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Abstract: Deamination of 1-aminoalkylphosphonic acids in the reaction with HNO2 (generated “in
situ” from NaNO2) yields a mixture of substitution products (1-hydroxyalkylphosphonic acids),
elimination products (vinylphosphonic acid derivatives), rearrangement and substitution products
(2-hydroxylkylphosphonic acids) as well as H3PO4. The variety of formed reaction products suggests
that 1-phosphonoalkylium ions may be intermediates in such deamination reactions.
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1. Introduction

Organophosphorus compounds are a very interesting class of molecules well known to
exist in nature, exhibit very intriguing activity, and have already found broad applications
in various sectors of industry, such as in agrochemistry [1], pharmacy [2], catalysis [3],
materials [4], as flame retardants [5], or chemical reagents [6]. Particular interest is devoted
to substituted 1-aminoalkylphosphonic acids that can be considered structural analogs of
natural 2-aminoalkanoic acids [7–9]. In that regard, the use of 1-aminoalkylphosphonic
acids in drug discovery has proven successful in many cases, with prominent examples
being potential drugs for the treatment of diabetes [10,11], asthma [12], inflammation [13],
heart failure [14], cancer [15], malaria [16], and HIV [17]. Due to the importance of the
1-aminoalkylphosphonic acids, several synthetic methods for their preparation have been
designed over the years [18–26].

Surprisingly, further transformations of 1-aminoalkylphosphonic acids and their reac-
tivity as reaction substrates in organic synthesis are scarcely described in the literature [27–33].
Those described include among others alkaline deacylation of 1-(acylamino)alkylphosphonic
acids, ref. [31] oxidative dephosphorylation of 1-aminoalkylphosphonic acids [32], oxida-
tion of 1-(N,N-dialkylamino)-alkylphosphonic acids leading to corresponding N,N-dialkyl-
N-oxide derivatives [30], or recently effective preparation of 1-aminoalkylphosphonic
acid quaternary ammonium salts from simple 1-aminoalkylphosphonic acid [27]. On the
other hand, the use of analogous 2-aminoalkanoic acids as substrates, particularly in di-
azotization reaction, is a well-known methodology that yields 2-hydroxyalkanoic acids
or 2-chloroalkanoic acids (Scheme 1a) [34–37], useful building blocks in medicinal chem-
istry [38–40], total synthesis of natural products [41–43], and polymer chemistry [44–46].
Inspired by the activity and utility of 2-amino acids in diazotization reactions we decided to
study the reactivity of 1-aminoalkylphosphonic acids in deamination by the diazotization
reaction (Scheme 1d). It is well known that the amine group reacts with nitrous acid
(HNO2) generated by the acidification of aqueous solutions of sodium nitrite (NaNO2)
with a mineral acid to yield diazonium salts, followed by reaction with various nucle-
ophiles [47]. However, aliphatic diazonium salts are commonly unstable, and the formation
of carbenium ion intermediate is inevitable, which causes complications with controlling
the selectivity of such reaction [47,48].
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and the reaction products are hydroxyalkylidene-1,1-diphosphonic acids, chloroalkyli-
dene-1,1-diphosphonic acids, and derivatives of vinylphosphonic acid (Scheme 1c). It is 
worth mentioning that 1-phosphonoalkylium ions 9, which may be intermediates in the 
deamination reaction of 1-aminoalkylphosphonic acids 1, have also not been extensively 
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Scheme 1. General presentation of deamination reaction carried out on 2-aminoalkanoic acids and
their phosphorus analogs [34–37,49–53].

While the deamination of 2-aminoalkanoic acids as substrates has been described in a
great number of articles, reactions of structurally similar 1-aminoalkylphosphonic acids are
scarcely described in the literature. In 1950 [49] and 1954 [50], Kabachnik and Medved de-
scribed the analytical applications of the deamination reaction of aminomethylphosphonic
acid and 1-amino-1-phenylethylphosphonic acid with nitrous oxides in which hydrox-
ymethylphosphonic acid and 1-hydroxy-1-phenylethylphosphonic acids were formed re-
spectively (Scheme 1b). Much later, reactions of related aminoalkylidene-1,1-diphosphonic
acids with nitrous acid were described by Blum and Worms [51–53]. The authors concluded
that carbenium ions with two phosphonic groups are formed and the reaction products
are hydroxyalkylidene-1,1-diphosphonic acids, chloroalkylidene-1,1-diphosphonic acids,
and derivatives of vinylphosphonic acid (Scheme 1c). It is worth mentioning that 1-
phosphonoalkylium ions 9, which may be intermediates in the deamination reaction of
1-aminoalkylphosphonic acids 1, have also not been extensively studied in the literature.
Only theoretical calculations for the simplest phosphonomethylium ion (9h) (which ex-
ist in the cyclic form 10h) have been described by Pasto (Scheme 2a) [54]. On the other
hand, Creary et al. studied the formation of carbenium ions substituted with phosphonic
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ester group 11 in the solvolysis reactions of mesylates 12 [55–58]. Experiments on the
α-deuterium isotope effect proved that intermediates have an open form 11 and that no
cyclic compounds 13 are formed (Scheme 2b). Intrigued by the very scarce literature re-
ports on the deamination of 1-aminoalkylphosphonic acids, and interested in revealing
the reactivity of the 1-phosphonoalkylium ions, possible intermediates in deamination of
1-aminoalkylphosphonic acids, we decided to study this interesting reaction in greater
detail (Scheme 1d).
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Herein we present the results of our detailed study on the deamination reaction of
structurally diverse 1-aminoalkylphosphonic acids carried out with nitrous acid. The
presented results show the potential application of this transformation in organic synthesis
and shed light on the possible reaction mechanism and reaction intermediates.

2. Results

For our study, we selected a representative and structurally diverse palette of 1-
aminoalkylphosphonic acids (Figure 1, 17 examples). The selected examples include
phosphorus analogs of such amino acids as alanine 1a, valine 1b, leucine 1d, glycine 1h,
phenylalanine 1g, and phenylglycine 1f.

2.1. Diazotization of 2-Aminoalkanoic Acids vs. 1-Aminoalkylphosphonic
Acids—Preliminary Experiments

We started our preliminary experiments using the conditions applied for the diazotiza-
tion of 2-aminoalkanoic acids (NaNO2, 5M HCl) (Scheme 3) [59]. Preliminary experiments
clearly showed that 1-aminoalkylphosphonic acids reacted with nitrous acid (HNO2), gen-
erated in situ from sodium nitrite (NaNO2), differently than the tested amino acids. The
degree of conversion in the case of 1-aminoalkylphosphonic was slightly higher than in
the case of classical amino acids. No other products than the ones depicted on Scheme 3
were observed and they were additionally accompanied by unreacted starting material.
Under the examined conditions, no selectivity towards chloride ions was observed and
1-hydroxyalkylphosphonic acids were the main reaction products.

Moreover, in the case of amino acids 2, as expected, the main reaction products were
1-hydroxy or 1-chloroalkanoic acids, while in the case of 1-aminoalkylphosphonic 1 a
greater number of reaction products, including rearrangement and fragmentation products,
were observed (Scheme 3).
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Due to the complex composition of post-reaction mixtures, we decided to modify the
original reaction conditions used for the diazotization of amino acids. Expecting to obtain
complex reaction mixtures, we wanted to focus first on generating the carbenium ions and
then observe their reactivity with just a limited number of nucleophiles to simplify the



Molecules 2022, 27, 8849 5 of 16

analysis of the results. Based on the literature data describing the diazotization of amino
acids, we envisaged that the most important parameter is the initial pH of the reaction
mixture [60–63]. Lowering the pH should increase the concentration of the electrophilic
nitrosating agent, but at the same time causes the protonation of the amino group in
the starting 1-aminoalkylphosphonic acids, which lowers the nucleophile concentration.
Additionally, we have assumed that 1-aminoalkylphosphonic acids are strong enough acids
to generate the nitrosating agent in situ from sodium nitrite in water, therefore there is no
need to use hydrochloric acid in the reaction. After this simplification, the only nucleophiles
in the reaction mixture were nitrite ions and water.

2.2. Diazotization of 1-Aminoalkylphosphonic Acids—Optimized Reaction Conditions

When 1-aminoalkylphosphonic acid 1 (1 equiv.) was added to the solution of NaNO2
(2 equiv.), nitrogen evolution was observed, which proved that diazonium salts 8 were
generated. The post-reaction mixtures contained products of substitution reaction (1-
hydroxyalkylphosphonic acids 5), elimination reaction (vinylphosphonic acid derivatives 7),
and additionally 2-hydroxyalkylphosphonic acids 5′ and phosphoric acid (H3PO4).

We have observed that the product distribution in these reactions depended strongly
on the structure of the starting 1-aminoalkylphosphonic acid 1, therefore the reaction results
are outlined in Tables 1–4, according to the structure of the substrates used.

To avoid the formation of secondary products, the crude post-reaction mixtures were
analyzed directly by NMR spectroscopy without isolation of the reaction products, and
thus the results are given in the form of conversion. In all cases, the structures of reaction
products were confirmed by NMR spectroscopy (especially 31P NMR and 1H NMR) by
the addition of known reference compounds (synthesized separately) or by analysis and
comparison of the NMR spectra of the crude reaction mixture with spectra of products
known from the literature (see Supplementary Materials for more details).

Substitution was generally the main reaction for most of the investigated 1-aminoalkylphosphonic
acids 1 (Tables 1 and 2), especially for those that do not have protons in the β-position
(1f, 1n, 1h). For example, in the reaction of amino(phenyl)methylphosphonic acid (1f) the
conversion of substrate to hydroxy(phenyl)phosphonic acid (5f) was 97% (Table 2, entry 1).

In turn, elimination was the major reaction for 1-aminoalkylphosphonic acids 1q, 1l,
and 1i which have bulky substituents (Table 3). For substrates 1l and 1i, two isomers of
vinylphosphonic acid derivatives were formed: 7l, 7′l for 1l and 7i, 7′i for 1i. We assume
that in this case the steric hindrance impedes the access of nucleophiles and, as a result, the
elimination reaction is favored.

Furthermore, for substrates 1j, 1b, and 1k that have β-position migrating groups, the
major reaction product was phosphoric acid (H3PO4), accompanied by various amounts of
substitution products 5 and rearrangement products 5′.

While direct substitution on the diazonium group in 1-phosphonoalkenediazonium
salts 8 cannot be excluded (Scheme 4a), the complex composition of the post-reaction mix-
tures suggests that 1-phosphonoaklylium ions 9 may be intermediates in the diazotization
reaction of 1-aminoalkylphosphonic acids 1. This assumption is supported by the fact that
all typical products of carbenium ion reactions, especially rearrangement products 5′, were
observed simultaneously in the crude post-reaction mixtures (Scheme 4b). It has to be men-
tioned that the accepted mechanism of deamination of analogous aliphatic 2-aminoalkanoic
acids assumes the presence of α-lactones as reaction intermediates (Scheme 1a). As pos-
tulated, their formation is the reason for the high enantioselectivity of these reactions.
By analogy, in the reaction of 1-aminoalkylphosphonic acids similar cyclic intermediates,
namely 2-hydroxy-2-oxa-1,2-oxaphosphiranes 10, could also be postulated (Scheme 4c).
However, there is no experimental information about intermediate 10 described thus far
in the literature. In addition, our results indicate that the formation of 10 is unlikely. For
example, the reaction products of 3-amino-3-phosphonopropanoic acid (1e) with nitrous
acid may be explained by the assumption that 1-phosphonoalkylium ion 9e is formed
(Scheme 5). The 3-hydroxy-3-phosphonopropanoic acid (5e) is formed in the reaction of
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nucleophile (water) addition to 1-phosphonoalkylium ion 9e, while (E)-3-phosphonoacrylic
acid (7e) is formed as the result of proton elimination from 9e. Carbenium ion 9e also
undergoes fragmentation and as a result, vinylphosphonic acid (7a) and carbon dioxide
are formed.

Table 1. Reaction of HNO2 with 1-aminoalkylphosphonic acids 1 that are stabilized by substituents
in 1-position or those that cannot rearrange a.
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Table 2. Reaction of HNO2 with 1-aminoalkylphosphonic acids 1 that do not have protons in the
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Table 4. Reaction of HNO2 with 1-aminoalkylphosphonic acids 1 that have a migrating group in the
β-position a.

Molecules 2022, 27, x FOR PEER REVIEW 7 of 16 
 

 

3 
 

H 
 

9% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

In turn, elimination was the major reaction for 1-aminoalkylphosphonic acids 1q, 1l, 

and 1i which have bulky substituents (Table 3). For substrates 1l and 1i, two isomers of 

vinylphosphonic acid derivatives were formed: 7l, 7′l for 1l and 7i, 7′i for 1i. We assume 

that in this case the steric hindrance impedes the access of nucleophiles and, as a result, 

the elimination reaction is favored. 

Furthermore, for substrates 1j, 1b, and 1k that have -position migrating groups, the 

major reaction product was phosphoric acid (H3PO4), accompanied by various amounts 

of substitution products 5 and rearrangement products 5′. 

Table 3. Reaction of HNO2 with 1-aminoalkylphosphonic acids 1 having sterically hindered tertiary 

carbon atom a. 

 

Entry  Substrate R1 R1 Conversion of 1 to 5 b Conversion of 1 to 7 b 
Conversion of 1 to H3PO4 

b 

1  

 

C3H6 

 

 7% 

2 

 

iPr H 

 
  

7% 

3 

 

Me H 

   

8% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

Table 4. Reaction of HNO2 with 1-aminoalkylphosphonic acids 1 that have a migrating group in the 

β-position a. 

 

Entry  Substrate R1 R1 
Conversion of 1 to 

5 b 

Conversion of 1 to 7 
b 

Conversion of 1 to 

5′ b 

Conversion of 1 to 

H3PO4 b 

1  

 

Me H 

 

- 

 

86% 

Entry Substrate R1 R1 Conversion of
1 to 5 b

Conversion of
1 to 7 b

Conversion of
1 to 5′ b

Conversion of
1 to H3PO4

b

1

Molecules 2022, 27, x FOR PEER REVIEW 7 of 16 
 

 

3 
 

H 
 

9% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

In turn, elimination was the major reaction for 1-aminoalkylphosphonic acids 1q, 1l, 

and 1i which have bulky substituents (Table 3). For substrates 1l and 1i, two isomers of 

vinylphosphonic acid derivatives were formed: 7l, 7′l for 1l and 7i, 7′i for 1i. We assume 

that in this case the steric hindrance impedes the access of nucleophiles and, as a result, 

the elimination reaction is favored. 

Furthermore, for substrates 1j, 1b, and 1k that have -position migrating groups, the 

major reaction product was phosphoric acid (H3PO4), accompanied by various amounts 

of substitution products 5 and rearrangement products 5′. 

Table 3. Reaction of HNO2 with 1-aminoalkylphosphonic acids 1 having sterically hindered tertiary 

carbon atom a. 

 

Entry  Substrate R1 R1 Conversion of 1 to 5 b Conversion of 1 to 7 b 
Conversion of 1 to H3PO4 

b 

1  

 

C3H6 

 

 7% 

2 

 

iPr H 

 
  

7% 

3 

 

Me H 

   

8% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

Table 4. Reaction of HNO2 with 1-aminoalkylphosphonic acids 1 that have a migrating group in the 

β-position a. 

 

Entry  Substrate R1 R1 
Conversion of 1 to 

5 b 

Conversion of 1 to 7 
b 

Conversion of 1 to 

5′ b 

Conversion of 1 to 

H3PO4 b 

1  

 

Me H 

 

- 

 

86% Me H

Molecules 2022, 27, x FOR PEER REVIEW 7 of 16 
 

 

3 
 

H 
 

9% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

In turn, elimination was the major reaction for 1-aminoalkylphosphonic acids 1q, 1l, 

and 1i which have bulky substituents (Table 3). For substrates 1l and 1i, two isomers of 

vinylphosphonic acid derivatives were formed: 7l, 7′l for 1l and 7i, 7′i for 1i. We assume 

that in this case the steric hindrance impedes the access of nucleophiles and, as a result, 

the elimination reaction is favored. 

Furthermore, for substrates 1j, 1b, and 1k that have -position migrating groups, the 

major reaction product was phosphoric acid (H3PO4), accompanied by various amounts 

of substitution products 5 and rearrangement products 5′. 

Table 3. Reaction of HNO2 with 1-aminoalkylphosphonic acids 1 having sterically hindered tertiary 

carbon atom a. 

 

Entry  Substrate R1 R1 Conversion of 1 to 5 b Conversion of 1 to 7 b 
Conversion of 1 to H3PO4 

b 

1  

 

C3H6 

 

 7% 

2 

 

iPr H 

 
  

7% 

3 

 

Me H 

   

8% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

Table 4. Reaction of HNO2 with 1-aminoalkylphosphonic acids 1 that have a migrating group in the 

β-position a. 

 

Entry  Substrate R1 R1 
Conversion of 1 to 

5 b 

Conversion of 1 to 7 
b 

Conversion of 1 to 

5′ b 

Conversion of 1 to 

H3PO4 b 

1  

 

Me H 

 

- 

 

86% -

Molecules 2022, 27, x FOR PEER REVIEW 7 of 16 
 

 

3 
 

H 
 

9% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

In turn, elimination was the major reaction for 1-aminoalkylphosphonic acids 1q, 1l, 

and 1i which have bulky substituents (Table 3). For substrates 1l and 1i, two isomers of 

vinylphosphonic acid derivatives were formed: 7l, 7′l for 1l and 7i, 7′i for 1i. We assume 

that in this case the steric hindrance impedes the access of nucleophiles and, as a result, 

the elimination reaction is favored. 

Furthermore, for substrates 1j, 1b, and 1k that have -position migrating groups, the 

major reaction product was phosphoric acid (H3PO4), accompanied by various amounts 

of substitution products 5 and rearrangement products 5′. 

Table 3. Reaction of HNO2 with 1-aminoalkylphosphonic acids 1 having sterically hindered tertiary 

carbon atom a. 

 

Entry  Substrate R1 R1 Conversion of 1 to 5 b Conversion of 1 to 7 b 
Conversion of 1 to H3PO4 

b 

1  

 

C3H6 

 

 7% 

2 

 

iPr H 

 
  

7% 

3 

 

Me H 

   

8% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

Table 4. Reaction of HNO2 with 1-aminoalkylphosphonic acids 1 that have a migrating group in the 

β-position a. 

 

Entry  Substrate R1 R1 
Conversion of 1 to 

5 b 

Conversion of 1 to 7 
b 

Conversion of 1 to 

5′ b 

Conversion of 1 to 

H3PO4 b 

1  

 

Me H 

 

- 

 

86% 86%

2

Molecules 2022, 27, x FOR PEER REVIEW 8 of 16 
 

 

2 

 

H H 

 

- 

 

59% 

3 

 

H Me 

   

40% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

While direct substitution on the diazonium group in 1-phosphonoalkenediazonium 

salts 8 cannot be excluded (Scheme 4a), the complex composition of the post-reaction mix-

tures suggests that 1-phosphonoaklylium ions 9 may be intermediates in the diazotization 

reaction of 1-aminoalkylphosphonic acids 1. This assumption is supported by the fact that 

all typical products of carbenium ion reactions, especially rearrangement products 5′, 

were observed simultaneously in the crude post-reaction mixtures (Scheme 4b). It has to 

be mentioned that the accepted mechanism of deamination of analogous aliphatic 2-ami-

noalkanoic acids assumes the presence of α-lactones as reaction intermediates (Scheme 

1a). As postulated, their formation is the reason for the high enantioselectivity of these 

reactions. By analogy, in the reaction of 1-aminoalkylphosphonic acids similar cyclic in-

termediates, namely 2-hydroxy-2-oxa-1,2-oxaphosphiranes 10, could also be postulated 

(Scheme 4c). However, there is no experimental information about intermediate 10 de-

scribed thus far in the literature. In addition, our results indicate that the formation of 10 

is unlikely. For example, the reaction products of 3-amino-3-phosphonopropanoic acid 

(1e) with nitrous acid may be explained by the assumption that 1-phosphonoalkylium ion 

9e is formed (Scheme 5). The 3-hydroxy-3-phosphonopropanoic acid (5e) is formed in the 

reaction of nucleophile (water) addition to 1-phosphonoalkylium ion 9e, while (E)-3-phos-

phonoacrylic acid (7e) is formed as the result of proton elimination from 9e. Carbenium 

ion 9e also undergoes fragmentation and as a result, vinylphosphonic acid (7a) and carbon 

dioxide are formed. 

H H

Molecules 2022, 27, x FOR PEER REVIEW 8 of 16 
 

 

2 

 

H H 

 

- 

 

59% 

3 

 

H Me 

   

40% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

While direct substitution on the diazonium group in 1-phosphonoalkenediazonium 

salts 8 cannot be excluded (Scheme 4a), the complex composition of the post-reaction mix-

tures suggests that 1-phosphonoaklylium ions 9 may be intermediates in the diazotization 

reaction of 1-aminoalkylphosphonic acids 1. This assumption is supported by the fact that 

all typical products of carbenium ion reactions, especially rearrangement products 5′, 

were observed simultaneously in the crude post-reaction mixtures (Scheme 4b). It has to 

be mentioned that the accepted mechanism of deamination of analogous aliphatic 2-ami-

noalkanoic acids assumes the presence of α-lactones as reaction intermediates (Scheme 

1a). As postulated, their formation is the reason for the high enantioselectivity of these 

reactions. By analogy, in the reaction of 1-aminoalkylphosphonic acids similar cyclic in-

termediates, namely 2-hydroxy-2-oxa-1,2-oxaphosphiranes 10, could also be postulated 

(Scheme 4c). However, there is no experimental information about intermediate 10 de-

scribed thus far in the literature. In addition, our results indicate that the formation of 10 

is unlikely. For example, the reaction products of 3-amino-3-phosphonopropanoic acid 

(1e) with nitrous acid may be explained by the assumption that 1-phosphonoalkylium ion 

9e is formed (Scheme 5). The 3-hydroxy-3-phosphonopropanoic acid (5e) is formed in the 

reaction of nucleophile (water) addition to 1-phosphonoalkylium ion 9e, while (E)-3-phos-

phonoacrylic acid (7e) is formed as the result of proton elimination from 9e. Carbenium 

ion 9e also undergoes fragmentation and as a result, vinylphosphonic acid (7a) and carbon 

dioxide are formed. 

-

Molecules 2022, 27, x FOR PEER REVIEW 8 of 16 
 

 

2 

 

H H 

 

- 

 

59% 

3 

 

H Me 

   

40% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

While direct substitution on the diazonium group in 1-phosphonoalkenediazonium 

salts 8 cannot be excluded (Scheme 4a), the complex composition of the post-reaction mix-

tures suggests that 1-phosphonoaklylium ions 9 may be intermediates in the diazotization 

reaction of 1-aminoalkylphosphonic acids 1. This assumption is supported by the fact that 

all typical products of carbenium ion reactions, especially rearrangement products 5′, 

were observed simultaneously in the crude post-reaction mixtures (Scheme 4b). It has to 

be mentioned that the accepted mechanism of deamination of analogous aliphatic 2-ami-

noalkanoic acids assumes the presence of α-lactones as reaction intermediates (Scheme 

1a). As postulated, their formation is the reason for the high enantioselectivity of these 

reactions. By analogy, in the reaction of 1-aminoalkylphosphonic acids similar cyclic in-

termediates, namely 2-hydroxy-2-oxa-1,2-oxaphosphiranes 10, could also be postulated 

(Scheme 4c). However, there is no experimental information about intermediate 10 de-

scribed thus far in the literature. In addition, our results indicate that the formation of 10 

is unlikely. For example, the reaction products of 3-amino-3-phosphonopropanoic acid 

(1e) with nitrous acid may be explained by the assumption that 1-phosphonoalkylium ion 

9e is formed (Scheme 5). The 3-hydroxy-3-phosphonopropanoic acid (5e) is formed in the 

reaction of nucleophile (water) addition to 1-phosphonoalkylium ion 9e, while (E)-3-phos-

phonoacrylic acid (7e) is formed as the result of proton elimination from 9e. Carbenium 

ion 9e also undergoes fragmentation and as a result, vinylphosphonic acid (7a) and carbon 

dioxide are formed. 

59%

3

Molecules 2022, 27, x FOR PEER REVIEW 8 of 16 
 

 

2 

 

H H 

 

- 

 

59% 

3 

 

H Me 

   

40% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

While direct substitution on the diazonium group in 1-phosphonoalkenediazonium 

salts 8 cannot be excluded (Scheme 4a), the complex composition of the post-reaction mix-

tures suggests that 1-phosphonoaklylium ions 9 may be intermediates in the diazotization 

reaction of 1-aminoalkylphosphonic acids 1. This assumption is supported by the fact that 

all typical products of carbenium ion reactions, especially rearrangement products 5′, 

were observed simultaneously in the crude post-reaction mixtures (Scheme 4b). It has to 

be mentioned that the accepted mechanism of deamination of analogous aliphatic 2-ami-

noalkanoic acids assumes the presence of α-lactones as reaction intermediates (Scheme 

1a). As postulated, their formation is the reason for the high enantioselectivity of these 

reactions. By analogy, in the reaction of 1-aminoalkylphosphonic acids similar cyclic in-

termediates, namely 2-hydroxy-2-oxa-1,2-oxaphosphiranes 10, could also be postulated 

(Scheme 4c). However, there is no experimental information about intermediate 10 de-

scribed thus far in the literature. In addition, our results indicate that the formation of 10 

is unlikely. For example, the reaction products of 3-amino-3-phosphonopropanoic acid 

(1e) with nitrous acid may be explained by the assumption that 1-phosphonoalkylium ion 

9e is formed (Scheme 5). The 3-hydroxy-3-phosphonopropanoic acid (5e) is formed in the 

reaction of nucleophile (water) addition to 1-phosphonoalkylium ion 9e, while (E)-3-phos-

phonoacrylic acid (7e) is formed as the result of proton elimination from 9e. Carbenium 

ion 9e also undergoes fragmentation and as a result, vinylphosphonic acid (7a) and carbon 

dioxide are formed. 

H Me

Molecules 2022, 27, x FOR PEER REVIEW 8 of 16 
 

 

2 

 

H H 

 

- 

 

59% 

3 

 

H Me 

   

40% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

While direct substitution on the diazonium group in 1-phosphonoalkenediazonium 

salts 8 cannot be excluded (Scheme 4a), the complex composition of the post-reaction mix-

tures suggests that 1-phosphonoaklylium ions 9 may be intermediates in the diazotization 

reaction of 1-aminoalkylphosphonic acids 1. This assumption is supported by the fact that 

all typical products of carbenium ion reactions, especially rearrangement products 5′, 

were observed simultaneously in the crude post-reaction mixtures (Scheme 4b). It has to 

be mentioned that the accepted mechanism of deamination of analogous aliphatic 2-ami-

noalkanoic acids assumes the presence of α-lactones as reaction intermediates (Scheme 

1a). As postulated, their formation is the reason for the high enantioselectivity of these 

reactions. By analogy, in the reaction of 1-aminoalkylphosphonic acids similar cyclic in-

termediates, namely 2-hydroxy-2-oxa-1,2-oxaphosphiranes 10, could also be postulated 

(Scheme 4c). However, there is no experimental information about intermediate 10 de-

scribed thus far in the literature. In addition, our results indicate that the formation of 10 

is unlikely. For example, the reaction products of 3-amino-3-phosphonopropanoic acid 

(1e) with nitrous acid may be explained by the assumption that 1-phosphonoalkylium ion 

9e is formed (Scheme 5). The 3-hydroxy-3-phosphonopropanoic acid (5e) is formed in the 

reaction of nucleophile (water) addition to 1-phosphonoalkylium ion 9e, while (E)-3-phos-

phonoacrylic acid (7e) is formed as the result of proton elimination from 9e. Carbenium 

ion 9e also undergoes fragmentation and as a result, vinylphosphonic acid (7a) and carbon 

dioxide are formed. 

Molecules 2022, 27, x FOR PEER REVIEW 8 of 16 
 

 

2 

 

H H 

 

- 

 

59% 

3 

 

H Me 

   

40% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

While direct substitution on the diazonium group in 1-phosphonoalkenediazonium 

salts 8 cannot be excluded (Scheme 4a), the complex composition of the post-reaction mix-

tures suggests that 1-phosphonoaklylium ions 9 may be intermediates in the diazotization 

reaction of 1-aminoalkylphosphonic acids 1. This assumption is supported by the fact that 

all typical products of carbenium ion reactions, especially rearrangement products 5′, 

were observed simultaneously in the crude post-reaction mixtures (Scheme 4b). It has to 

be mentioned that the accepted mechanism of deamination of analogous aliphatic 2-ami-

noalkanoic acids assumes the presence of α-lactones as reaction intermediates (Scheme 

1a). As postulated, their formation is the reason for the high enantioselectivity of these 

reactions. By analogy, in the reaction of 1-aminoalkylphosphonic acids similar cyclic in-

termediates, namely 2-hydroxy-2-oxa-1,2-oxaphosphiranes 10, could also be postulated 

(Scheme 4c). However, there is no experimental information about intermediate 10 de-

scribed thus far in the literature. In addition, our results indicate that the formation of 10 

is unlikely. For example, the reaction products of 3-amino-3-phosphonopropanoic acid 

(1e) with nitrous acid may be explained by the assumption that 1-phosphonoalkylium ion 

9e is formed (Scheme 5). The 3-hydroxy-3-phosphonopropanoic acid (5e) is formed in the 

reaction of nucleophile (water) addition to 1-phosphonoalkylium ion 9e, while (E)-3-phos-

phonoacrylic acid (7e) is formed as the result of proton elimination from 9e. Carbenium 

ion 9e also undergoes fragmentation and as a result, vinylphosphonic acid (7a) and carbon 

dioxide are formed. 

Molecules 2022, 27, x FOR PEER REVIEW 8 of 16 
 

 

2 

 

H H 

 

- 

 

59% 

3 

 

H Me 

   

40% 

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 

occurs, 21 °C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P 

NMR (recorded in D2O) of the crude reaction mixture. 

While direct substitution on the diazonium group in 1-phosphonoalkenediazonium 

salts 8 cannot be excluded (Scheme 4a), the complex composition of the post-reaction mix-

tures suggests that 1-phosphonoaklylium ions 9 may be intermediates in the diazotization 

reaction of 1-aminoalkylphosphonic acids 1. This assumption is supported by the fact that 

all typical products of carbenium ion reactions, especially rearrangement products 5′, 

were observed simultaneously in the crude post-reaction mixtures (Scheme 4b). It has to 

be mentioned that the accepted mechanism of deamination of analogous aliphatic 2-ami-

noalkanoic acids assumes the presence of α-lactones as reaction intermediates (Scheme 

1a). As postulated, their formation is the reason for the high enantioselectivity of these 

reactions. By analogy, in the reaction of 1-aminoalkylphosphonic acids similar cyclic in-

termediates, namely 2-hydroxy-2-oxa-1,2-oxaphosphiranes 10, could also be postulated 

(Scheme 4c). However, there is no experimental information about intermediate 10 de-

scribed thus far in the literature. In addition, our results indicate that the formation of 10 

is unlikely. For example, the reaction products of 3-amino-3-phosphonopropanoic acid 

(1e) with nitrous acid may be explained by the assumption that 1-phosphonoalkylium ion 

9e is formed (Scheme 5). The 3-hydroxy-3-phosphonopropanoic acid (5e) is formed in the 

reaction of nucleophile (water) addition to 1-phosphonoalkylium ion 9e, while (E)-3-phos-

phonoacrylic acid (7e) is formed as the result of proton elimination from 9e. Carbenium 

ion 9e also undergoes fragmentation and as a result, vinylphosphonic acid (7a) and carbon 

dioxide are formed. 

40%

a Reaction conditions: 1-aminoalkylphosphonic acid (1.0 mmol), NaNO2 (2.0 mmol), evolution of N2 occurs,
21 ◦C, and NMR analysis of crude reaction mixture; b Conversions calculated based on 31P NMR (recorded in
D2O) of the crude reaction mixture.

An interesting example illustrating the complexity of the deamination reaction of
1-aminoalkylphosphonic acid 1 is the reaction of 1-amino-2-phenylethylphosphonic acid
(1g) with HNO2 (Scheme 6). Among the expected products of substitution 5g, elimina-
tion 7g, and phosphoric acid, in the post-reaction mixture, the rearranged 2-hydroxy-1-
phenylethylphosphonic acid (5′′g) was identified. Considering the formation of carbenium
ion 9g we expected the rearrangement of this carbenium ion to 9′g, which should be more
stable due to the stabilizing effect of the phenyl group. Subsequent addition of nucleophile
(H2O) to both carbenium ions should lead to the corresponding hydroxyalkylphosphonic
acids 5g and 5′g respectively (Scheme 6). However, analysis of the NMR spectra of the
crude reaction mixture revealed that the second product of the reaction is not the 5′g but
5”g (see Supplementary Materials for more details).

Formation of 2-hydroxy-1-phenylphosphonic acid (5′′g), as well as unrearranged
5g and phosphoric acid may be explained by the formation of cyclic intermediate 9′′g
(Scheme 6a). The nucleophilic attack of water on the less crowded side (pink arrow
on Scheme 6a) of intermediate 9′′g yields rearranged 2-hydroxyalkylphosphonic acid 5′′g,
while fragmentation of 9′′g (Scheme 6b) yields styrene and metaphosphoric acid which hydrol-
yses to phosphoric acid. Finally, when examining the reactivity of 1-aminoalkylphosphonic
acids 1 in a deamination reaction with HNO2, in every reaction we have always observed
the presence of various amounts of phosphoric acid (H3PO4). We postulate that the for-
mation of H3PO4 could be explained by two reaction mechanisms which depend on the
structure of the used 1-aminoalkylphosphonic acids 1 (Schemes 7 and 8). According to the
first reaction mechanism (Scheme 7a), if the structure of the formed 1-phosphonoalkylium
ion 9 enables its rearrangement to the more stable 2-phosphonoalkylium ion 9′ (compounds
1j, 1b, 1k, 1g), then ion 9′ can further undergo fragmentation with cleavage of the C–P
bond resulting in the formation of alkene and metaphosphoric acid (that undergo hydrol-
ysis to phosphoric acid in the presence of water). A similar mechanism was proposed
by Mastalerz and Richtarski for the deamination of 2-aminoethylphosphonic acid and
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related compounds, where the main reaction products were ethylene and phosphoric acid
(Scheme 7b) [64–66].
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The second reaction mechanism should explain the formation of H3PO4 in the case
where there is no possibility of rearrangement of the formed carbenium ion 9 (Scheme 8),
especially for the reaction of substrates 1a, 1f, 1n, and 1h. By analogy to reactions of
2-aminoalkanoic acids with HNO2 [67], the reaction of 1-phosphonoalkylium ion 9 with
biphilic nitrite ion (NO2

-) gives 1-nitroalkylphosphonic acid 14 (Scheme 8a) or nitrite ester
of 1-hydroxyalkylphosphonic acids 15 (Scheme 8b). Compounds 14 and 15 may undergo
secondary reactions which ultimately produce phosphoric acid.
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3. Materials and Methods
3.1. General Information

The 1H, 13C{1H}, 31P NMR, and DEPT-135 spectra were collected on a Jeol 400yh
instrument (Jeol, Ltd., Tokio, Japan) (400 MHz for 1H NMR, 162 MHz for 31P NMR, and
100 MHz for 13C NMR) and were processed with dedicated software (Delta 5.0.5). NMR
experiments recorded in D2O were referenced to the respective residual 1H signal of
the solvent. Multiplicities were reported using the following abbreviations: s (singlet),
d (doublet), t (triplet), q (quartet), and m (multiplet). The reported coupling constants
(J) values were those observed from the splitting patterns in the spectrum and may not
reflect the true coupling constant values. The composition of post-reaction mixtures (as the
conversion of substrate to the given product) was calculated based on 31P NMR (recorded
in D2O) of the crude reaction mixture. Structural assignments of 5′′g were made with
additional information from gCOSY, gHSQC, and gHMBC experiments.

3.2. Reagents

Aminomethylphosphonic acid (1h) was obtained in the reaction of benzamide, formalde-
hyde, and phosphorous trichloride [68]. 3-Amino-3-phosphonopropanoic acid (1e) was synthe-
sized from diethyl acetamidomethylenemalonate [69]. The remaining 1-aminoalkylphosphonic
acids 1 were obtained in the reaction of an appropriate carbonyl compound with acetamide,
acetyl chloride, and PCl3 in acetic acid, using Soroka’s protocol [70]. 1-Hydroxyalkylphosphonic
acids 5, which were used as reference materials for confirmation of reaction products structures,
were synthesized by dealkylation of diethyl 1-hydroxyalkylphosphonates, which were obtained
in the reaction of triethyl phosphite with suitable aldehyde or ketone and hydrogen chloride [71].
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3.3. Deamination of 1-Aminoalkylphosphonic Acids 1 and 2-Aminoalkanoic Acids 2 in 5M HCl

The deamination experiments were conducted in a three-necked flask equipped with
a reflux condenser, thermometer, dropping funnel, and magnetic stirrer, as described in the
original protocol [40]. The solution of 1-aminoalkylphosphonic acid 1 or 2-aminoalkanoic
acid 2 (10 mmol) in 5M HCl (65 mmol, 13 mL) was cooled in an ice/NaCl cooling bath to a
temperature of −12 ◦C. Subsequently, 4 M NaNO2 solution in water (16 mmol, 4.0 mL) was
added dropwise for 2 min. The temperature of the reaction mixture was maintained under
0 ◦C for 5 h, and then at 25 ◦C for 12 h. The samples for 1H and 31P NMR spectra were
prepared by diluting post-reaction mixtures (0.10 mL) in D2O (0.40 mL). The samples were
re-measured after the addition of reference materials. The composition of the mixture was
calculated based on the integration of signals on the 31P NMR spectra (for phosphorous
substrates) or on the 1H NMR spectra (for 2-aminoalkanoic acids).

3.4. Deamination of 1-Aminoalkylphosphonic Acids 1 in Water

The deamination reactions of 1-aminoalkylphosphonic acids 1 were conducted in a
round-bottom flask equipped with a magnetic stirrer and calibrated gas burette (Figure S11
in Supplementary Materials). The flask was placed in a water bath at a temperature of
about 20 ◦C. 1-Aminoalkylphosphonic acid 1 (3.0 mmol) was added to a 0.67 M solution
of NaNO2 (6.0 mmol, 9.0 mL). The solution or suspension was stirred by the means of a
magnetic stirrer until the stoichiometric volume of gas was evolved, and additionally for
12 h. The 1H and 31P NMR spectra were recorded after that time and additionally after
a few days. The composition of the mixture was calculated based on the integration of
signals on the 31P NMR spectra.

4. Conclusions

We have studied the deamination of 17 1-aminoalkylphosphonic acids 1 in the reaction
with nitrous acid. We have postulated that 1-phosphonoalkylium ions 9 are plausible reac-
tive intermediates in these reactions. Depending on the structure of 1-aminoalkylphosphonic
acid 1 used, these ions 9 react with a nucleophile (H2O or NO2

¯), undergo elimination
of protons, or a rearrangement/fragmentation reaction (Scheme 9). Furthermore, we ex-
plained the formation of the phosphoric acid (H3PO4), present in every reaction mixture,
through two mechanisms (Schemes 6 and 7). We have experimentally demonstrated that
the selectivity of the reaction of 1-phosphonoalkylium ions 9 is not easy to control but,
in some cases, the addition of nucleophile (H2O) is the major reaction and the starting
1-aminoalkylphosphonic acids 1 could be transformed into 1-hydroxyphosphonic acids 5
(Scheme 9). In turn, the derivatives of vinylphosphonic acid 7 resulting from proton elimi-
nation from 1-phosphonoalkylium ions 9 (Scheme 9) could be major products in the case of
1-aminoalkylphosphonic acids having a positive charge positioned at the tertiary carbon
atom and surrounded by bulky substituents, such as compounds 1q, 1l, and 1i (Scheme 9,
Table 3). Finally, if the generated 1-phosphonoalkylium ions 9 have migrating groups in
the β-position, such as in compounds 9j, 9b, 9k, and 9g, they can further rearrange to
more stable 2-phosphonoalkylium ions 9′ and either react with a nucleophile to form 2-
hydroxyalkylphosphonic acid 5′ or undergo fragmentation to alkene and H3PO4 (Scheme 9,
Table 4). Although the reported procedure of the deamination of 1-aminoalkylphosphonic 1
generally may have limited synthetic application, in specific cases, it may be an irreplaceable
synthetic method leading to the desired products.
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