p < 0.001 compared with Control (0 h) group.

2.4. Inorganic Arsenic Activates PINK1/Parkin-Mediated Mitophagy in the Livers of Acute
Arsenic-Exposed Mice

After having confirmed acute inorganic arsenic-induced hepatic redox imbalance
and subsequent macrophage polarization in the liver, we ruminated about how to seek
effective molecule targets to ameliorate arsenical oxidative and immune toxicity. Based on
these considerations, we found that PINK1/Parkin-mediated mitophagy could effectively
clear damaged mitochondria, preventing mtROS from bursting and provoking cascaded
inflammation in the entire cells [17]. Consequently, western blotting and real-time qPCR
were performed to detect hepatic protein expression of PINK1/Parkin-mediated mitophagy.
As shown in Figure 4A–E, we observed the highest expression of PINK1 and Parkin at 24 h,
which were 1.96 and 1.28 folds that of the control group, after the single oral administration
of NaAsO2 (Figure 4A,D). Accompanied with the upregulation of PINK1 and Parkin,
autophagy-related protein p62 and LC3 II/I were also verified to increase both at 6 and 72 h
(Figure 4A,D). Consistently, mRNA levels of Pink1, Parkin, p62 and Lc3 were confirmed to
increase in the liver at 6 or 24 h, after the treatment with the metalloid (Figure 4C,E). These
data together suggested that acute arsenic exposure activated the PINK1/Parkin-mediated
mitophagy in liver.
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different time points after an oral administration of NaAsO2. Data were presented as mean ± SD (n 
= 4). * denotes p < 0.05 compared with the control group. ** denotes p < 0.01 compared with the 
control group. *** denotes p < 0.001 compared with the control group. 
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pharmacological inhibition of PINK1 appeared to be conducted successfully in the livers 
of arsenic-exposed mice. In addition, the pharmacological inhibition of PINK1 promoted 
the inorganic arsenic-induced production of H2O2, which represented the anabatic redox 
imbalance (Figure 5B). Driven by the hypothesis that PINK1/Parkin-mediated mitophagy 
could resist arsenic-induced up-regulation of phenotypic molecules, chemokines and 
pro/anti-inflammatory cytokines, we screened above targets potentially regulated by 
PINK1/Parkin-mediated mitophagy. As shown in Figures 5C–G, our results denoted that 
restrained PINK1/Parkin-mediated mitophagy by CsA could promote arsenic-induced 
gene expression of Inos, Mcp-1, Mip-2, Tnf-α, Il-1β, Il-6 and Il-4, while analogous effects 
were not observed for Arg1 and Il-10 in liver (Figure 5D,K). Therefore, these data jointly 
suggested that PINK1/Parkin-mediated mitophagy might suppress the expression of Inos, 
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Figure 4. Activated PINK1/Parkin-mediated mitophagy in the livers of acute arsenic-exposed mice.
(A) hepatic expression of proteins PINK1, Parkin, p62, LC3II/I were determined by Western blotting,
of which protein densities are shown (B,D), (C,E) gene expression of Pink1, Parkin, p62 and Lc3 were
determined by real-time qPCR, of which relative mRNA levels normalized to Gapdh are shown, at
different time points after an oral administration of NaAsO2. Data were presented as mean ± SD
(n = 4). * denotes p < 0.05 compared with the control group. ** denotes p < 0.01 compared with the
control group. *** denotes p < 0.001 compared with the control group.

2.5. PINK1/Parkin-Mediated Mitophagy Resists Arsenic-Induced Gene Expression of
Inflammatory Cytokines in Liver

To further probe how PINK1/Parkin-mediated mitophagy exerts in inorganic arsenic-
mediated hepatic macrophages polarization, we tried to constrain PINK1/Parkin-mediated
mitophagy by inhibiting PINK1 expression with the pharmacological inhibitor CsA. As
shown in Figure 5A, intraperitoneal injection with 10 mg/kg CsA significantly suppressed
the inorganic arsenic-induced PINK1 expression and demonstrated that the pharmaco-
logical inhibition of PINK1 appeared to be conducted successfully in the livers of arsenic-
exposed mice. In addition, the pharmacological inhibition of PINK1 promoted the in-
organic arsenic-induced production of H2O2, which represented the anabatic redox im-
balance (Figure 5B). Driven by the hypothesis that PINK1/Parkin-mediated mitophagy
could resist arsenic-induced up-regulation of phenotypic molecules, chemokines and
pro/anti-inflammatory cytokines, we screened above targets potentially regulated by
PINK1/Parkin-mediated mitophagy. As shown in Figure 5C–G, our results denoted that
restrained PINK1/Parkin-mediated mitophagy by CsA could promote arsenic-induced
gene expression of Inos, Mcp-1, Mip-2, Tnf-α, Il-1β, Il-6 and Il-4, while analogous effects
were not observed for Arg1 and Il-10 in liver (Figure 5D,K). Therefore, these data jointly
suggested that PINK1/Parkin-mediated mitophagy might suppress the expression of Inos,
Mcp-1, Mip-2, Tnf-α, Il-1β, Il-6 and Il-4, which partially protects against arsenic-induced
macrophage polarization in liver.
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of iNOS that compete with Arg1 for L-arginine. By inhibiting iNOS, Arg1 may promote 
the alternatively activated macrophages and contributes to the suppression of the classi-
cally activated macrophages [20,21]. Judging from the up-regulation of iNOS and Arg1, 
our results revealed that a single oral administration of NaAsO2 obviously initiated the 
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Figure 5. Compromised PINK1/Parkin-mediated mitophagy strengthened arsenic-induced gene
expression of inflammatory cytokines in liver. (A) hepatic expression of protein PINK1 were deter-
mined by Western blotting, of which protein densities are shown (B), (C–K) gene expression of Inos,
Arg1, Mcp-1, Mip-2, Tnf-α, Il-1β, Il-6, Il-4 and Il-10 were determined by real-time qPCR, of which
relative mRNA levels normalized to Gapdh in the livers of arsenic-exposed mice after pretreatment
with 10 mg/kg CsA for 2 h are shown. Data are presented as mean ± SD (n = 6). * denotes p < 0.05
compared with the NaAsO2 group. ** denotes p < 0.01 compared with the control group. *** denoted
p < 0.001 compared with the NaAsO2 group. **** denotes p < 0.001 compared with the NaAsO2 group.

3. Discussion

More recent research has reported that the liver is not only a metabolic and detox-
ifying organ, but also an important immunological organ with numerous innate and
adaptive immune cells [18]. Mitophagy has been proved to sweep damaged mitochon-
dria away in a timely manner to protect cellular environmental homeostasis from oxida-
tive imbalance and subsequent tissue inflammation. However, the mechanism in which
PINK1/Parkin-mediated mitophagy participates in regulating inorganic arsenic-modulated
hepatic macrophage polarization have not been elucidated. In the current study, we demon-
strated that acute arsenic exposure could induce hepatic macrophage polarization with
up-regulation of phenotypic molecules, chemokines and inflammatory cytokines. Besides
these, PINK1/Parkin-mediated mitophagy might inhibit arsenic-induced gene expression
of phenotypic molecules, chemokines and inflammatory cytokines, which partially restrain
macrophage polarization in liver.

Macrophages play vital roles in immune defense and provide them with innate im-
mune surveillance in the liver, in which macrophages are the largest group of innate
immune cells [19]. Generally speaking, classically activated macrophages express high
levels of iNOS that compete with Arg1 for L-arginine. By inhibiting iNOS, Arg1 may
promote the alternatively activated macrophages and contributes to the suppression of
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the classically activated macrophages [20,21]. Judging from the up-regulation of iNOS
and Arg1, our results revealed that a single oral administration of NaAsO2 obviously
initiated the pro/anti-inflammatory macrophage differentiation, eliciting inflammatory
responses. Analogously, phenotypic molecules iNOS and Arg1 were also noted to increase
in the livers of mice exposed to arsenite [22,23]. Compelling evidence exists that show
that macrophage infiltration into the liver is primarily controlled by the CeC chemokine
receptor 2 (CCR2) and its main ligand MCP-1 in mice [12]. In addition, MIP-2, a classical
chemokine of neutrophil, could also be secreted by activated macrophages in the early stage
of inflammation to mobilize other immune cells, exacerbating the inflammatory responses.
In this manuscript, we found that acute arsenic treatment persistently induced expres-
sion of gene Mcp-1 and Mip-2, which also were observed in arsenic-induced liver fibrosis
in mice [24].

Macrophages promote inflammatory cascades by secreting various cytokines, the
signaling proteins that are produced transiently and exert pleiotropic effects on cells, to
initiate and constrain inflammatory responses to pathogens and injury. Among these cy-
tokines, TNF-α is a potent proinflammatory cytokine secreted by immune cells, particularly
activated macrophages, but also neutrophils, dendritic cells and NK cells [25]. Normally,
IL-6 contributes to host defense through the stimulation of acute phase responses. Once
dysregulated, continual synthesis of IL-6 will play a pathological effect on chronic inflam-
mation [26]. IL-1β is one of the most crucial mediators of inflammation and host responses
to pathological damage [27]. In the current research, we verified hepatic inflammation stim-
ulated by the external metalloid with up-regulation of proinflammatory cytokines TNF-α,
IL-1β and IL-6. In agreement with our results, it has been reported that TNF-α, IL-1β and
IL-6 were dramatically elevated in the liver of arsenic-treated mice or rats [24,28,29]. Not
only that, macrophages also secrete a cascade of other anti-inflammatory cytokines such as
IL-4 and IL-10. IL-10, produced mainly by alternatively activated macrophages, T helper
2 cells and regulatory T cells, is an important immuno-regulatory cytokine [30]. This series
of anti-inflammatory cytokines limits and terminates inflammatory responses by inhibiting
the synthesis of many pro-inflammatory cytokines and regulating the differentiation and
proliferation of macrophages. Previous studies revealed that sustained arsenic exposure
increased the IL-4 and IL-10 levels in serum and liver, respectively [31,32], which is concor-
dant with our findings of enhanced gene expression of Il-4 and Il-10 in the livers of acute
arsenic-exposed mice.

More than 90% of ROS is derived from mitochondria, and excessive ROS could accel-
erate mitochondria dysfunction and diffuse to the cytosol, acting as a signaling molecule to
trigger a pathological reaction, which generates a undesirable feedback loop [33]. To con-
front redundant accumulation of H2O2, we speculated that reductive GSH was promptly
produced and effectively ameliorated H2O2 accumulation in liver, withstanding the subse-
quent production of MDA. Concordant with our results, previous research reported that
treatment of 5–20 mg/kg NaAsO2 induced elevation of MDA and depletion in physiolog-
ical antioxidant content such as superoxide dismutase (SOD) and catalase (CAT) in the
liver [34–36]. Overall, our results therefore jointly revealed the obvious redox imbalance
upon acute arsenic exposure. Mitophagy is a vital form of autophagy for the selective
removal of dysfunctional or redundant mitochondria. Accumulating evidence implicate the
elimination of dysfunctional mitochondria as a powerful means employed by autophagy to
keep the redox state and immune system in check [37,38]. PINK1/Parkin is the best charac-
terized signaling pathway so far and is recognized as the major regulatory system involved
in mitophagy [39]. In our current study, we found that compromised PINK1/Parkin-
mediated mitophagy could promote the inorganic arsenic-induced production of H2O2, as
well as gene expression of Inos, Mcp-1, Mip-2, Tnf-α, Il-1β, Il-6 and Il-4, which demonstrates
that PINK1/Parkin-mediated mitophagy might ameliorate production of ROS, partially
protecting against arsenic-induced macrophage polarization in liver. Consistent with this
finding, Patoli et al. reported that the inhibition of mitophagy was an early feature of
macrophage activation, which efficiently promoted an increase in macrophage activation
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markers including CD64, CD80, TNF-α, IL-6 and iNOS. In the absence of autophagy, release
of mitochondrial DNA (mtDNA), a damage-associated molecular patterns (DAMPs), was
verified to enhanced production of IL-6 through the activation of the nuclear factor kappa
B subunit (NF-κB) pathway via the toll like receptor 9 (TLR9) [40]. Moreover, Xu et al.
observed that silencing of PINK1 amplified mtDNA-NLRP3 association in the presence
of anoxia/reoxygenation (A/R), as well as release of IL-1β and overexpression of PINK1
diminished above the effects [38]. Sliter et al. subjected wild-type, Pink1−/−, and Parkin−/−

mice to exhaustive exercise, then observed that multiple cytokines such as IL-6, IL-12, IL-13,
MCP-1 and MIP-1β were elevated in the serum of Pink1−/− or Parkin−/− mice [41].

In this paper, our results are partially in contrast to previous reports of investigations
with experimental animals, such as preponderant alternatively activated macrophage
polarization with permanent arsenic exposure [23]. The variations may be related to
different exposure durations, doses, and/or experimental systems. We speculated that the
both activation of classically activated and alternatively activated macrophages was due
to a temporary immune response upon a single oral administration of arsenite. Sustained
arsenic exposure studies as well as effects of PINK1/Parkin-mediated mitophagy involved
were thus extremely necessary. At present, many puzzles concerning the role of mitophagy
in the immune system and disease context remain to be solved. Not only that, research
into the crosstalk of distinctive forms of mitophagy in the regulation of immunity is still
lacking. Based on these above, more experiments are required to demonstrate the potential
mechanism, by which PINK1/Parkin-mediated mitophagy effectively restricts inorganic
arsenic-induced immune injury in vivo.

4. Materials and Methods
4.1. Animals and Experimental Procedures

Thirty-six female C57BL/6 mice (weighing 18–23 g, 6–8 weeks old) were purchased
from Beijing Huafukang Biotechnology Co., Ltd. [SCXK (Jing)2019-0008; Beijing, China].
Upon arrival, the mice were maintained in a 12-h/12-h light/dark cycle and provided with
food and water ad libitum for 1 week before the experiment. All experiments and surgical
procedures were approved by the Committee on the Ethics of North China University of
Science and Technology (LX2019033), which complies with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals. All efforts were made to minimize the
number of animals used and their suffering.

The sodium arsenite (NaAsO2, ≥99.0%) was purchased from Sigma Chemical Co. (St.
Louis, MO, USA). The concentration of NaAsO2 was selected on the basis of previously
published studies [42,43] as well as our preliminary experiments (10% LD50). Acute arsenic
exposure murine model was conducted by NaAsO2 (10 mg/kg) intragastrically for 6, 24, 48
and 72 h, respectively. In addition, pretreatment with a single intraperitoneal administration
of ciclosporin A (CsA, 10 mg/kg) for 2 h, then mice were exposed to NaAsO2 (10 mg/kg)
intragastrically for 6/24 h. Control mice were treated with saline only. At each end point of
the treatment, all mice were weighed and killed by ether anesthesia. The entire liver of the
control and acute arsenite-exposed mice were promptly removed and weighed, and then
stored at −80 ◦C for future use.

4.2. Western Blot Analysis

Western blotting was performed as previously described [43]. Primary antibodies
included polyclonal rabbit antibodies to PINK1 (A7131, Company ABclonal, Wuhan,
China), Parkin (ET1702-60, Hangzhou Huaan Biotechnology Co., Ltd. Hangzhou, China),
SQSTM1/p62 (PM045, MBL Beijing Biotech Co., Ltd. Beijing, China), LC3 (PM036, MBL
Beijing Biotech Co., Ltd. Beijing, China), and β-actin (66009-1-IG, Proteintech Group, Inc.,
Rosemont, IL, USA) at a dilution of 1:1000. After three washes and incubation with goat
anti-rabbit or anti-mouse secondary antibodies (S1001/S1002, SeraCare, Gaithersburg, MD,
USA) at a dilution of 1:5000 in blocking buffer, immunoblots were visualized using ECL
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prime Western blotting detection reagent (ZD310A, ZomanBio, Beijing, China). The results
were normalized against the β-actin expression level and corresponding control.

4.3. Total RNA Isolation and Real-Time qPCR Analysis

Total RNA of the liver from experimental mice was isolated using a Trizol Reagent
(Invitrogen, Carlsbad, CA, USA). Real-time PCR was conducted using a twostep method
with an ABI QuantStudio™ 6 Flex PCR System (Applied Biosystems, Inc., Norwalk, CT,
USA). Briefly, 500 ng of total RNA was reverse-transcribed to cDNA using M5 Super plus
qPCR RT kit with gDNA remover (Mei5 Biotechnology, Co., Ltd., Beijing, China), and PCR
amplification was performed by 2X M5 HiPer Realtime PCR Super mix with Low Rox kit
(Mei5 Biotechnology, Co., Ltd., Beijing, China). PCR amplification conditions were: 1 cycle
of initial denaturation (95 ◦C for 30 s), and 40 cycles of amplification (95 ◦C for 5 s and
60 ◦C for 34 s). Primers for mouse genes designed by PRIMER 3 software and synthesized
by RuiBiotech (Beijing, China) were shown in Table 1.

Table 1. Primer Sequences Used for the Amplification of Each Gene.

Gene Name
Primer Sequence (5′–3′) Amplicon Size (bp)

Accession Number

iNOS ACCCCTGTGTTCCACCAGGAGATGTTGAA
189(NM_001313922.1) TGAAGCCATGACCTTTCGCATTAGCATGG

Arg1 CTCCAAGCCAAAGTCCTTAGAG
185(NM_007482.3) AGGAGCTGTCATTAGGGACATC

Mcp-1 TGAGTAGGCTGGAGAGCTACAA
123(NM_053647.1) ATGTCTGGACCCATTCCTTC

Mip-2 CCCCAAAGGGATGAGAAGTTC
323(NM_053647.1) GGCTTGTCACTCGAATTTTGAGA

Tnf-α CCCCAAAGGGATGAGAAGTTC
101(NM_013693) GGCTTGTCACTCGAATTTTGAGA

Il-1β TGACCTGGGCTGTCCTGATG
160(NM_008361) GGTGCTCATGTCCTCATCCTG

Il-6 CTGCAAGAGACTTCCATCCAG
131(NM_031168) AGTGGTATAGACAGGTCTGTTGG

Il-4 GGTCTCAACCCCCAGCTAGT
102(NM_021283) GCCGATGATCTCTCTCAAGTGAT

Il-10 GGGGCCAGTACAGCCGGGAA
101(NM_010548) CTGGCTGAAGGCAGTCCGCA

Pink1 CACACTGTTCCTCGTTATGAAGA
157(NM_036164400.1) CTTGAGATCCCGATGGGCAAT

Parkin TCTTCCAGTGTAACCACCGTC
115(NM_NM_016694.4) GGCAGGGAGTAGCCAAGTT

Sqstm1/p62 GAACTCGCTATAAGTGCAGTGT
131(NM_001290769.1) AGAGAAGCTATCAGAGAGGTGG

Map1lc3b CGCTTGCAGCTCAATGCTAAC
93(NM_001364358.1) CTCGTACACTTCGGAGATGGG

Gapdh TGTGTCCGTCGTGGATCTGA
150(NM_001289726.1) TTGCTGTTGAAGTCGCAGGAG

4.4. Analysis of H2O2 Content in Liver

The liver was isolated and washed with normal saline to remove blood and clots.
Then, homogenate was centrifuged and the supernatant was used for biochemical analyses.
The protein concentration in the supernatant was determined by the BCA Protein Assay
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Kit (EpiZyme, Shanghai, China). The content of H2O2 in gastric submucosal arteries was
assessed using a commercially available kit (Jiancheng Biological Institute, Nanjing, China).
H2O2 was bound with molybdenic acid to form a complex, which was measured at 405 nm
and the content of H2O2 was then calculated. The levels of H2O2 in liver were finally
expressed as mmol/g protein.

4.5. Analysis of GSH Levels in Liver

GSH levels were determined by the modified 5,5′-dithiobis 2-nitrobenzoic acid (DTNB)
method using a commercially available kit according to the manufacturer’s recommended
protocol (Jiancheng Biological Institute, Nanjing, China). Briefly, the liver from mice was
washed with normal saline to remove blood and clots, and then homogenized on ice
with 5 mL 5% trichloroacetic acid (TCA) per gram of tissue weight. Homogenates were
centrifuged at 1000× g for 15 min at 4 ◦C and the aliquots samples of the supernatants
were then used for the analysis of GSH. The levels of GSH in liver were finally expressed
as µmol/g protein.

4.6. Analysis of MDA Levels in Liver

The livers of experimental mice were homogenized on ice with 9 mL (5 mmol/L
containing 2 mmol/L EDTA, PH 7.4) per gram of tissue weight. Homogenates were then
centrifuged at 1000× g for 10 min at 4 ◦C and the supernatants were used for the analysis
of MDA in liver according to each manufacturer’s recommended protocol (Jiancheng
Biological Institute, Nanjing, China). The thiobarbituric acid reaction (TBAR) method was
used to determine MDA and the levels were expressed as nmol/mg protein.

4.7. Statistical Analysis

A statistician was consulted before the start of the experiment for the minimum
number of mice required to give viable statistical and reproducible data and for statistical
analysis. Data were presented as mean ± SD. All statistical analyses were performed using
Graphpad Prism 8 software (GraphPad Software, San Diego, CA, USA). One-way ANOVA
with Dunnett-t or independent-Samples t-test were performed, depending on the data.

5. Conclusions

In summary, our results indicate that acute arsenic exposure disrupted the hepatic
redox balance and induces macrophage polarization by up-regulating expression of charac-
teristic phenotypic molecules, chemokines and pro/anti-inflammatory cytokines. Not only
that, it is possible that the PINK1/Parkin-mediated mitophagy renders hepatic macrophage
refractory to arsenic-induced up-regulation of gene Inos, Mcp-1, Mip-2, Tnf-α, Il-1β, Il-6 and
Il-4. In this regard, this is the first time that the protective effects of PINK1/Parkin-mediated
mitophagy in inorganic arsenic-induced hepatic macrophage polarization in vivo have
been reported. Based on these experimental data, it appears that this research further
replenishes arsenical immunotoxicity and provides new theoretical clues to protect against
arsenic poisoning.
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