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Abstract: Polyphenols are secondary metabolites produced by plants, which contribute to the 
plant’s defense against abiotic stress conditions (e.g., UV radiation and precipitation), the aggression 
of herbivores, and plant pathogens. Epidemiological studies suggest that long-term consumption of 
plant polyphenols protects against cardiovascular disease, cancer, osteoporosis, diabetes, and neu-
rodegenerative diseases. Their structural diversity has fascinated and confronted analytical chem-
ists on how to carry out unambiguous identification, exhaustive recovery from plants and organic 
waste, and define their nutritional and biological potential. The food, cosmetic, and pharmaceutical 
industries employ polyphenols from fruits and vegetables to produce additives, additional foods, 
and supplements. In some cases, nanocarriers have been used to protect polyphenols during food 
processing, to solve the issues related to low water solubility, to transport them to the site of action, 
and improve their bioavailability. This review summarizes the structure-bioactivity relationships, 
processing parameters that impact polyphenol stability and bioavailability, the research progress in 
nanocarrier delivery, and the most innovative methodologies for the exhaustive recovery of poly-
phenols from plant and agri-waste materials. 
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1. Introduction 
Natural polyphenols are secondary metabolites of plants, vegetables, cereals, fruits, 

coffee, tea, and other plants. The exceptional functionality and biocompatibility of the 
polyphenols have stimulated the interest of researchers to use them as building blocks in 
functional foods, supplements, cosmetics, and drugs [1,2]. They have a phenolic ring, a 
basic monomer responsible for the protective action against oxidative injury [3]. Polyphe-
nolic compounds can moderate oxidative stress and prevent or even inhibit oxidation by 
chelating iron and scavenging reactive radicals [4,5]. Dietary polyphenols can act as anti-
oxidants, anti-inflammatory, and antiallergic compounds, decrease and prevent age-re-
lated diseases, can help against cardiovascular events (i.e., through their hypocholester-
olemic, anti-thrombotic, antihypertensive, and anti-atherogenic), cancer, osteoporosis, di-
abetes, and neurodegenerative diseases [6]. The dietary polyphenols’ bioavailability de-
pends on the chemical and physical characteristics of the natural matrix that contains 
them, the stability during the digestive process, the intestinal enzymes’ metabolization, 
and intestinal microbiota [7]. The gut microflora can modify the polyphenols’ bioactivity 
and bioavailability [8]. Their bioaccessibility can be affected by preservation and pro-
cessing methods, the interaction with the matrix components, and the fluids and enzymes 
secreted during digestion [9]. Physical, chemical, and enzymatic treatments can alter their 
properties. The preservation and processing can determine damage to the native poly-
phenol molecules and the production of new “process-derived” compounds [10]. 
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Nanodelivery technology can improve polyphenols’ absorption, bioavailability, func-
tional quality, and performance [11–15]. 

This review summarizes the natural polyphenols classes, the extraction and methods 
performed to isolate them from natural sources and agro-waste, the factors that affect their 
bioavailability, and the application and development of nanodelivery systems. 

2. Polyphenols in Nature 
Polyphenols are involved in plant defense against pathogens and ultraviolet radia-

tion [16]. The plants’ outer layers contain higher phenolics [17]. Insoluble phenolics are in 
cell walls, while soluble phenolics are in the plant cell vacuoles [18]. The degree of ripeness 
during harvest time, pedoclimatic conditions, infections, processing, and storage can af-
fect the polyphenolic content [19]. The phenolic acids (e.g., derivatives of cinnamic acid 
and benzoic acid), flavonoids (e.g., flavonols, flavanones, flavones, flavanols, isoflavones, 
and anthocyanins), lignans, and stilbenes are the most naturally occurring classes of com-
pounds (Figure 1). The shikimate pathway produces the phenolic acids. The phenylpro-
panoids pathway forms lignans, lignins, flavonoids, and stilbenes [20,21]. The biosynthe-
sis of complex polyphenols is linked to primary metabolism: the flavonoids’ ring B and 
the chromane ring originate from the amino acid phenylalanine, obtained from the shiki-
mate pathway, whereas ring A is formed from three malonyl-CoA units added through 
sequential decarboxylation condensation reactions [22]. In food, polyphenolic compounds 
can impact astringency, bitterness, flavor, color, and oxidative stability [19]. 

 
Figure 1. Chemical structures of the different polyphenol classes. The colors indicate the sub-class. 
The numbers indicate the positions in the nomenclature. 
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3. Polyphenols Bioavailability 
There is no relation between the concentration of polyphenols in food and their bio-

availability in the human body. The polyphenols, after ingestion, pass through the gastro-
intestinal epithelium and enter the circulatory vessels to reach the site of action. In food, 
polyphenols can exist as aglycon, glycosides, esters, or polymers. 

The polyphenols’ chemical structure limits the rate, absorption, and metabolites cir-
culating in the plasma. The polyphenolic compounds with hydroxyl groups can be mod-
ified by methylation, glucuronidation, or sulfation enzymatic reactions. The 5–10% of total 
polyphenolic compounds may be metabolized in the small intestine. The rest of the poly-
phenols accumulate in the large intestine and are evacuated in the feces [23]. The conju-
gated polyphenols must be hydrolyzed by colonic microflora or intestinal enzymes (i.e., 
β-glucosidases and lactase-phlorizin hydrolase) before absorption [24]. During the ab-
sorption process, they are transformed into oligomeric phenols by gastric acid in the stom-
ach, and glycosidic polyphenols are cleaved by cytosolic glucosidase and lactase in the 
small intestine into aglycon and glycoside(s) (e.g., glucose, xylose, and galactose) radicals 
[25]. Finally, intestinal bacterial enzymes can metabolize the remaining aglycone fraction. 
In the intestinal and colonic epithelium, polyphenols can be involved in conjugation reac-
tions with methyl, glucuronide, or sulfate groups, making the identification of the metab-
olites in the blood and tissue complex [26]. The glycosides of quercetin and the isoflavones 
(genistein and daidzein) are not recovered in plasma or urine [27–29]. Instead, anthocya-
nins glycosides are the most representative circulating forms [30,31]. Experimental studies 
showed that quercetin, without glycosides, is absorbed at the gastric level [32], anthocya-
nins in the stomach [33,34], and proanthocyanidins [33,35] and hydroxycinnamic acids are 
absorbed by the small intestine [36]. The remaining polyphenols are hydrolyzed in the 
colon by microflora enzymes into aglycones that are metabolized into benzoic acid deriv-
atives [37,38]. 

The polyphenols’ digestibility affects their biological properties [39]. Soluble poly-
phenols have more evident responses during gastrointestinal digestion since the cell wall 
does not protect them. Unfortunately, human enzymes cannot digest some cell wall ma-
terials. 

The flavonoids linked to other macromolecules cannot exert their beneficial actions 
[37]. The heat and pressure application (processing parameters) can facilitate the disrup-
tion of the cell wall and their release improving their bioactivity [38]. 

The pH and number of OH groups in benzene rings can affect phenolic stability. 
Conjugated nonphenolic aromatic acids, such as trans-cinnamic acid, are stable at high 
pH. The aromatic acids with a single OH group (e.g., ferulic acid) are stable at high pH 
because they do not form quinone oxidation products. The aromatic acids, with two phe-
nolic OH groups (e.g., caffeic acid) or three (e.g., gallic acid), are unstable at pH 7–11. The 
changes are ascribable to the two adjacent phenolic OH groups attached to the benzene 
ring. Flavonoid molecules (e.g., rutin) that have a wholly conjugated aromatic structure 
are influenced by pH because the spatial arrangement between the π-electron system and 
an OH group controls the extent of π-orbital overlap and susceptibilities to the chemical 
change. The flavonoids in which the first benzene ring is located in the meta-position (e.g., 
catechin, epicatechin) do not have planar structures. Therefore, the π-electrons of the two 
benzene rings cannot cooperate via conjugation and are less susceptible at high pH [40,41]. 

In plant-based food, polyphenols and cell wall polysaccharides co-exist, and their 
affinity may influence foods’ physicochemical and nutritional properties during pro-
cessing and digestion. The affinity of cell wall polysaccharides with polyphenols depends 
on their structures, concentrations, temperature, pH, ionic strength, and the presence of 
proteins [42]. 

The enzyme concentrations, solubility, pH, digestion time [43], and processing meth-
ods (e.g., washing, refrigerating, fermentation, grain milling, roasting, juicing, blanching, 
and thermal processing) impact polyphenols’ bioaccessibility and absorption [9]. 
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Cooking and freezing processes positively impact the polyphenols’ bioaccessibility 
since they soften the cell wall. The cooking medium also influences their bioaccessibility 
[44,45]. 

Pasteurization affects the polyphenols’ bioaccessibility in the function of the heat 
treatment intensity, steps involved in processing, and type of food, decreasing the adverse 
processing effects on small bioactive compounds and even increasing polyphenols con-
tent [46]. Pasteurization can enhance food polyphenols extraction since the temperature 
softens the cell wall [47]. 

Finally, the interactions between macronutrients, micronutrients, and other phyto-
chemicals, in finished products may also impact polyphenols’ stability [48]. 

4. Polyphenols & Microbiota 
Gut microbiota can break the flavonoid C-ring in different positions, producing sim-

ple phenolics from the A and B rings. Most of these metabolites are acid or aldehyde phe-
nolics with 1, 2, and (or) 3 hydroxyl and methyl ester radicals. Non-flavonoid phenolics 
(e.g., hydrolyzable tannins, stilbenes, lignans, and hydroxy-benzoic acid derivatives) are 
absorbed in the small intestine based on their chemical complexity. The gut bacteria can 
hydrolyze the ester bonds in tannins, dehydroxylate, and decarboxylate, the gallic acid 
[49], and reduce the resveratrol and its precursors [50]. 

The role of polyphenols and their metabolites on the gut microbiota is not elucidated. 
They probably have a prebiotic-like effect [51], since they can modulate the gut microbial 
profile. [52,53]. 

The polyphenols’ prebiotic effect is associated mainly with the promotion of probi-
otics (e.g., Bifidobacteriaceae and Lactobacillaceae) or the inhibition of pathogenic bacteria 
(i.e., E. coli, Clostridium perfringens, and Helicobacter pylori [52]) resulting in reduced proin-
flammatory immune response and decreased risk of colon cancer, gastroenteritis, inflam-
matory bowel disease, and metabolic syndrome [54,55]. 

Some polyphenols prevent bacterial growth, binding the cell membranes in a con-
centration-dependent manner. Catechins can change the microbial (i.e., Bordetella bronchi-
septica, Klebsiella pneumonie, E. coli, Pseudomonas aeruginosa, Serratia marcescens, Bacillus sub-
tilis Salmonella choleraesis, and Staphylococcus aureus) cell membrane permeability by pro-
ducing H2O2 [56]. In Gram-positive bacteria, polyphenolic compounds can delay the oli-
gopeptides autoinducers that sense the bacterial quorum sensing. In Gram-negative bac-
teria, they can prevent the bacteria-acylated homoserine lactones autoinducers [57]. 

5. Effects of the Food-Processing Techniques on Polyphenol Levels and  
Bioavailability 

The heat treatments (e.g., boiling, steaming, frying, stewing, baking, roasting, ovens, 
steam, and microwave) and the transformation food processing (e.g., roasting, toasting, 
drying, pasteurization, canning, and sterilization), can affect the polyphenols’ bioavaila-
bility. The heat breaks cell walls, mobilizes the phenolic compounds, improves their avail-
ability, enhances their oxidation processes, and degrades them based on their thermosta-
bility. Domestic cooking and industrial thermal processes can cause losses in polyphenols, 
with significant variability depending on the nature of food matrices [58]. 

Boiling produces the most harmful polyphenol composition changes. Instead, steam-
ing and frying can preserve them since the polar media (water) can extract higher levels 
of polyphenol than nonpolar media (oil) [59]. During boiling, heat decomposes the tissues, 
and the phenolics leak into the water [60]. Water volume can impact the polyphenol alter-
ation during the heat process: small water volumes produce lower phenolic extraction 
than larger volumes [61]. Diverse boiling times produce different polyphenol profiles in 
foods, and a long time can cause more severe damage than a short one [62]. The type of 
heat treatment affects the polyphenol bioavailability. Steaming is the best heat method to 
preserve phenolic fractions since they are indirectly exposed to water [63]. The form in 
which phenolics are present also affects bioavailability [64]. 
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Canning, a process employed to produce sterilized and microbiologically safe food 
products by applying heat treatment, can decrease phenolic compound levels [65] because 
they migrate into the surrounding medium [66]. 

Drying, the preservation process that aims to decrease the moisture content of food 
by using heat and mass transfer, can affect the phenolic levels in the function of the tem-
perature regime. Freeze-drying is the most efficient method to preserve phenolic content, 
while hot-air-drying is the least. The vast variety of chemical polyphenol classes also in-
fluences the variability in the effects caused by drying [67]. Oven-dried processes produce 
higher levels of bioaccessible phenolics than other drying processes [68–70]. Slow freezing 
enhances the bioavailability of the phenolic compounds since it forms ice crystals that 
favor the polyphenols extraction, oxidation, and degradation, during digestion [71]. 

Peeling fruits and vegetables determines the loss of high amounts of bioactive com-
pounds since they are contained in the peel and external parts of the plants at higher levels 
than other parts [72]. Grinding, the technique that reduces the size of solid particles using 
mechanical forces, enhances the polyphenols extractions as a function of the particle size 
[73]. The ultrasound treatments pulsed electric field, high-pressure, and pulsed-light pro-
cessing enhance polyphenols digestion, bioaccessibility, and bioavailability [74]. 

6. Polyphenol Biological Activities 
Epidemiological studies have shown an inverse association between a polyphenolic-

rich diet and the risk of chronic human diseases. Polyphenolic compound-rich foods and 
beverages can have antioxidant, anti-inflammatory, anticancer, and anti-aging properties 
and reduce the risk of degenerative diseases such as cardiovascular, diabetes mellitus, and 
neuronal diseases. 
6.1. Antioxidant Activity 

Experimental evidence showed that polyphenols protect cell constituents against ox-
idative damage and degenerative diseases associated with oxidative stress [75]. The pol-
yphenol-rich foods can improve plasma antioxidant capacity by scavenging radical spe-
cies (e.g., ROS, RNS) or repressing radicals’ formation by inhibiting the activities of the 
oxido-reductive enzymes’ and/or chelating the metals that intercept free radical produc-
tion. Their phenolic groups can accept an electron to form phenoxy radicals, interrupting 
chain oxidation reactions, and conjugated aromatic systems can delocalize an unpaired 
electron [76]. Polyphenols reduce the oxidation of lipids and other molecules by donating 
hydrogen to radicals (R). The resonance makes PO· (phenoxy radical) relatively stable 
(new chain reactions are not started) and acts as terminators of the propagation route 
when reacting with other free radicals (Figure 2). 

 
Figure 2. Reactions between lipids and phenols. 

The reduction activity of phenolic acids and their derivatives depends on the free 
hydroxyl groups in the molecule [77]. The hydroxycinnamic acids show better antioxidant 
activity than hydroxybenzoic acid equivalents due to the aryloxy-radical stabilizing effect 
of the –CH=CH–COOH linked to the phenyl ring by resonance [78]. The phenolic acids’ 
antioxidant activity of free, esterified, glycosylated, and nonglycosylated phenolics is 
mainly ascribed to radical scavenging via the hydrogen atom donation mechanism [78,79]. 
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The flavonoids’ radical scavenging depends on the ortho-dihydroxy structure in the 
B ring, which allows higher stability to the radical form and participates in electron delo-
calization of the 2,3-double bond with a 4-oxo function in the C ring [77]. 

The chemical electron deficiency of anthocyanins is particularly reactive toward 
ROS/RNS. 

The polyphenolic compounds with dihydroxy groups prevent metals-induced free 
radical formation by conjugating the transition metals that interact with hydrogen perox-
ide (H2O2) through the Fenton reaction to form hydroxyl radicals (·OH). 

Phenolic compounds with catecholate and gallate groups can stop metal-induced ox-
ygen radicals by improving metal ion autoxidation or forming an inactive complex with 
weaker interaction [79]. 

The metal ions can attack the flavonoids into positions 3′ and 4′ (B ring), 3 and 4, 3 
and 5, 4-keto and 3-hydroxy, and 4-keto and 5-hydroxy (C ring) [80]. 

Moreover, polyphenols can improve cellular antioxidant activity by regulating Nrf2, 
which controls some detoxifying enzymes (SOD, GSH, GPx1, NADP(H) quinone oxidore-
ductase, HO-1, and GST) [77]. Finally, polyphenols can influence microRNAs [81]. 

MicroRNAs are a class of small, endogenous, noncoding RNAs. Some microRNAs 
(i.e., miR-21, miR-125, and miR-146) are involved in vascular inflammation and diseases 
[82–84]. Dietary polyphenols can influence the microRNAs’ expression and biogenesis 
[30]. For example, curcuminoids can act as anti-atherosclerosis agents by upregulating 
miR-126 expression [85]. Resveratrol can act as a cardioprotective molecule by improving 
the mRNA activating SIRT1, and enhancing the SOD’ levels [86–89]. 

Gallic acid can decelerate atherosclerosis progression by upregulating miR-145 and 
downregulating miR-21 expression [90]. 

Under certain conditions, the polyphenolic compounds can initiate an autoxidation 
process and perform as prooxidants. In these cases, the phenoxy radicals can interact with 
oxygen to make quinones and superoxide anions [91]. pH, high concentrations of transi-
tion metal ions, and oxygen molecules can induce the autooxidation of polyphenols [92]. 
Quercetin and gallic acid can have prooxidant activity; instead, the hydrolyzable tannins 
have little or no prooxidant activity [93]. 

6.2. Anti-Inflammatory Activity 
Plant polyphenols can decrease the effect of the cytokine, affecting their receptors or 

reducing their secretion processes [94]. 
Phenolic compounds can suppress the binding of proinflammatory mediators, con-

trol eicosanoid synthesis, prevent stimulated resistant units, and impede the activity of 
COX-2 and NO synthase, acting on NF-κB [95]. Some phenolic acids, such as rosmarinic 
acid and isosalvianolic acid, can reduce the production of IL-6, TNF-α, and IL-1β at the 
gene and protein levels [30]. 

The catechols’ enzymatic activity depends on the structure of the B ring and needs 
nucleophilic additions [96]. The procyanidins decrease the concentrations of NO, prosta-
glandin E2, and ROS [97]. 

The flavonoids (e.g., flavones) regulate IL-6 in the blood [98]. The flavonoids’ anti-
inflammatory mechanism is related to the unsaturation in the C ring that affects the 
strength of binding interactions by resonance [99]. 

6.3. Anticancer Activity 
Cancer development consists of initiation, promotion, progression, invasion, and me-

tastasis [100]. Genetic mutations occur when DNA damage is not repaired, and a clone of 
mutated cells is reproduced during mitosis. Tumor promotion is a reversible and long-
term process in which a selective clonal expansion of the cells forms a population of ag-
gressively proliferating multi-cellular cells (premalignant tumor). Clonal expansion de-
termines the development of the premalignant cells into tumors (tumor progression 
phase). Finally, some tumor cells may be cut off from the primary tumor mass, migrate 
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toward blood vessels or lymphatic vessels and produce a second lesion (invasion and me-
tastasis phases). The natural phenolic compounds can induce cell cycle arrest at G1, S, S-
G2, and G2 phases by down-regulating cyclins and cyclins-dependent kinases or produc-
ing the expression of p21, p53, and p27 genes [80]. 

Polyphenols can act against tumor initiation and promotion, changing the redox sta-
tus and affecting essential cellular functions (i.e., cell cycle, apoptosis, angiogenesis, in-
flammation, invasion, and metastasis) [101]. Oxidative damage can cause cancer since 
ROSs can damage the DNA and affect cell replication and signal transduction [102]. 

The flavonoid anticancer effects are related to their antioxidant and pro-oxidant ac-
tivities [103,104]. The flavonol kaempferol can induce apoptosis and arrest in the S-phase 
of cancerous cells by modulating ROS levels [105]. When it acts as pro-oxidants it de-
creases NF-κB levels and produces cyclooxygenase-2 (COX) overexpression, inducing 
apoptosis, and cell-cycle arrest [106]. 

Some flavonoids and resveratrol can affect the procarcinogens’ activation by imped-
ing phase I metabolizing enzymes (e.g., cytochrome P450) [107–110]. They can help car-
cinogens’ detoxification and removal inducing the phase II metabolizing enzymes (e.g., 
glutathione S-transferase, UDP-glucuronyl-transferase, and NAD(P)H quinine oxidore-
ductase) [111]. 

The polyphenols can produce apoptosis-inducing cell cycle arrest inhibiting the ex-
tracellular regulated kinase, c-Jun N-terminal kinase, and P38 mitogen-activated protein 
kinase pathway, transcription factors, NF-κB, activator protein-1 (AP1), protein kinase C 
(PKC), and growth factor-mediated pathways. The apigenin inhibits the growth of human 
thyroid carcinoma cells, probably by decreasing the phosphorylation of MAPK and by 
activating the protein kinases, and scavenging H2O2 [112]. 

The 3,4 dihydroxybenzoic acid stimulates apoptosis, in human gastric carcinoma 
cells, by ROS overproduction which can activate JNK/p38 MAPKs [113]. 

The polyphenolic compounds can negatively affect some factors involved in the in-
flammatory processes, such as the NF-κB, proinflammatory cytokines release, COX-2, 
lipoxygenases, inducible nitric oxide synthase, and MAPK-mediated pathway [80]. For 
example, Epigallocatechin gallate can block NFκ B activation in human epithelial cells and 
downregulate the expression of inducible nitric oxide synthase and nitric oxide produc-
tion in macrophages [114]. Finally, the kaempferol can counteract malignant cell invasion 
and metastasis, down-regulating the matrix metalloproteases (MMP-2 and MMP-9), uro-
kinase-plasminogen activator (uPA), and uPA receptor expression [115,116]. 

6.4. Cardiovascular Protective Activity 
Cardiovascular (CVD) pathologies are the primary cause of morbidity and mortality 

(ischemic heart disease and stroke contribute 85%) [117]. Oxidative stress and inflamma-
tory processes are considered promoters of endothelial dysfunction [118,119]. Polyphe-
nols have antioxidant, anti-inflammatory abilities and can modulate lipid metabolism 
[120]. They (mainly quercetin and resveratrol) can decrease LDL oxidation [121], choles-
terol synthesis, improve LDL receptor expression and activity [122,123], and the choles-
terol transporters expression [124]. The anthocyanins and resveratrol can improve fecal 
cholesterol elimination [125,126] and decrease the triglyceride plasma level, decreasing 
the apolipoprotein B48 and apolipoprotein B100 production in the liver and intestine [127] 
or the lipoprotein lipase expression [128]. Flavonoids can also reduce blood pressure ame-
liorating flow-mediated dilation in humans (by improving the NO synthase activity) 
[129,130] and influencing the renin-angiotensin system [131,132]. Moreover, they can pre-
vent platelet aggregation, decreasing the activity of cyclooxygenase 1, and thromboxane 
A2 that act as a vasoconstrictor and platelet aggregation’s inducer, respectively [133]. Fi-
nally, the polyphenols’ prebiotic-like activity can account for the amelioration of markers 
of CVD [124]. 
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6.5. Antidiabetic Activity 
There are two main types of diabetes (diabetes-1 and diabetes-2). Diabetes type-2 or 

diabetes mellitus is due to damage in glucose metabolism and advancing insulin re-
sistance that leads to hyperglycemia. The leading causes of hyperglycemia are dietary 
carbohydrates’ digestion and absorption, glycogen storage reduction, β-cell dysfunction, 
peripheral tissue insulin resistance, deficiency in insulin signaling pathways, and im-
proved gluconeogenesis and production of hepatic glucose [134]. Polyphenols can de-
crease the intestinal absorption of carbohydrates, control the enzymes that regulate glu-
cose metabolism, and increase the β-cell functionality, insulin secretion, and the anti-in-
flammatory and antioxidant properties of these components (Figure 3). 

The phenolic acids, flavonoids, and tannins can regulate the key enzymes responsible 
for the digestion of carbohydrates (α-glucosidase and α-amylase) [135]. The catechin, epi-
catechins, and chlorogenic, caffeic, ferulic, and tannic acids can decrease the glucose trans-
porters Na+-dependent (SGLT1 and SGLT2) [136]. The coffee phenols, anthocyanin, and 
curcumin can regulate postprandial glycemia and decrease the progression of glucose in-
tolerance by a simplified insulin response and improved secretion of glucagon-like poly-
peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) [137]. Ferulic 
acid can decrease blood glucose by improving glucokinase activity and glycogen produc-
tion in the liver [138]. Catechins and epicatechins can decrease hyperglycemia and hepatic 
glucose output, downregulating the expression of liver glucokinase, and upregulating the 
glucose-6-phosphatase and phosphoenolpyruvate carboxykinase [139]. 

 
Figure 3. The polyphenols’ effects on glucose homeostasis and insulin resistance. 
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6.6. Neurodegenerative Protection 
Neurodegenerative diseases are due to the deterioration of neurons’ structure and/or 

function. Reactive oxygen and reactive nitrogen species can determine neuronal cell dys-
function and death. The phenolic compounds can interact with the amino acid residues of 
acetylcholinesterase’s (AChE) active site, making hydrogen bonds and hydrophobic and 
π–π interactions. Multiple hydroxyl groups can improve the inhibition of AChE, increas-
ing the binding capacity [30]. Resveratrol can protect against microglia-dependent β-am-
yloid toxicity by decreasing the nuclear factor κB [140]. Some polyphenols protect against 
Parkinson’s disease by scavenging the neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine (MPTP)-mediated radical formation [141] or decreasing free radicals’ formation 
by chelating iron [142]. 

6.7. Anti-Aging Action 
Aging determines detrimental changes in the cells and tissues. The cosmetic industry 

constantly strives in product development and reformulation to meet consumers’ prefer-
ences. Today, nature-derived products are in demand on the market. Some botanical prep-
arations that contain polyphenols (e.g., flavonoids, phenolic acids, and stilbenes) are em-
ployed in the composition of anti-aging products [143]. Free radicals and oxidative stress 
are the major contributors to aging damage. The phenolic hydroxyl groups on polyphenol 
molecules can scavenge ROS [144]. The polyphenolic compounds can regulate the pro-
duction of oxidase enzymes (sodium oxide dismutase 1 in the cytosol, sodium oxide dis-
mutase 2 in the mitochondria), and endogenous antioxidants [145–149] can improve the 
transcriptional factor Nrf2 DNA-binding activity and regulate protein expression [150–
152]. Anti-aging formulations contain botanicals metabolites able to protect DNA, regu-
late the enzymes’ action, decrease inflammation, and alter hormone imbalance [143]. 

The epigallocatechin-3-gallate in green tea decreases the UVB-induced hydrogen per-
oxide release from normal epidermal keratinocytes, MAPK phosphorylation, and inflam-
mation by activating NFkB. The flavins in black tea decrease UVB-induced AP-1 induc-
tion, prevent UVB-induced phosphatidyl-inositol 3-kinase activation, decrease the 
amount of ROS in the skin, and offer photoprotection by reducing local and systemic im-
munosuppression UVB-induced [153]. Resveratrol is employed to reduce hydrogen per-
oxide, improve lipid peroxidation, and decrease the levels of COX-2 and ornithine decar-
boxylase. Moreover, it can decrease UVA-induced oxidative stress in human keratino-
cytes since it controls the Keap1-a protein that acts on Nrf2 [153]. Curcuminoids (found in 
Turmeric spice) can decrease inflammation by inhibiting the MAPK and NFkB signaling 
pathways and decreasing nitric oxide levels and COX2. Moreover, in keratinocytes and 
fibroblasts, curcuminoids can decrease UVB-induced TNF mRNA expression and matrix 
metalloproteinase-1 expression [154]. 

6.8. Antiallergic Action 
Allergic diseases happen when an organism becomes sensitive to an innocuous aller-

gen and releases many allergy-related intermediaries. Polyphenols limit the production 
of IgE, the release of allergic mediators, and allergy symptoms. Polyphenols can control 
hypersensitivity by regulating oxidation and interacting with inflammatory mediators 
[155]. Catechins can decrease Th2 cytokine production and T cell activation and prolifer-
ation. Caffeic, chlorogenic, and ferulic acids can irreversibly bind peanut allergens (Ara 
h1 and Ara h2), reducing their allergenicity [156]. Punicalagin, phloridzin, and rutin can 
improve the growth of probiotics such as Lactobacillus and Bifidobacterium, which posi-
tively impact food allergies [157]. 

6.9. Antiosteoporotic Action 
Osteoporosis causes the loss of bone mineral density, decreased bone mass, and mi-

crostructural deterioration. Flavonoids and stilbenes can improve osteogenesis by 
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controlling the bone morphogenetic protein, NF-κB, IGF, and MAPK, and can inhibit the 
osteoclastogenesis pathways through epigenetic regulations. They can activate SIRT-1 
(histone deacetylase) and modify the NAD+/NADH ratio [158–160]. 

6.10. Antimicrobial Action 
Some plant extracts rich in polyphenols can decrease the growth of fungi and bacteria 

(i.e., Listeria monocytogenes, Salmonella spp., and Escherichia coli) [161,162], minimize the 
exposure of humans to resistant bacteria [163], and can have a synergic action with other 
antimicrobials. These findings have suggested a potential use of polyphenol-rich extracts 
as food preservatives and in the pharmaceutical industry to improve efficacy and decrease 
antibiotic side effects, such as repressing antibiotic-resistant bacteria [164]. The polyphe-
nol-rich extracts can be placed on the food surface by spraying, dipping, brushing, or mix-
ing with other ingredients [165]. Unfortunately, in some cases, the interaction with food 
components can cause a lack of antimicrobial efficacy. Therefore, it was thought to encap-
sulate them in carriers to increase their distribution in the food and reduce contact with 
food matrix molecules that reduce their effectiveness [166]. The mechanisms of antibacte-
rial action are not yet entirely deciphered. However, it is known that many sites of action 
at the cellular level are involved. Polyphenols can modify the cell membrane permeability, 
destroy the cell wall integrity and change intracellular functions by binding some en-
zymes [167]. 

7. Polyphenols Potentialities in the Nutraceutical Era 
Today, consumers include a high level of bioactive compounds in their standard diet, 

preferably derived from natural sources such as plants and fruits, in the hope of giving 
more life to the years by preventing disabling pathologies that decrease the skills that 
allow living life in all its manifestations [168]. Food and pharmaceutical companies de-
velop nutraceutical foods and supplements that contain botanical extracts and metabolites 
alone or combined with other ingredients [169–171]. 

Numerous studies strongly suggested that including polyphenols or polyphenol-rich 
extracts in supplements or foods may protect the body tissues against oxidative stress and 
aging [172,173]. 

The primary issue in using plant extracts is that fungi, which can produce toxins, can 
contaminate the extracts (e.g., Aspergillus section Nigri that produces Ochratoxin A, a car-
cinogenic, teratogenic, nephrotoxic, neurotoxic, and immunotoxic toxin) [174]. The re-
search should implement efforts to develop analytical controls that safeguard consumer 
safety. 

8. Polyphenols Extraction 
Extraction plays a pivotal role in the purification of polyphenols from foodstuffs. Ex-

traction techniques can employ traditional or “conventional” such as percolation, macer-
ation, and Soxhlet extraction, and modern methods, such as ultrasound or microwave, the 
latter is most extensively used (Figure 4). In both cases, extraction efficiency depends on 
various factors such as the nature of the solvent, solvent–solid ratio, temperature, and 
particle size. Polyphenol can be extracted from fresh, frozen, or dried plant samples. The 
extracts can be added to an organic solvent, such as methanol or ethanol, with low viscos-
ity to accelerate mass transfer [175]. Before extraction, the pretreatment of the plant ma-
trices (e.g., cleaning, washing, milling, grinding, drying, homogenizing) is crucial. 
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Figure 4. The polyphenols’ traditional and modern extraction methods. Blue arrows: traditional ex-
traction methods; red arrows: modern methods; in the orange circle: techniques used to improve 
polyphenol management. 

Percolation extraction uses water as a solvent. It takes a long time to obtain the pure 
extract to be concentrated [176]. 

The maceration is a solid-liquid extraction method using different solvents depend-
ing on the target compounds’ physical and chemical properties. It has low efficiency and 
extraction yield and employs a large volume of solvents compared to non-conventional 
techniques such as ultrasound-assisted extraction (UAE) [177]. A higher ratio of solid/sol-
vent increases polyphenols recovery [178]. 

Decoction extracts plant materials by boiling. It is inefficient for heat and light-sensi-
tive compounds [179]. The decoction of Citrus fruits produces by-products of Citrus peels 
with high concentration levels of polyphenol fraction [180]. 

Heat reflux extraction is a solid–liquid extraction method performed with repeated 
solvent evaporation and condensation at a constant temperature. It requires less extrac-
tion time and solvent than percolation or maceration and allows for a greater extraction 
yield [181]. Polyphenols from wastes of Vitis vinifera were extracted by Moldovan et al. by 
using heat reflux extraction [182]. 

The solid-phase extraction (SPE) method is considered quick and easy to extract pol-
yphenols from vegetable oils. According to the experimental needs, different stationary 
phases were used (e.g., C8 cartridges, octadecyl C18, diol-bonded phase cartridges, 
amino-phase cartridges, and octadecyl C18EC) [6]. The non-conventional techniques em-
ploy supercritical fluid, high-voltage electric discharge, and enzyme-assisted extraction. 
It is preferable to extract the bound polyphenols, also referred to as non-extractable poly-
phenols (NEP), from plant sources using one or more combinations of modern technology 
rather than conventional methods. A comparison between traditional and SFE extraction 
performed on black tea leftovers showed that SPE technique gives the best performance 
in extraction of phenolic compounds (SPE gives 521 mg GAE/g; traditional gives 283 mg 
GAE/g) [183]. 

The extraction with supercritical fluids such as CO2, propane, argon, and SF6 allows 
for an easy penetration inside plant materials and high solvents. Power-pulsed electric 
fields (PEF) perform a gentle extraction due to the electroporation of cell membranes. It 
has been applied to exotic fruits, grapes, and oil crop components [184]. Microwave-as-
sisted extraction (MAE) is an eco-friendly technique with higher efficiency in the recovery 
of polyphenols from waste products if compared to that of extracts prepared by ultra-
sound-assisted extraction (UAE) and conventional methods such as maceration [185]. 

Fruit skins, stem barks, grain seed coats, brans, and pods, are generally considered 
agro-waste, but they are essential resources for NEP recovery [186–188]. Table 1 reports 
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conventional and non-conventional techniques applied to extract polyphenols from or-
ganic waste. 

Table 1. Extraction of free and bound polyphenols. 

Conventional 
Extraction Meth-

ods 
Matrix 

Extraction Sol-
vent/Membrane 
Separation Type 

Higher % of Re-
covery Com-

pared to Tradi-
tional Method 

Reference 

Percolation 
Vernonia cinerea 

leaves Ethanol 60%  [188] 

Decoction Citrus peels Ethanol 75%  [180] 
Heat reflux ex-

traction 
Pleioblastus ama-

rus Ethanol 75%  [189] 

Maceration Citrus peel Ethanol 80%  [180] 
Non- Conventional methods 

Ultrasound as-
sisted 

Olive pomace water 58% [190] 

Microwave as-
sisted 

Blackcurrant By-
Products 

water 25% [191] 

Supercritical 
fluid 

Lees Vitis vinifera 
grapes 

CO2 −35% [192] 

High voltage 
electric dis-

charge 

Spent coffee 
grounds 24% ethanol 20.03% [193] 

Pulse electric 
field 

Vitis vinifera, Si-
deritis scardica and 

Crocus sativus 
water 44.36–49.15% [194] 

Enzyme assisted Green yerba mate water 38.67–52.08% [195] 
Membrane as-

sisted pre-purifi-
cation 

Winery and olive 
mill wastes NF270 membrane 

95% for poly-
phenol com-

pounds removal 
[196] 

9. Polyphenol Nano Delivery Systems 
The potential of antioxidative and repair pathways decreases with age, causing sev-

eral adverse effects such as the risk of neurodegenerative diseases such as Parkinson’s 
disease, memory loss, Alzheimer’s disease, atherosclerosis, and cancers due to the accu-
mulation of reactive oxygen species. Polyphenols, due to their oxidizing ability, can pro-
tect from the damaging effects of ROS. Therefore, they can be used as active compounds 
in several formulations preventing oxidative stress [197,198]. The loading of polyphenols 
into lipid nanocarriers (NCs) is an essential tool for increasing bioavailability, reducing 
degradation, and protecting antioxidant polyphenols’ activity. The NCs are biodegrada-
ble and have no significant toxicity. The nanoemulsion, liposome, phytosome, solid lipid 
nanoparticles (SLNs), nanostructured lipid carrier (NLCs), and lipid-polymer hybrid na-
noparticles (LPHNs) can encapsulate polyphenols to improve their biophysiological tar-
get [199]. Nanoparticles (NPs) have diameters as small as 1–100 nm. They can enhance 
polyphenols delivery and promote their absorption and bioavailability [200]. The trans-
cellular pathway is a route for the NPs transportation (via endocytosis or macropinocyto-
sis mechanisms) and subjected to the degradative microenvironment of the cellular lyso-
some environment in the acidic endosomal lumen [201]. Carbohydrate-based delivery 
systems, such as mono, oligo, and polysaccharide, are employed to encapsulate polyphe-
nols due to their abundance and low cost; for example, curcumin was encapsulated in 
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chitosan using an injection-gelation method to increase its bioavailability, antioxidant 
properties, and to improve stability and effects on tumor cells [202]. 

Protein-based systems have been employed to prepare nanoparticles for carrying 
polyphenols. The proteins act as “host” and polyphenols as “guest” molecules. The poly-
phenols bind specific regions on the protein surfaces through hydrogen and/or hydropho-
bic non-covalent bounds. The β-lactoglobulin nano delivery was used to increase the wa-
ter solubility 3-fold at pH 7 of the epigallocathechin-3-gallate and naringenin [203]. Fi-
nally, polyphenols are used to design polyphenol-based nanomaterials for biomedical ap-
plications. For example, the polyphenol-grafted polymers are used as antidiabetic agents 
[204], the curcumin encapsulated in chitosan and polyglycolic acid (PGA) particles for 
wound healing [205], and the polyphenol-loaded electrospun nanofibers to improve the 
remineralization and regeneration of bone [206]. 

10. Polyphenols in Active Packaging 
In recent years, packaging technology has evolved, including intelligent or smart 

packaging. Biodegradable, active, and bioactive packaging are new trends in food pack-
aging research. Food contact materials (FCM) are engineered to protect foods, and im-
prove their shelf-life [207]. Plastic packaging materials, such as polycarbonate, polyeth-
ylene, and polyethylene terephthalate, widely used in food packaging, are nonbiode-
gradable and disadvantageous to the environment and human health [208–210]. To date, 
natural and biodegradable biopolymer-based packaging films and edible coatings repre-
sent the alternative to plastic packaging materials [211]. Natural biopolymers, including 
proteins, polysaccharides, and lipids, have been used in packaging manufacturing [212]. 
Fruit industrial manufacture generates large amounts of waste that harm the environment 
and causes considerable treatment expense [213]. Nevertheless, these by-products are rich 
in bioactive compounds [214], some of which can be incorporated into biodegradable plas-
tics for food packaging to protect the polymeric matrix against thermal [162,213], photo-
induced degradation, and preserve the food freshness and quality [215]. The solvent-
based impregnation of biodegradable polymers with extracts of Cistus linnaeus is used to 
improve the polymers’ thermal stability [216]. Chemically-synthesized and biomass-de-
rived biodegradable polymers have been used as matrices to protect food during trans-
portation, storage, and sale. Polyphenols are employed in the so-called “leaching systems” 
that are active-releasing systems able to release actives by direct contact between food and 
packaging material. For this purpose, the propolis is mixed with biopolymers, plasticizers, 
and reinforcing agents to produce active packaging and edible coatings [213,216]. 

Biopolymers can be dissolved in solvents depending on their hydrophilicity. Hydro-
philic biopolymers, such as gelatin, κ-carrageenan, alginate, and agar in water, chitosan, 
can be dissolved in acidic solutions [217], while organic solvents, chloroform, and ethyl 
acetate can be employed for hydrophobic biopolymer such as polylactic acid (PLA) [218]. 
For example, the ethanolic propolis extract, and propolis in powder, together with plasti-
cizers such as glycerol and (PEG) polyethylene glycol, have been added to biopolymeric 
solutions [219]. Tea polyphenols (TP) are employed as an active component in biopolymer 
materials for active food packaging. Shao et al. have incorporated TP into pullulan-car-
boxymethylcellulose sodium (Pul-CMC) solutions on electrospun nanofiber films [220]. 

11. Conclusions 
Polyphenols are secondary plant metabolites that can benefit human health and pre-

serve food. The use of polyphenols as supplements, antibiotic drugs, cosmetics, and nat-
ural food preservatives is a promising trend in the industry because of the growing inter-
est in natural products and the multiple biological activities of these products. 

The great demand for polyphenols and the small quantity produced by the plants 
have determined the need to use extraction techniques that allow exhaustive extraction 
even when it is necessary to recover them from non-traditional sources such as organic 
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waste. For this purpose, unconventional techniques such as supercritical fluid, high-volt-
age electric discharge, and enzyme-assisted extraction must be optimized. 

The polyphenols’ low oral bioavailability and interactions with other molecules neg-
atively impact the possible industrial application. Therefore, different nanocarriers have 
been developed to protect, improve bioavailability, ensure achievement to the active site, 
and improve their effectiveness. It is essential to underline that polyphenols are com-
monly present in plant-based foods such as fruits and vegetables. 

Guidelines for their consumption and supplementation should be provided by regu-
latory bodies to make consumers safe and informed. 
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