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Abstract: Carbon monoxide (CO) is a vital endogenous gaseous transmitter molecule involved in
the regulation of various physiological and pathological processes in living biosystems. In order
to investigate the biological function of CO, many technologies have been developed to monitor
the level of endogenous CO in biosystems. Among them, the fluorescence detection technology
based on the fluorescent probe has the advantages of high sensitivity, excellent selectivity, simple
operation, especially non-invasive damage to biological samples, and the possibility of real-time
in situ detection, etc., which is considered to be one of the most effective and applicable detection
techniques. Therefore, in the last few years, a lot of work has been carried out on the design,
synthesis and in vivo fluorescence imaging studies of CO fluorescent probes. Furthermore, using
fluorescent probes to detect the changes in CO concentrations in living cells and tissues as well as
in organisms has been one of the hot research topics in recent years. However, it is still a challenge
to rationally design CO fluorescent probe with excellent optical performance, structural stability,
low background interference, good biocompatibility, and excellent water solubility. Therefore, this
review focuses on the research progress of CO fluorescent probes in the detection mechanism and
biological applications in recent years. However, this popular and leading topic has rarely been
summarized comprehensively to date. Thus, the research progress of CO fluorescent probes in
recent years is reviewed in terms of their design concept, detection mechanism, and their biological
applications. In addition, the relationship between the structure and performance of the probes was
also discussed. More significantly, we hope that more excellent optical properties fluorescent probes
for gaseous transmitter molecule CO detection and imaging will overcome the current problems of
high biotoxicity and limited water solubility in future.

Keywords: Carbon monoxide; fluorescent probe; response mechanism; gaseous transmitter molecule

1. Introduction

Carbon monoxide (CO) is a colorless, odorless, tasteless, and water-insoluble gaseous
molecule, which binds to hemoglobin about 200 times more strongly than oxygen. When
the concentration of CO in the environment is too high, it can decrease the oxygen concen-
tration by competitively binding to hemoglobin, causing fainting and even death of living
organisms [1,2]. Therefore, CO is known as the “invisible killer” of human beings. Related
studies have revealed that CO is an important endogenous gaseous signal molecule in
the human body, mainly produced by heme oxygenase (HO) catalyzing the breakdown
of ferrous heme, and plays an important role in maintaining the normal functioning of
living organisms. Specifically, it is able to activate guanylate cyclase activity, participate
in respiratory rhythm regulation, regulate insulin release, and lower blood pressure [3].
However, pathological states of oxidative stress can lead to an increase in CO levels, and
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mounting evidence suggests that abnormal endogenous CO concentrations are strongly
associated with the occurrence and development of a variety of diseases [4], such as in-
flammation [5], liver diseases [6], diabetes [7], and even cancer [8]. To summarize, it is of
profound implications to develop a simple, efficient, and sensitive detecting method for
CO detection, which can better study its biological function and provide the possibility for
early diagnosis and treatment of the disease.

In comparison to previously developed assays, such as chromogenic [9], electrochemi-
cal [10], and gas chromatographic methods [11], the fluorescent probe detection method
exhibits remarkable selectivity and sensitivity, non-invasiveness, and experimental con-
venience [12–14]. Furthermore, it is suitable for real-time dynamic observation of CO in
living organisms. Therefore, various small molecule fluorescent probes for the detection
of CO have been developed [15]. However, compared with fluorescent probes for the
detection of other endogenous active molecules, the study of CO fluorescent probes is still
immature and has great promise for development [16,17]. Furthermore, to date, only a few
reviews have explored the progress in the development of CO fluorescent probes, which
will provide new insights for the design of next-generation CO fluorescent probes.

Based on the above considerations, we systematically classified and discussed the
fluorescent probes used for detecting CO over the past decade based on chemical reaction
type, response mechanism, fluorophore, and biological applications (Scheme 1). At the
same time, the relationship between the structure and performance of the probes was also
discussed, hoping to provide directions for future development of CO fluorescent probes.
This review will provide additional insight and meaningful guidance for constructing de
novo fluorescent probes for CO detection.
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Scheme 1. The schematic representation of the association of CO with the occurrence and devel-
opment of certain diseases, and the construction, response mechanisms, and applications of its
fluorescent probes.

2. Designing the Main Types of Chemical Reactions for CO Fluorescent Probes
2.1. Tsuji-Trost Reaction

CO is known to be highly reductive and capable of reducing Pd2+ to Pd0, induc-
ing the Tsuji-Trost reaction, and releasing the fluorophore. Briefly, by modulating the
electron-donating ability of the hydroxyl/amine groups on the fluorophore, intramolecular
charge transfer (ICT) occurs within the probe molecule, resulting in a blue/red shift in the
maximum emission wavelength of the fluorescence (Figure 1).
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Figure 1. The mechanism diagram of Pd0-mediated Tsuji-Trost reaction.

2.2. Palladium Metal-Mediated Carbonylation or Protonation Reaction

Palladium (Pd) is a transition metal with the ability to quench the fluorescence of
fluorophores through a heavy atom effect. Therefore, fluorescent probes for cyclopalladium
metal complexes can be prepared by using metallic Pd coordinated to fluorophores with
suitable coordination structural units (Figure 2). When Pd2+ is reduced to Pd0 by CO, it
leads to carbonylation or protonation by hydrolysis. Simultaneously, the ligand bond was
broken, and the heavy atom effect was lost, accompanied by the fluorophore fluorescence
being restored. Thus, these probes’ design principle was usually employed to design
turn-on fluorescent probes.
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Figure 2. The mechanism diagram of carbonylation or protonation hydrolysis of cyclic palladium
metal complexes.

2.3. Reduction of Aromatic Nitro to Amine Reaction

The typical ICT fluorescent probes are some fluorophores conjugated with a strong
electron-giving group and an electron-absorbing group to form a robust push-pull electron
system. In this reaction type, CO reduces the electron-absorbing group nitro to the electron-
donating group amino, which can affect the electron density layout of the probe molecule.
Thus, inducing the release of fluorophore in the system (Figure 3).
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3. CO Fluorescent Probes Based on Tsuji-Trost Reaction

The CO fluorescent probes based on this reaction are the most rapidly developed in
recent years, which mainly include allyl ether, allyl carbonate, and allyl carbamate, with
the advantages of flexible construction, good selectivity, high sensitivity, and fast response
time. In the design of these probes, CO was mainly reduced Pd2+ to Pd0, which further
mediates the Tsuji-Trost reaction and induces changes in the fluorescence intensity. Based
on the type of fluorophore, they can be divided into coumarins, naphthalimides, xanthene,
near-infrared dyes, and so on.

3.1. Coumarin as Fluorophore

Coumarin is one of the most common fluorescent dyes because of its ease of synthesis,
high fluorescence quantum yield, and good photostability, so it is often designed and
synthesized with some fluorescent probes. In 2015, Dhara et al. constructed the first CO
fluorescent probe 1 based on Tsuji-Trost reaction (Figure 4) for A549 cells imaging [18]. The
ability of the hydroxyl group to give electrons was reduced by the carbamate formed at the
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7-position hydroxyl group of coumarin, thereby inhibiting the ICT ability of coumarin and
quenching its fluorescence.
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In 2017, Feng’s group reported an allyl carbonate CO fluorescence probe 2 (Figure 4) [19].
The probe used 3-benzothiazole-7-hydroxycoumarin as the fluorophore and emitted at a
wavelength red-shifted to 495 nm, which was fast, highly selective, and sensitive to CO.
The color of the solution changed from colorless to yellow-green when the probe reacted
with CO, and a clear color change could be observed with the naked eye. Moreover, owing
to the advantages of low background fluorescence, high penetration, and easy in vivo
imaging of NIR fluorescent probes, a new coumarin-dicyanoisophorone fluorophore-based
NIR fluorescent probe 3 was developed in 2019 for tracing CO in organisms (Figure 4) [20].
It was worth noting that the probe had a significant stokes shift (222 nm) and a clear NIR
fluorescence turn-on signal change at 710 nm.

The same year, Wang’s team constructed a CO fluorescent probe 4 with allyl ether
instead of allyl ester as the reaction moiety, which could avoid the effect of fetal bovine
serum (FBS) during cell culture and applied for living cells imaging (Figure 4) [21]. Re-
cently (in 2021), Li’s research group developed a ratiometric NIR fluorescent probe 5 based
on coumarin-benzopyran fluorophores (Figure 5a) [22]. The probe not only ratiometri-
cally detected exogenous and endogenous CO levels in HepG2 cells, but also had good
penetration ability for in vivo fluorescence imaging of zebrafish under two-photon (TP)
excitation (Figure 5b,c). Most importantly, 5 could visualize the up-regulation of CO under
LPS-induced oxidative stress in a zebrafish model.
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3.2. Naphthalimide as Fluorophore

Naphthoylimides are a classical class of fluorescent dyes with a strong push-pull
electron system, high fluorescence quantum yields and large stokes shifts, as well as being
easy to synthesize. They are often used to design ratiometric fluorescent probes.

In 2017, Feng’s group reported the first ratiometric CO fluorescent probe 6 based on
4-aminonaphthalimide as the fluorophore and allyl carbamate as the recognition group
(Figure 6) [23]. In the presence of CO, Pd2+ is reduced to Pd0, inducing the Tsuji-Trost
reaction, which removed the allyl carbamate and increased the ICT capacity of the re-
leased amine group, resulting in the yellow-green fluorescence of 6. Furthermore, an-
other ratiometric CO fluorescent probe 7 based on allyl ether as the recognition group
and 4-hydroxynaphthalimide as the fluorophore was developed by Zhu’s group in 2018
(Figure 6) [24]. Impressively, living cell imaging was performed for both probes.

In 2020, Zhang’s group developed a mitochondria-targeted ratiometric fluorescent
probe 8 based on the methylpyridine cation (Figure 6) [25]. When cell mitochondria were
subjected to oxidative stress, it was able to detect the production of endogenous CO.
Similarly, another mitochondria-targeted ratiometric fluorescent probe 9 based on triph-
enylphosphine fraction was prepared by Du’s group, which could quantitative detection
of exogenous and endogenous CO (Figure 6) [26]. The same year, Zhang et al. designed
and synthesized a novel fluorescent probe 10 for the specific detection of hepatocyte CO
in vitro and in vivo [27]. The probe used 3-nitrophthalimide as a fluorescent reaction site
and N-acetylgalactosamine (GalNAc) as a hepatocyte-specific fraction (Figure 7a). Bioassay
imaging results demonstrated that it could be specifically transported into HepG2 cells
over expressing the asialoglycoprotein receptor and image in situ the release of endogenous
CO from HepG2 cells and zebrafish liver in acute liver injury (Figure 7b,c).
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3.3. Xanthene as Fluorophore

Xanthene is a kind of dye molecules with excellent optical properties, including fluores-
cein, rhodamine, and their analogs, which generally have large molar extinction coefficients
and high fluorescence quantum yields. They are widely applied in the fields of molec-
ular identification, biochemistry, and medical research. Current CO fluorescent probes
developed employing xanthene dyes are mainly based on the protection and deprotection
strategies of the hydroxyl groups. Fluorescein protected by both hydroxyl groups (-OH)
forms a colorless, non-fluorescent closed-loop lactone structure with a non-conjugated struc-
ture. When the analyte facilitates the deprotection of the hydroxyl group, the fluorophores
are released.
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In 2016, Zhang’s team reported for the first time a di-allyl carbonate NIR fluorescent
CO probe 13, which using naphthalene fluorescein as the fluorophore and allyl carbonate
as the response group, enabling the colorimetric fluorescence detection of CO in dual
channels [28] (Figure 8). The same year, based on the same recognition site, a di-allyl
carbonate CO fluorescent probe 11 to detect hemoglobin-induced endogenous CO produc-
tion in A549 cells was developed by Feng’s group (Figure 8) [29]. This probe employed
fluorescein as the fluorophore and released fluorescence from it by reacting with CO to
destroy the spironolactone structure (Figure 8). Subsequently, this group also reported a
diallyl ether CO fluorescent probe 12 in 2017, which using a more stable allyl ether instead
of allyl carbonate as the reaction site (Figure 8) [30]. Finally, this group constructed a NIR
fluorescent probe 15 with good water solubility and large stokes shift after improvement in
2020, which could be applied to fluorescence imaging of CO in living cells, zebrafish and
mice models (Figures 8 and 9) [31].
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In addition, in 2019, Zhu’s group employed a seminaphthorhodafluor as fluorophore
and allyl carbonate as a reactive group, developing a mitochondrial localizable, colorimetric
and far-red fluorescence probe 14 for CO visual detection in aqueous solutions and imaging
in living HeLa cells (Figure 8) [32].

3.4. Near-Infrared Dyes as Fluorophore

The excitation and emission wavelengths of NIR fluorescent probes are generally in
the range of 650–900 nm, which provides a high signal-to-noise ratio with low interference
of the biological background and low photon radiation energy in this wavelength region. In
addition, the high tissue penetration capability of NIR light allows for superior fluorescence
imaging in vivo. Due to the advantages of large molar extinction coefficients, ease of
synthesis, and purification, some NIR fluorophores were used for the construction of CO
fluorescent probes, such as cyanine dyes, HPQ derivatives, and others.
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In 2018, Feng’s group developed a fluorescent turn-on NIR probe 16 based on ICT
(Figure 10) [33], which was easy to synthesize, had a long emission wavelength (714 nm), a
unique colorimetric and the ability to be utilized for CO imaging in living cells and animal
models. Unfortunately, this probe had a short stokes shift, leading to easy quenching of
fluorescence and structural instability, thus causing false signal interference. Therefore,
on this basis, this group explored a new NIR fluorescent probe 17 with a large stokes
shift (238 nm) using dicyanoisophorone as the fluorophore in 2019 (Figure 10) [34]. More
importantly, 17 was the first NIR fluorescent probe to detect CO in vitro and in vivo.
The same year, a NIR fluorescent probe 18 based on a unique cyano-fluorophore with a
distinctive conjugated π-electron system resonating with its phenoxide anion form was
prepared (Figure 10) [35]. Notably, 18 had good water solubility, a large stokes shift
(123 nm), and a fast response time.

In 2018, based on hemicyanine as a fluorophore, Li’s group synthesized the first
NIR CO fluorescent probe 19 that allowed for localization to cellular mitochondria and
fluorescent imaging of mice (Figure 10) [36]. Subsequently, in 2021, this group developed
another novel CO fluorescent probe 20 based on the HPQ dye, a fluorophore with an excited
state intra-molecular proton transfer (ESIPT) process and a high fluorescence quantum
yield (Figure 10) [37]. Meanwhile, by introducing a benzoindole group, the probe had
the merits of a long emission wavelength and extended its wavelength by introducing a
benzoindole group. Recently (in 2022), based on the above, a water-soluble fluorescent
probe 21 for CO by introducing a 1-ethyl-2-methylquinoline moiety into HPQ was designed
and synthesized (Figure 10) [6]. Moreover, during drug-induced liver injury (DILI), the
up-regulation of CO in HepG2 cells and zebrafish could be monitored by this probe.

In 2020, Lin’s team reported a long-emission ratiometric CO fluorescence probe 22
based on a hemi-anthocyanine scaffold dye, which exhibited distinctive optical properties
including high photostability and extension of emission wavelengths (Figure 10) [38].
Thus, it could be employed as a valuable molecular tool to image CO in vitro and in vivo.
However, 22 had not been applied to the detection of disease models. Therefore, inspired
by this view, the first fluorescence turn-on CO-activatable photoacoustic probe 23 based on
a cyanine-like dye was developed in 2021 (Figure 10) [5]. In this case, 23 was capable of
monitoring CO levels by photoacoustic imaging in a mouse model of acute inflammation.
In addition to the above, Qi’s team constructed a NIR colorimetric fluorescent probe 24
in 2018 for CO based on the formation of the phenoxy anion (DPCO-) as the signal unit
with good photostability (Figure 10) [39]. Next, an orange-emitting CO nanomolecular
probe 25 based on resorcinol fluorophores in 2019 was developed by Ghosh’s group, which
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showed excellent optical properties, water solubility and biotolerance (Figure 10) [40]. Next,
Chen et al. designed and synthesized a NIR fluorescent probe for the detection of CO in
various cells in 2021 by using a biphasic BODIPY dye (Figure 9) [41]. Recently (in 2022),
the first ratiometric photoacoustic/fluorescent (PA/FL) dual-mode probe 27, developed by
Chen’s group, could be used to detect and image exogenous and endogenous CO in living
cells (Figures 10 and 11A,B) Remarkably, the first quantitative detection of endogenous
CO during APAP-induced liver injury and repair was successfully finished by FL/PA
ratiometric imaging (Figure 11C,D) [42].
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3.5. Others

In 2016, Zhang’s group reported a dual-channel colorimetric CO fluorescence probe 28
based on the ICT mechanism to test the presence of CO in the air. In particular, nitrobenzo-
furan (NBD) and allyl carbamate were the fluorophore and reactive group of this probe,
respectively (Figure 12) [43]. Afterward, Kim’s team based on carbazole designed and
synthesized TP activated turn-on and turn-off fluorescent probes (29 and 30) to detect CO
in 2018 (Figure 12) [44]. Both probes were effective in detecting carboxyhemoglobin of
animal blood exposed to low doses of CO for 12 min.
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In 2019, the ratiometric fluorescent probe 31 based on aggregation-induced emission
(AIE) properties for the detection and imaging of CO was firstly developed by Tang et al.
(Figure 12) [45], which was easy to synthesize, had a high yield and good stability. The
same year, Zhu’s team developed a simple ultra-sensitive and long-wavelength colori-
metric fluorescent probe 32 based on three strong electron-withdrawing cyano groups for
monitoring CO in RAW264.7 cells (Figure 12) [46]. Lastly, a fluorescent probe 33 based
on an aminoquinoline derivative as the golgi-targeted fluorophore, developed by Feng’s
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group in 2021, could show superior ratiometric fluorescence imaging capability for CO in
living cells and zebrafish (Figure 12) [47].

4. CO Fluorescence Probes Based on Pd-Mediated Carbonylation or Protonation
Hydrolysis Reactions

Cyclic Pd metal complexes were one of the first fluorescent probes to detect CO, which
mainly used the heavy atomic effect of palladium metal to quench the fluorescence of
the probe.

In 2012, Chang et al. reported the first CO cyclic Pd metal complex turn-on fluorescent
probe 34, which invoked BODIPY as the fluorophore and N, N-dimethylbenzylamine
as the Pd ligand (Figure 13) [48]. Due to the heavy atom quenching effect of Pd, the
fluorescence of the probe was weak, whereas after carbonylation with CO, Pd0 was released,
resulting in the disappearance of the heavy atom quenching and the recovery of the probe
fluorescence intensity. On the same principle, in 2016, two cyclic Pd metal complexes for CO
fluorescent probes 35 for selective imaging of endogenous CO under hypoxic conditions
were designed and synthesized by Tang’s team, using BODIPY as the fluorophore and
azobenzene as the Pd ligand group (Figure 13) [49]. It was important to note that the
azobenzene-cyclopalladium part acted as the recognition site, both as a switch for the CO
response and as a fluorescence quencher.
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In 2014, the first TP CO-cyclopalladium metal complex fluorescent probe 36 was
reported by Lin’s group (Figure 13) [50]. Using a carbazole-coumarin TP dye platform,
this probe could monitor changes in CO levels not only in living cells but also in living
tissues with deep penetration ability. Different from previous probes, this probe underwent
a protonated hydrolysis after responding with CO. Traditionally, TP fluorescent probes
had long-wave excitation and short-wave emission, while NIR fluorescent probes had
short-wave excitation and long-wave emission. These properties contribute to the sus-
ceptibility of the probe to interference by autofluorescence and limited tissue penetration.
Therefore, they combined the advantages of both in order to develop the first TP excitation
NIR emission CO fluorescent probe 37 in 2017 [51]. Using Nile Red with a large rigid π

structure as the fluorophore, this probe exhibited the characteristics of low background
fluorescence, excellent stability, and deep tissue penetration, which was the best-reported
cyclic Pd metal complex CO probe in terms of selectivity and sensitivity (Figure 14A).
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Furthermore, this probe not only detected endogenous CO in living cells (Figure 14B), but
also conferred for the first time the ability to track endogenous CO in zebrafish embryos
and mice tissues (Figure 14C,D).
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In 2018, Zhang’s group reported the first NIR cyclic Pd metal complex for CO fluores-
cent probe 38 targeting the cell membrane (Figure 15A) [52]. The novelty of this probe was
employed Nile Red as the fluorophore and long hydrophobic alkyl chains as the membrane
localization group, allowing the probe to anchor the cell membrane rapidly (<1 min) and
remain for a long time (>60 min) (Figure 15B). In addition, the probe was further applied to
study the self-protection of cells under oxidative stress by monitoring the release of CO
during drug-induced hepatotoxicity.

In contrast with the probes mentioned above, Wilton-Ely et al. based on a Ru(II)
vinyl complex reported a TP fluorescent probe 39 in 2017 (Figure 16) [53]. This probe
used a new fluorophore TBTD as the signal unit, which was directly coordinated with
the metal center. Furthermore, the probe was successfully applied to detect CO in living
cells collected from exudates in a mouse model of gasbag inflammation. In the latter year,
a turn-on fluorescent probe 40 based on a new cyclic compound to detect CO in 2018
was designed and synthesized by Wang’s group (Figure 16) [54]. It reacted with CO to
release a highly fluorescent benzimidazole fraction (the fluorescence intensity was greatly
enhanced due to the protonation of the benzimidazole ring). In addition, this fluorescent
probe had a high cell uptake rate and could be successfully employed for CO imaging
in living cells. Next, Kim and his colleagues also reported a Pd-mediated carbonylated
CO turn-on probe 41 consisting of naphthalimide and ethylenediamine in 2021, which
could detect CO in aqueous solutions and live cells in a highly stable and selective way
(Figure 16) [55]. Recently (in 2022), according to the same sensing mechanism, Kong’s
team constructed a probe 42 based on a distinctive TP-excited fluorescent chromophore (2-
hydroxyl-6-(benzothiazole-2-yl) naphthalene) to detect CO in live zebrafish (Figure 16) [56].
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palladium metal-mediated carbonylation or protonation hydrolysis reactions.

5. CO Fluorescent Probes Based on the Reduction in Nitro to Amine Reactions

CO is reductive and can reduce some aromatic nitro compounds in certain conditions.
Hence, suitable structures of aromatic nitro compounds can be used to selectively detect
CO. Compared with the methods mentioned above for detecting CO, the main strength
of this strategy is that the addition of Pd2+ or a third substance is not required, since high
concentrations of the heavy metal Pd2+ could have potential adverse effects on biological
systems, such as toxicity and sensitization. For this strategy, several fluorescent probes for
the detection of CO in organisms have been reported.

In 2018, Dhara et al. reported two examples of CO fluorescent probes (43 and 44)
based on CO reduction reactions (Figure 17) [57,58]. In both probe structures, the reduction
in the nitro group to an amine group at the 3-position of the naphthalimide can restore the
fluorescence of the fluorophore. They were highly selective and sensitive toward CO, as
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well as the detection limits down to the nanomolar level. Probe 44 could also be targeted to
MCF-7 cell lysosomes and be used for fluorescence imaging of intra-lysosomal CO. Later
in 2020, the first naphthylamine-based fluorescent probe 47 for nuclear localization was
constructed by them with a lower detection limit as low as 0.18 µM (Figure 17) [59].
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In 2019, the different structures of probes were developed for CO detection by four
groups. Initially, Song’s group developed a unique ratiometric time-gated CO luminescence
probe 51 based on a lanthanide complex, which was capable of specifically targeting mito-
chondria (Figure 18) [60]. This probe was first constructed by incorporating a mitochondrial
targeting group (triphenylphosphine) into a bipyridyl polyacid derivative (activatable CO),
and then ligated with Eu3+ and Tb3+ ions. Moreover, the probe also had the ability to
visualize and quantify endogenous CO in living cells, mice liver tissue sections, Daphnia
Magna, and mice (Figure 16b,c). Subsequently, the first CO-reduction-based NIR CO flu-
orescent probe 45 was designed and synthesized by Zhu’s group, which could be used
to rapidly and specifically trace intracellular CO (Figure 17) [61]. In addition, it was first
demonstrated that transient glucose deprivation (TGD) in RAW 264.7 macrophages caused
up-regulation of heme oxygenase-1 (HO-1) and down-regulation of HO-1 in zebrafish by
high glucose inhibition. Next, they developed a novel fluorescent probe 52 based on the
coumarin-pyridine derivative dye (CPD) as the fluorophore and 4-nitrobenzyl as the recog-
nition site (Figure 19) [62]. Finally, Feng’s group synthesized a CO fluorescent probe 46
based on the ESIPT mechanism, which employing 2-nitrophthalimide as the fluorophore to
induce ESIPT and emit green fluorescence after the reduction in nitro to the amine group by
CO (Figure 17) [63]. In particular, it was used for the rapid, highly selective, and sensitive
detection of CORM-3 in aqueous solutions, live cells, and animals, providing a useful tool
for studying the application of CORM-3 in biological systems. At last, in 2021, another NIR
fluorescent probe 53 based on QCy7 as a fluorophore was developed by them that could
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effectively detect CORM-3 in living cells and in vivo (Figure 19) [64]. Significantly, it had
good water solubility and could ratiometrically detect CORM-3.
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As mentioned above, Yan’s team developed a metal-free turn-on fluorescent probe 48
in 2020 based on coumarin fluorophores to monitor CO in aqueous solutions and living
cells (Figure 17) [65]. Nevertheless, previously developed probes were only used for
disease diagnosis but not for therapeutic effects. Therefore, Lin’s group developed the
first CO fluorescent probe 49 based on naphthalimide fluorescent dyes for the integrated
diagnosis and treatment of cancer (Figure 17) [8]. The probe was used to produce amonafide
(ANF) by CO reduction, which had a remarkable therapeutic effect on tumors. Recently
(in 2022), Zhang et al. reported a novel metal-free NIR fluorescent probe 54 based on
nitrofuran for the selective detection of CO-releasing molecule-2 (CORM-2) (Figure 19) [66].
Remarkably, this was an initial use of paper sheets as a carrier for detecting CORM-2
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by fluorescent signals. In the same year, an easily accessible Golgi-targeted fluorescent
probe 50, developed by He’s group, could monitor CORM-3 in HeLa cells, HepG2 cells,
and zebrafish (Figure 17) [67]. In this probe, the phenyl sulfonamide group was used as the
Golgi targeting unit, the naphthalimide dye acted as the fluorophore and the nitro moiety
was selected as the CORM-3 response unit.

6. Conclusions and Outlook

CO has been demonstrated to be an essential biomarker in a variety of disease models
such as inflammation, liver injury, diabetes, and cancer. Thus, the sensitive and specific
monitoring of CO by fluorescence probes has irreplaceable importance for the early predic-
tion, diagnosis and treatment of diseases. This paper reviewed the fluorescent probes for
detecting CO over the last decade and outlined their chemical structures, optical proper-
ties, and bioimaging applications according to different reaction types (recognition sites).
Specifically, the recognition groups of CO fluorescent probes mainly include allyl carbonate,
allyl carbamate, allyl ether, nitro, etc. Furthermore, details of their emission wavelengths,
detection limits, targeting capabilities and cellular tissue imaging are mentioned in the
paper. All of these fluorescent probes mentioned above have a potential for the detection of
CO in vivo and in vitro. More importantly, these probes have made significant advances
in optical properties (NIR, TP, sensitivity, and selectivity) and real-time monitoring CO
produced in vivo.

Based on the above discussion, the development of NIR, TP and ratiometric probes
will be very important due to their advantages of low background interference and high
tissue penetration with minimal damage. In addition, the sensing properties of organelle-
targeted fluorescent probes remains to be enhanced, including the sensitivity and selectivity,
which are critical for analyzing endogenous CO in vivo and providing insight into the
physiological and pathological processes related to human diseases. The above-mentioned
photoacoustic CO probes also exhibit great potential, because they can produce thermoelas-
tic expansion with amazing tissue penetrating ability and are non-invasive during imaging,
thus avoiding complex invasive surgical operations. Furthermore, fiber optic probes have
significant advantages such as small size, insulation, fast response time, immunity to elec-
tromagnetic interference, high measurement accuracy, and good bioaffinity, which make
them have important applications in biomedicine [68–70]. In future work, we can combine
fiber optic materials with small molecule fluorescent probes to develop more sensitive
sensors that integrates CO analysis and disease diagnosis and treatment.

However, the design of CO fluorescent probes needs to take into account their biocom-
patibility, water solubility, resistance to other reactive oxygen species (ROS) interferences
and poor stability drawbacks. Thus, in future CO probe designs, these problems can be
effectively addressed by grafting natural materials to construct nanosensors or copolymer-
izing them into polymer probes. These methods are believed to enhance their stability
and biosafety, at the same time, they will help to solve many defects of small molecular
fluorescent probes.

We have always thought that the exploration of fluorescent probes for detecting CO,
particularly in biosystems, will be one of the significant research directions to further
elucidate the vital function of ROS in various biological processes. We hope that this review
will draw deeper attention to CO and provide empirical references for the design and
synthesis of subsequent CO fluorescent probes.
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