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Abstract: Mitochondrial aldehyde dehydrogenase (ALDH2) is a potential target for the treatment
of substance use disorders such as alcohol addiction. Here, we adopted computational methods of
molecular dynamics (MD) simulation, docking, and molecular mechanics Poisson—-Boltzmann surface
area (MM-PBSA) analysis to perform a virtual screening of FDA-approved drugs, hitting potent
inhibitors against ALDH2. Using MD-derived conformations as receptors, butenafine (net charge
g = +1 e) and olaparib (g = 0) were selected as promising compounds with a low toxicity and a binding
strength equal to or stronger than previously reported potent inhibitors of daidzin and CVT-10216. A
few negatively charged compounds were also hit from the docking with the Autodock Vina software,
while the MM-PBSA analysis yielded positive binding energies (unfavorable binding) for these
compounds, mainly owing to electrostatic repulsion in association with a negatively charged receptor
(g = —6 e for ALDH2 plus the cofactor NAD*). This revealed a deficiency of the Vina scoring in
dealing with strong charge—charge interactions between binding partners, due to its built-in protocol
of not using atomic charges for electrostatic interactions. These observations indicated a requirement
of further verification using MD and/or MM-PBSA after docking prediction. The identification
of key residues for the binding implied that the receptor residues at the bottom and entrance of
the substrate-binding hydrophobic tunnel were able to offer additional interactions with different
inhibitors such as 7-mt, -alkyl, van der Waals contacts, and polar interactions, and that the rational
use of these interactions is beneficial to the design of potent inhibitors against ALDH2.

Keywords: virtual screening; drug repurposing; molecular dynamics simulation; alcohol addiction

1. Introduction

Acetaldehyde, a toxic product of ethanol metabolism mainly in the liver, is a critical fac-
tor responsible for, for instance, alcohol-induced liver damage, DNA damage, and several
cancers [1-6]. Aldehyde dehydrogenases (ALDHs) are the most important enzymes catalyz-
ing the metabolism of various reactive aldehydes to the corresponding non-toxic carboxylic
acids and their derivatives [7]. The human ALDH superfamily has 19 NAD(P)*-dependent
members with similar but not identical functions owing to their differences in gene expres-
sion and substrate specificity [8,9]. Among them, three closely related enzymes with an
amino acid sequence identity of 68% (ALDH1A1, ALDH1B1 and ALDH2) were reported to
be most relevant to acetaldehyde metabolism [9-11]. A mitochondrial isomer of ALDH2
was the most important one and prevented the accumulation of acetaldehyde by oxidizing
it to acetate [12]. This enzyme was also of relevance to the reaction of other substances such
as short-chain aliphatic, aromatic, and polycyclic aldehydes [13] and to a number of human
pathologies such as substance use disorders (such as drug addiction) [14-17].

Alcohol use disorder (AUD), commonly known as alcohol addiction, is a leading
and ubiquitous risk for personal death and disability as well as social stability. World
Health Organization (WHO) reported an estimated 3 million deaths globally in 2016 from
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the harmful use of alcohol, accounting for 5.3% of all deaths [18]. In China, about one
ninth of middle-aged men suffered from AUD [19]. A semi-dominant polymorphism of
the ALDH2 gene, ALDH2*2, exists in ca. 8% of the world’s population, 40% of which
are Asian [20-23]. ALDH2*2 encodes a nearly inactive protein and the reduced activity
retards acetaldehyde metabolism, leading to a high level of acetaldehyde in the blood after
alcohol intake and thus to discomforts such as facial flushing, nausea, and palpitation [20].
Such polymorphism provided a protective effect against alcoholism and alcohol-induced
diseases, which greatly decreased the risk of alcohol dependence or abuse [24,25].

When an inhibitor reduced the activity of ALDH?2, the level of alcohol-induced
dopamine in the nervous system was shown to be downregulated [26], and similar obser-
vations were detected for the exposure to methamphetamine and cocaine [15,16]. ALDH2
inhibition is therefore a therapeutic strategy for the treatment of AUD and drug addiction.
Four compounds were approved for treating alcohol addiction: disulfiram, acamprosate,
and naltrexone by the Food and Drug Administration (FDA) in the United States, and
nalmefene by the European Medicines Agency (EMA) [27]. Of these compounds, only disul-
firam targets ALDHs; however, it is nonspecific and is able to inhibit a variety of receptors
such as ALDH1, ALDH2, dopamine (3-hydroxylase, and phosphoglycerate dehydroge-
nase [28-30]. The design of specific and selective inhibitors against ALDH2 is therefore
highly desirable for the treatment of substance use disorders. Isoflavone analogues of
daidzin [31] and CVT-10216 [26] were verified in the experiments as potent inhibitors of
ALDH2 with ICs values of 0.08 and 0.029 uM, respectively. In a virtual screening of a com-
mercial chemical library with 50,000 compounds, Wang et al. identified five small-molecule
inhibitors, four of which had an ICsy of 0.5-3.8 uM [32].

Drug repurposing is a promising and productive approach to exploring old drugs
for new use, which accelerates the process of drug discovery [33]. FDA-approved drugs
constitute an ideal database for such a purpose. A variety of compounds, for instance,
were hit from this database for a possible treatment of virus infection such as Zika [34] and
SARS-CoV-2 [35-37] and for inhibition against disease-related targets such as arginases [38],
N-acetyltransferase 10 [39], eukaryotic elongation factor-2 kinase [40], and triosephosphate
isomerase [41]. However, repurposing FDA-approved drugs for inhibition against ALDH2
is rarely reported. Here, we aimed to select potential inhibitors from the FDA-approved
drug database with enhanced binding with ALDH2. Structural flexibility in the receptor—
inhibitor binding was taken into account by all-atom molecular dynamics (MD) simulations.
We also evaluated the toxicity of the selected drug compounds and decomposed the binding
energies to identify key residues. Interaction types and the effects of net charges of inhibitors
on the binding were discussed at the end of the manuscript as well as the selectivity of hit
compounds for the human ALDH family members. We believe this work is valuable for
the further design of potent inhibitors against ALDH?2.

2. Results and Discussion
2.1. MD Simulation of ALDH2 Tetramer

Equilibration of ALDH2 tetramer in MD simulations with explicit solvent molecules
allowed considering the structural flexibility of receptors in the virtual screening of ligand
compounds. ALDH2 was crystalized experimentally in a tetramer form [42], and interfacial
residues between monomers affected the structural stability of catalytic sites and cofactor
binding domains [22,23,43,44], as presented in Figure 1. Simulation of a dimer was reported
to be capable of maintaining the ALDH2 stability in a previous study [45]. Here, we
chose to simulate the whole tetramer in water. Root-mean-square deviation (RMSD) of
ALDH? backbone atoms from the crystal structure tended to be stable and converged to a
value smaller than 0.13 nm during the MD simulations with a length of 30 ns (Figure 2a),
indicating that the ALDH2 structure was well maintained in the apo form. The RMSDs
of the monomers (chains A-D) showed that there was a slight difference in the structural
stability of different monomers. From a cluster analysis on the simulation of ALDH2
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tetramer, we obtained 50 representative structures of the ALDH2 monomer for the following
docking calculations.

Figure 1. ALDH2 tetramer in complex with the cofactor NAD" and potential inhibitor butenafine.
Proteins are represented with the solid ribbon model; chain A is colored by secondary structures
(red for a-helix and cyan for B-sheet), while chains B, C, and D are in green, blue, and magenta,
respectively. NAD™ (orange) and inhibitor (dark grey) molecules are displayed using the space-filling
model (CPK).
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Figure 2. Root-mean-square deviation (RMSD) of protein backbone from crystal structure as a
function of simulation time for the ALDH2 tetramer and monomers (chains A-D) in the apo form
(a) and in the complex form (b) with the co-factor NAD™ and the inhibitor butenafine.

2.2. Virtual Screening of FDA-Approved Drugs against ALDH?2

The crystal structure (chain A) and MD-derived snapshots of ALDH2 were adopted
as receptors (51 in total) for the virtual screening of FDA-approved drugs (2115 ligands in
total) using the Autodock Vina software [46]. The receptor ALDH2 (monomer) contained
two binding domains for association with the substrate (such as acetaldehyde or inhibitor)
and the cofactor NAD", respectively, and both domains were adjacent to each other, as
shown in Figure 1. This necessitated the existence of NAD" in the docking; if not, the
ligand would enter into the cofactor-bound cavity.

The top 10 drugs from virtual screening using the crystal structure of the receptor were
tabulated in Table 1 in ascending order of binding affinities with ALDH2, as well as their
structures and formal charges. Differin (ZINC ID: ZINC003784182) showed the strongest
binding affinity (AE4,ck) of —48.5 k] /mol, while the 10th drug amaryl (ZINC000537791)
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gave a value of —43.5 k] /mol. Binding affinities of the top ten drugs were equal to or more
negative than the previously reported inhibitors of CVT-10216 (AE4ox = —43.5 kJ/mol)
and daidzin (AE4ockx = —38.1 kJ /mol) [45]. Both reported inhibitors belong to isoflavone
analogues and showed a strong inhibition against ALDH2 with ICsj values of 0.029 and
0.08 uM for CVT-10216 [26] and daidzin [42], respectively. This finding implied that it was
possible to find a compound with enhanced binding with ALDH?2 from the FDA-approved
drug database.

Using MD-derived structures as receptors, the virtual screening resulted in more hits
with binding affinities (AEqock) stronger than —46.4 k] /mol (Table 2). Mepron showed the
highest binding affinity with ALDH2 (AEg, = —51.1 kJ/mol). Two isomers of noxafil,
ZINC028639340 and ZINC003938482, yielded different AE 4,k of —47.7 and —47.3 k] /mol,
respectively. Differin (ZINC003784182) and eltrombopag (ZINC011679756) were hit again,
with an identical binding affinity with both crystal and MD-derived structures of ALDH2
(Tables 1 and 2). Interestingly, different charge states of eltrombopag (—3 e in Table 1 and
—2 e in Table 2) were selected, although there was a slight difference in the used receptor
structures. This implied that the Vina scoring was likely not capable of evaluating different
charge states with good accuracy. In total, six compounds of the top 10 drugs in both
Tables 1 and 2 were not neutral and had a positive or negative net charge. These charged
compounds therefore needed to be treated with care.

2.3. Toxicity Evaluation

The toxicity of the selected compounds were evaluated by ProTox-1I [47]. Hepato-
toxicity is of virtual importance because liver is the primary organ where the metabolism
of ethanol and other drugs takes place [48,49]. There were 17 hits from FDA-approved
drugs with potential inhibition against ALDH2, of which eight compounds were predicted
to be active for the organ toxicity (hepatotoxicity; dili for short in Tables 1 and 2) with
a confidence score of >0.67. These compounds were excluded from further evaluation.
The carcinogenicity of differin and fexofenadine was predicted with a confidence score of
0.61 and 0.50, respectively, whereas it was inactive for the other compounds. Indacaterol,
orap, and thalitone probably had adverse effects on the immune system (immunotoxi-
city) with a confidence score of >0.80. All of the selected drugs appeared inactive for
mutagenicity and cytotoxicity, except stivarga, likely causing cell damage (cytotoxicity)
with a confidence score of 0.77. CVT-10216, a potent inhibitor of ALDH2 [15,26], was
predicted active for hepatotoxicity and mutagenicity with a relatively low confidence score
of 0.56 and 0.54 (Table 1), respectively. As a naturally occurring isoflavone, daidzin was
inactive for all of the tested toxicities with a confidence score of 0.59-0.85 (Table 1).

Based on the toxicity evaluation, mepron (g = —1 ¢), differin (—1 e), olaparib (neutral),
butenafine (+1 ¢), fexofenadine (neutral), montelukast (—1 ¢), and amaryl (—1 e) were
selected as inhibitor candidates with potent binding with ALDH2 and almost no toxicity.
The first five ones were further investigated by MD simulations for the association with
ALDH?, and daidzin (neutral) was simulated as well for comparison.

2.4. MD Simulation of ALDH2—-Inhibitor Complexes and Binding Energy Calculation

Docking poses of the receptor ALDH2 with the inhibitors were used as initial config-
urations for the MD simulations of ALDH2 tetramers in the complex form, as shown in
Figure 3a for one monomer (chain A). For a clear depiction of ligand binding, we high-
lighted a hydrophobic surface on the receptor using the ALDH2/daidzin complex; the
isoflavone skeleton (hydrophobic) was buried in the hydrophobic tunnel, while its glucose
group (hydrophilic) lied at the entrance of the tunnel (Figure 3a). The inhibitors penetrated
into the hydrophobic tunnel of ALDH2, while the penetration depth differed from case
to case. Compared with daidzin, it appeared that butenafine, olaparib, and mepron could
go further and lie at the bottom of the tunnel; however, the penetration of fexofenadine and
differin was much shallower, and their hydrophobic moieties such as the benzene ring of
fexofenadine or adamantane group of differin were located outside of the tunnel. This implied
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that the hydrophobic tunnel of ALDH2 for ligand binding was larger than the isoflavone
skeleton in length, in line with experimental [31] and computational [45] observations.

Table 1. Top 10 compounds from virtual screening of FDA-approved drugs via Autodock Vina using
the crystal structure of ALDH2 as receptor and the toxicity prediction via ProTox-II.

Toxicity
ZINC ID Name Molecular Structure q AEgock - "
Dili Carcino Immuno  Mutagen Cyto
ZINC003784182 differin -1 —48.5 N(83) Y(61) N(85) N(73) N(76)
ZINC011679756  eltrombopag "o ‘ O N*NIXN\Q\ -3 —46.9 Y(67) N(57) N(72) N(56) N(84)
Qo g
ZINC003824921  fexofenadine % fﬁ@ﬂH 0 —456  N(99) Y(50) N(86) N(85) N(@81)

HN'
ZINC035801098  indacaterol MO ‘ /&;—/ 0 —456 N(74) N(60) Y(80) N(61) N(66)

O~ 0
HO

ZINC003831151  montelukast -1 —456 N(56) N(64) N(67) N(72) N(67)

ZINC019632618 imatinib Ny OYQA LN 1 —452 Y(71) N(67) Y(66) N(73) N(52)
0 —452 Y(88) N(62) Y(75) N(53) N(90)

ZINC004097343 itc Q—«NH

7 = HN/©1’<
ZINC006745272 stivarga N C[ﬂ 0 —452 Y(82) N(50) Y(99) N(79) Y(77)

N
o
ZINC000643138 nizoral @-/g" e 1 —439 Y(76) N(51) Y(98) N(69) N(63)

° P>~NH s
ZINC000537791 amaryl gﬁ LQ ? -1 —43.5 N(74) N(61) N(98) N(75) N(68)
H
H

HO. o. P
CVT-10216 b% 0 e ST —435 Y(56) N(60) N(95) Y(54) N(66)

HO

"o,

daidzin ”O’C% o\ 0 381 N2 N(85) N(59) N(76) N(69)
SPReses
Ho O {

ZINC ID and name are the compound ID and name in the ZINC database, respectively. Two isoflavone analogues
of CVT-10216 (ICs0 = 0.029 uM) and daidzin (ICsy = 0.08 uM) with potent inhibition against ALDH2 are also listed
for comparison. g is the net charge of compounds. AE 4, is the binding affinity from docking calculations in units
of k] /mol. Toxicity predictions include hepatotoxicity (dili for short), carcinogenicity (carcino), immunotoxicity
(immuno), mutagenicity (mutagen), and cytotoxicity (cyto). N means inactive, and Y is active. The confidence
(%) for the toxicity prediction is given in parenthesis. Differin, fexofenadine, and daidzin are selected for the
subsequent MD simulation and MM-PBSA analysis.
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Table 2. Top 10 compounds from virtual screening of FDA-approved drugs via Autodock Vina using
MD-derived structures of ALDH2 as receptor and the toxicity prediction via ProTox-II.

Toxicity

ZINC ID Name Molecular Structure q AEgock - -
Dili Carcino Immuno Mutagen Cyto

ZINC100017856  mepron = 'O 1 511 N(4)  N(G3)  N@B6)  NG3)  N@©7)

ZINC003784182  differin D W 1 —485 N(@83) Y1) N85  N@I3)  N(76)
W

ZINC028639340  noxafil Q@ OrO-0-C0 0 477 Y(86) N(62) Y(99) NG6)  N(75)
? \\/O

ZINC000896717  accolate O (& 473 Y(76)  NG7)  N@®5  N@©67)  N(56)
O 7

ZINC003938482  noxafil O 434 00 O” 0 473 Y(86)  N(62)  Y©®)  NG6  N(5)

-
ZINC004175630  orap %@ 1 —473  N(78) N(69) Y(89) N(86) N(65)

o

»/_\Jﬁ> 0 —46.9 N(62) N(57) N(95) N(54) N(65)

.

"

ZINC011679756 eltrombopag Q“Jimﬂw 2 469  Y(67) NG7)  N(72)  NG6)  N(84)

ZINC001530975 butenafine X@” ” 1 —469 N85  NG7)  N©92) N7  N(75)
HN_ P

he)
ZINC000057255  thalitone » ° 0 —464  N(79) N(71) Y(80) N@77)  N(67)
) NH

ZINC040430143 olaparib

Refer to the footnotes of Table 1 for the details of compounds and toxicity predictions. Mepron, differin, olaparib,
and butenafine are selected for the subsequent MD simulation and MM-PBSA analysis.

Root-mean-square deviation (RMSD) of protein backbone atoms from the crystal
structure during 30 ns MD simulation of the ALDH2/butenafine/cofactor complex is
presented in Figure 2b. Association with butenafine and NAD" produced RMSD values
of 0.13 and 0.15 nm for the monomer A and tetramer, respectively, larger than that in
the ligand-free (apo) form of ALDH2 (Table 3). The other three monomers (chains B-D)
showed a RMSD of ca. 0.1 nm, very similar to the structural fluctuations of the apo form.
Similar observations were detected for the complexes with the inhibitors of fexofenadine
and mepron (Table 3). For all of the tested inhibitors, crystal structures of chains B-D in the
ALDH?2 tetramer appeared more stable than chain A, as indicated by the smaller RMSD
values (Table 3). Despite these differences, protein structures of the ALDH2 monomers and
tetramer tended to be stable after 20 ns simulation (Figure 2b), and the last 10 ns trajectories
were therefore used for data analysis.
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butenafine

fexofenadine

daidzin

Hydrophobicity

Figure 3. (a) Binding poses of ALDH2 with selected inhibitors from docking and (b) representative
binding mode of ALDH?2 with olaparib from MD simulations. Five compounds (butenafine, olaparib,
fexofenadine, mepron, and differin) are chosen as potential inhibitors and are shown with the stick
models in different colors (a). The pose of daidzin (colored in black) in the crystal structure (PDB
code: 2VLE) is displayed with the scaled ball and stick model for reference (a). The hydrophobic
surface on the receptor is created using the ALDH2-daidzin binding pose to depict the hydrophobic
tunnel for ligand binding (a). Carbon atoms of olaparib in the complex with ALDH2 are colored in
cyan, while the carbon atoms of interacting receptor residues are in green (b). The cofactor NAD" is
shown by the stick model with its carbon atoms in yellow, and the green ball in the panel (b) is Mg2+
ion bound to NAD". Hydrogen atoms are removed for clarity.

Table 3. Time-averaged root-mean-square deviation (RMSD) of protein backbone atoms and receptor-
ligand binding energies (AEp;,q) for the ALDH2 tetramer and monomers.

Compound Chain A Chain B Chain C Chain D Tetramer
RMSD (nm)
butenafine 0.13 0.10 0.09 0.10 0.15
olaparib 0.10 0.10 0.10 0.09 0.13
fexofenadine 0.12 0.10 0.11 0.11 0.14
mepron 0.12 0.11 0.10 0.10 0.13
differin 0.10 0.10 0.09 0.10 0.11
daidzin 0.09 0.11 0.10 0.09 0.12
free 0.10 0.10 0.12 0.11 0.13
Compound Chain A Chain B Chain C Chain D <AEping>
AEping (kJ/mol)
butenafine —-290.0+39 -3069+32 3134431 -2702+60 —313.0+42
olaparib —-1192+24 —-1151+£33 —-1276+87 —1219+51 —1268+54
fexofenadine  —35.2 +10.4 —9444+52 —34.24+13.9 —-90.1 +£5.2 —-93.8+94
mepron 35.0 £ 3.5 83+1.1 475+5.5 444+40 8.3+39
differin 64.2 + 6.3 58.9 +£5.3 92.7 +7.8 709 + 6.9 59.5 + 6.6
daidzin —-7954+99 -91.9+45 —-110.1 + 4.6 —86.9 +4.9 —-110.1 + 6.4

The last 10 ns trajectories were used to calculate RMSD and AEy;,4. Standard deviations of the RMSDs are smaller
than 0.01 nm. The RMSD of ALDH2 in the ligand-free (apo) form is given as well for comparison. The trajectories
were divided into five blocks for improved statistics on the energies via block averaging. <AEy;,q> is the averaged
binding energy weighted by their Boltzmann factors (Equation (1)).

Receptor-ligand binding energies (AEy;yg) for each monomer were computed from
the Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis [50]. Signif-
icant differences were observed in different monomers (Table 3). Upon association with
fexofenadine, for instance, monomers A and C yielded a value of AEy;,q = —35 kJ/mol,
whereas monomers B and D produced a value of ca. —90 kJ/mol. For a quantitative evalu-
ation, binding energies of four monomers were averaged with a weight of their Boltzmann
factors (Equation (1)) [51,52].

Yi AEpingi @Xp(—AEping i/ RT)
AE in — 7 7 1
(AEoind) Y; exp(—AEpingi/RT) M
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where i is the monomer ID (chains A-D), R is the ideal gas constant, and T is the absolute
temperature (298.15 K). The weighted binding affinities <AE;,4> were very close to the
most negative value among different monomers. That is, the ALDH2 monomer B outper-
formed the other monomers for association with fexofenadine, mepron, and differin, while
it was the monomer C for butenafine, olaparib, and daidzin. These monomers with good
performances were used for the following energy decomposition to explore the details of
the interactions between binding partners.

Binding energy (AEping) was decomposed into four components of van der Waals
(AEyqw) and electrostatic interactions (AEgje.) as well as polar (AGy,lar) and nonpolar
(AGronpolar) solvation contributions. The sum of the first two contributions was the so-
called MM part (AEyp); see Equation (2) in the Section 3.4 for details on the decomposition.
AE,qw and AGnonpolar favored the binding of ALDH2 with inhibitors, while AGpolar dis-
favored the complexation (Table 4). For neutral and positively charged inhibitors, AEec
had a favorable contribution; for butenafine with a net charge of +1 ¢, in particular, a
strong electrostatic interaction was measured with a contribution of about —280 kJ /mol
(Table 4). This was likely ascribed to the electrostatic attraction of the negatively charged
receptor (—6 e for ALDH2 monomer). Due to the repulsion of charges with like sign,
unfavorable contributions of electrostatic interactions were observed for the negatively
charged inhibitors of mepron and differin, as indicated by positive AEe. of ca. 100 and
75 kJ /mol, respectively (Table 4). We did not carry out such an analysis for montelukast
and amaryl with a net charge of —1 e (Tables 1 and 2), and as stated above, these two
compounds probably produced unfavorable binding with ALDH?2.

Table 4. Decomposition of binding energies (kJ/mol) of the selected inhibitors with ALDH?2 via
MM-PBSA using simulation trajectories.

Compound q AE qw AEec AEvmm AGpolar AGnonpolar AGgq AEping

butenafine +1 —2204+22 -2806+13 —-501.0+£19 2076+23 —-200+01 1876+24 —-3134+31
olaparib 0 —2322£49 —8.6 £26 —2408+74 1349+31 -21.7+04 1132+£32 —127.6+87

fexofenadine 0 —2169+27 —-183.6+54 —4004+7.0 330786 —247+04 306.0+385 —944+£52
mepron -1 —2275+1.1 1019 £5.0 —1255+40 15294+40 —-191+0.1 1338439 83+ 1.1
differin -1 —199.5 £3.6 748 £4.1 —-1247+15 2034+£50 -198+02 183.6=£52 589 £5.3
daidzin 0 —2229 +£3.6 —65.1+25 —288.1+35 197739 —-198+02 1779+38 —110.1+4.6

The energies correspond to the monomer with the lowest binding affinity (see Table 3). g is the formal charge
(e) of the compounds, and the net charge of ALDH2 monomer is —6 e. AEypy is the MM part and amounts to
AEqqw + AEgjec- AGgo) is the solvation energies (AGpolar + AGnonpolar)- For each compound, 100 frames from the
last 10 ns trajectories were used for the MM-PBSA analysis. Block averaging were used for the energy calculations
for improved statistics.

The MM part (AEypm) favored the inhibitor binding owing to a relatively large con-
tribution of AE,qw. Solvation energies (AGg.) displayed unfavorable contributions of
roughly 110-300 kJ/mol, probably arising from the desolvation of the binding part-
ners. Electrostatic repulsions between ALDH?2 and the inhibitors of mepron and dif-
ferin resulted in a AEyp contribution of —125 kJ/mol, and the relatively large AGg
gave rise to positive binding energies (AEp;,g) for these two compounds (Table 4). Elec-
trostatic attractions endowed butenafine with a very strong binding against ALDH2
(AEping = —313.4 kJ /mol). AEp;ng for daidzin was —110.1 kJ/mol, close to our previous pre-
diction of —105.8 kJ/mol on the ALDH2 dimer [45]. Fexofenadine (AEp; g = —94.4 k] /mol)
showed a weaker binding with ALDH2 than daidzin. The neutral drug of olaparib yielded a
AEping of —127.6 £ 8.7 k] /mol (Table 4), a binding affinity similar to the potent inhibitor of
CVT-10216 (AEping = —132.3 £ 7.6 kJ /mol) [45]. These findings indicated that butenafine
(g = +1 e) and olaparib (g = 0) were ideal inhibitors with enhanced binding with ALDH2
compared to daidzin and CVT-10216.

Note that our virtual screening with molecular docking predicted equal or more
negative binding affinities by 2-8 k] /mol for the five selected drugs than CVT-10216, as
indicated by AEj,ck in Tables 1 and 2. However, the MM-PBSA analysis produced a very
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strong binding for the positively charged butenafine and an unfavorable binding (i.e.,
positive AEy;,q) for the negatively charged mepron and differin. This was ascribed to the
Vina scoring not using atomic charges for electrostatic interactions. As designed, it was
not necessary to assign atomic charges for the Autodock Vina software and electrostatic
interactions were handled via hydrophobic and hydrogen bonding terms with empirical
parameters [46]. Therefore, it could be an issue in the modeling of strong electrostatic
interactions between charged moieties in the Vina scoring. The MM-PBSA analysis might
provide a solution, although it required relatively heavy computational loads.

2.5. Identification of Key Residues for Receptor-Inhibitor Interactions

Four compounds of butenafine, olaparib, fexofenadine, and daidzin with potential
inhibition against ALDH2 were used to explore the interaction mechanism between the
binding partners. The 2D diagrams of receptor—inhibitor interactions for these compounds
were presented in Figure 4, where the left moieties of the inhibitors were inserted into
the hydrophobic tunnel of the receptor. A number of interaction types were responsible
for the complexation, namely, vdW contacts, hydrogen bonds, charge attractions and
benzene-involved interactions of m-ion, 7-sulfur, 7-o, 7-alkyl, and 7-7t stacking, as well
as the interactions between alkyl groups. Representative binding mode of ALDH2 with
olaparib was shown in Figure 3b for a clean illustration of the substrate-binding domain
and the location of interacting residues.
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Figure 4. 2D diagrams of receptor-ligand interactions for ALDH2 complexes with butenafine (a),
olaparib (b), fexofenadine (c), and daidzin (d). The cofactor NAD" is treated as one residue of the
receptor with an ID of 501. The left moieties of the inhibitors enter into the bottom of the ALDH2
substrate-binding tunnel, while the right parts lie in the tunnel entrance (Figure 3a). Averaged
structures from the last 10 ns simulations were used to generate the diagrams, and interacting
residues and interaction types are shown with different colors.
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Energy contribution (kJ/mol)

-15

In order to identify key residues for receptor-inhibitor interactions, binding energies
from the MM-PBSA analysis were further decomposed into contributions per residue.
ALDH?2 monomer had 500 amino acids, and the cofactor NAD* with a net charge of —1¢
was regarded as one residue of the receptor with an index of 501. Since butenafine displayed
a very strong binding, only the receptor residues with a contribution of >16.8 kJ/mol
(ca. 4 kcal/mol) were marked, which resulted in 36 key residues. For the other three
compounds, the 27 key residues contributed more than 4.2 k] /mol (ca. 1 kcal/mol) for at
least one inhibitor. Energy contributions per residue to the receptor—inhibitor association
are given in Figure 5 and Tables S1-54 in the Supplementary Material.
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Figure 5. Energy contribution per residue to the binding of ALDH2 with potential inhibitors of
butenafine, olaparib, fexofenadine, and daidzin. Each residue with a contribution of >16.8 k] /mol is
given for butenafine (a). For the other three compounds, the given residues have a contribution of
>4.2 kJ/mol for at least one inhibitor (b). Dashed lines in panels (a,b) indicate the energy thresholds
for key residue identifications. The cofactor NAD™ is considered as one residue of the receptor and
its contribution is presented as well.

The key residues for butenafine (g = +1 ¢) were composed of positively (Arg and Lys)
and negatively (Asp, Glu, and NAD) charged residues, offering unfavorable (electrostatic
repulsion) and favorable (electrostatic attraction) interactions, respectively (Figure 5a).
Butenafine had a positively charged center (N*, Figure 4a); electrostatic repulsion and
attraction interaction belonged to long-range interactions and no direct contacts were
observed between the charged center and receptor residues in the 2D interaction diagram
(Figure 4a). Fexofenadine was a neutral compound, while it had two charged moieties. The
negatively charged center (COO™) hydrogen bonded with Asn169 and Cys302, and the
positively charged center (N*) provided a m-cation interaction with Phe296 and a charge
attraction with Asp457 (Figure 4c). For the binding of fexofenadine with ALDH?2, Phe296
and Cys302 contributed favorable interactions of —8.1 and —5.5 kJ/mol, whereas Asn169
and Asp457 only had small contributions of —1.1 and 2.8 k] /mol, respectively (Figure 5b).

Phe465 was located at the bottom of substrate-binding tunnel, and offered 7-7t inter-
actions with the left benzene rings of butenafine, olaparib, and daidzin (Figure 4, panels
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a, b, and d, respectively). Due to a relatively shallow penetration, Phe465 interacted the
alkyl group of fexofenadine (Figure 4c). This residue contributed —6.0, —10.9, —1.7, and
—4.1 kJ/mol to the complexation with butenafine, olaparib, fexofenadine, and daidzin,
respectively (Figure 5). Another residue of Trpl177 at the tunnel bottom offered vdW
contacts, m-0, and/or 7-7 interactions with butenafine and olaparib, leading to favorable
contributions of —7.7 and —10.2 k] /mol (Figure 5), respectively. Owing to the difference in
the penetration depth (Figure 3a), Trp177 provided vdW contacts only with fexofenadine
and daidzin (Figure 4) and yielded a small contribution of ca. —2 kJ/mol.

Phel70 and Phe 459 lied roughly in the center and on both sides of the tunnel
(Figure 3b), and they were therefore able to interact with the central hydrophobic moi-
eties of the inhibitors such as benzene rings and alkyl chains (Figure 4). Phel70 produced a
favorable contribution of —6 k] /mol on average, while Phe465 contributed —12.3 kJ/mol
when interacting with olaparib and ca. —8 kJ/mol for the other compounds. Cys302, close
to the bottom of the tunnel, was capable of hydrogen bonding with olaparib, fexofenadine,
and daidzin and/or offering m-sulfur interactions with butenafine and olaparib (Figure 4).
The hydrogen bond between Cys302 and the carboxyl group of fexofenadine showed
a contribution of —5.5 kJ/mol, whereas it was negligible when bound to olaparib and
daidzin (Figure 5b).

The residues at the entrance of the tunnel provided hydrophobic contacts (such as
Ile116, Leul19, Val120, Phe292, and Val458) or hydrophilic interactions (such as Asp457
with hydrogen bonding or charge attraction), as presented in Figure 3b. Asp457 produced
a favorable AEypy for all of the four inhibitors (Tables S1-54); however, owing to the
difference in the AG,, this residue favored the binding for butenafine and olaparib and
showed the opposite for fexofenadine and daidzin (Figure 5). In addition, the two benzene
rings of fexofenadine interacted with polar residues such as Glu288, GIn289, and Arg329
via vdW contacts. These observations showed that the tunnel entrance might provide much
more interactions for ligand complexation than that with daidzin (Figure 3), indicating a
recipe for the further design of inhibitors with enhanced binding for ALDH2.

2.6. Drug Selectivity against Human ALDH Family

ALDH enzymes have a large diversity in the amino acid sequences, whereas they tend
to fold into similar structures [53]. We used the GRaphlet-based Aligner (GR-Align) [54]
to align 3D structures of the 19 members in the human ALDH family (Table 5). After
alignment, protein C atoms showed a RMSD of 0.1-1.0 nm between different members.
For instance, the fold architecture of class 2 ALDHs (ALDH2) is close to the six members
of class 1 ALDHs with a RMSD of <0.16 nm, and it also shows a similarity with the
member Al of classes 5-9 ALDHs (RMSD ~0.2 nm). Large RMSD values are observed for
ALDH3B2, ALDH16A1, and ALDH18A1 (Table 5), indicating a discrepancy in the protein
folds compared to other members.

Docking predictions showed that the chosen inhibitors of butenafine and olaparib are
probably potent to other ALDHs (Table 5). Butenafine yielded an equal or stronger binding
strength with ALDH1A1, ALDH1A2, ALDH3A2, ALDH7A1, and ALDH9A1 compared to
that with ALDH2. A similar finding for olaparib is observed for half of the human ALDH
family members. Note that the 19 ALDH members have different net charges (g in Table 5).
Considering the issue of evaluating electrostatic interactions for the Vina docking and
structural flexibility of ALDHs (mentioned above), further studies of, for instance, high
accuracy calculations and in vitro experiments appeared necessary to test the selectivity of
both compounds for ALDHs.
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Table 5. Structural comparison of 19 NAD(P)*-dependent members in the hum an ALDH family and
their binding affinities with butenafine and olaparib from docking predictions.

RMSD (nm) AE 400k (kKJ/mol)
Name Entry Identifier Residues q ; :
Others ALDH2 Butenafine Olaparib

ALDHI1A1 P00352 4WB9 21-501 —2 0.26 +0.18 0.13 —40.3 + 0.2 —42.7 + 0.2
ALDH1A2 094788 6B5G 38-518 —4 0.27 £0.19 0.12 —39.3 +0.1 —453 + 1.7
ALDH1A3 P47895 5FHZ 32-507 -2 0.26 +£0.18 0.15 —36.6 £ 0.2 —39.7 + 0.1
ALDHI1B1 P30837 7RAD 37-500 -5 0.29 +0.18 0.04 —37.6 £0.2 —36.8+0.9
ALDHIL1 075891 AF-O75891-F1 422-902 -2 0.26 +£0.17 0.16 —285+0.1 —36.4 +0.1
ALDH1L2 Q35Y69 AF-Q35Y69-F1 443-923 —4 0.26 £ 0.17 0.16 —275+0.2 —34.3+0.1

ALDH2 P05091 2VLE 37-500 -5 0.30 +0.23 0.00 —39.0 £3.9 —392+26
ALDH3A1 P30838 41.20 1-432 —6 0.37 +0.22 0.35 -35.3+03 —355+03
ALDH3A2 P51648 4QGK 1-432 -3 0.37 £0.21 0.35 —40.5+ 1.7 —414 1+ 1.2
ALDHB3B1 P43353 AF-P43353-F1 1-432 —2 0.38 + 0.22 0.33 —34.6 £0.2 —342+14
ALDH3B2 P48448 AF-P48448-F1 1-353 -7 0.68 £+ 0.30 0.85 —35.6 £0.4 —3794+0.2
ALDH4A1 P30038 40E5 64-551 —4 0.49 £0.18 0.48 —34.6 £ 0.4 —41.8 + 0.1
ALDHb5A1 P51649 2W8R 61-535 —2 0.27 +0.15 0.19 —335+0.1 —40.6 = 0.1
ALDH6A1 Q02252 AF-Q02252-F1 39-517 4 0.32 +£0.21 0.20 —284 +0.2 —335+0.6
ALDH7A1 P49419 47ZUK 51-500 2 0.31 £0.14 0.18 —41.2+ 1.6 —46.4 + 0.1
ALDHS8A1 QI9H2A2 AF-Q9H2A2-F1 10-487 —1 0.31 +0.20 0.21 —25.8 +£0.4 —3144+0.1
ALDH9A1 P49189 6VR6 12-488 -3 0.30 £ 0.21 0.16 —41.2 +0.2 —43.7 £ 0.9
ALDH16A1 Q81783 AF-Q8IZ83-F1 26488 -9 0.61 £0.33 0.56 —30.5+0.1 —3724+0.1
ALDH18A1 P54886 2H5G 361-770 -7 0.81 +0.19 0.80 —295+0.6 —40.1 1+ 0.4

Sequence entries in the UniProt database and structure identifies in the PDB (four-letter codes) or AlphaFold
protein structure database (with a prefix of AF) were given for the 19 ALDHs. g is the net charge of the proteins in
the absence of cofactor. RMSD is the root-mean-square deviation of protein C atoms of ALDH relative to other
members (averaged over 18 pairs) or to ALDH2 after structural alignment via the GR-Align software. Binding
energies (AEgock) are averaged over 100 replicates of docking calculations with random seeds. The energies that
are more negative (i.e., a stronger binding) than that of ALDHs with butenafine or olaparib are marked in bold.

3. Computational Methods
3.1. Docking Protocol
3.1.1. Ligand Preparation

Molecular structures of 1615 FDA-approved drugs were downloaded from the ZINC 15
database in the MOL2 format (https://zinc.docking.org/substances/subsets/fda (accessed
on 7 December 2022)) [55]. Considering the titration states at different pH values, there
were 2115 drugs in total for use as ligands in the virtual screening.

3.1.2. Receptor Preparation

In order to consider the receptor flexibility, we performed molecular dynamics (MD)
simulations of the ALDH2 tetramer in the apo form for 6 ns. The MD protocol was given in
the following (Section 3.2). Four replicates were carried out with different initial velocities,
and MD trajectories were saved every 1 ps (i.e., 6000 x 4 frames of ALDH2 monomers
for each replica); one replica was extended to 30 ns for monitoring the structural stability.
After discarding the first 1ns for equilibration, MD snapshots of ALDH2 monomers were
extracted with an interval of 50 ps, giving rise to 1600 frames in total. Such a task was
carried out by the GROMACS tool of “gmx trjconv” [56]. We concatenated these frames
into a single trajectory and then clustered it with a RMSD cutoff of 0.0757 nm, using
the GROMACS tools of “gmx trjcat” and “gmx cluster”, respectively [56]. Note that the
cutoff threshold could be tuned by purpose and our choice resulted in 50 clusters. The
middle structure for each cluster was chosen as a representative receptor configuration.
Together with the crystal structure of ALDH2 (i.e., chain A of protein 2VLE), we had
51 receptors for docking calculations. Two python scripts (prepare_receptor4.py and
prepare_ligand4.py) in the MGLTools (https:/ /ccsb.scripps.edu/mgltools (accessed on
7 December 2022)) [57] were used to prepare receptors and ligands, respectively, in the
PDBQT format for docking calculations.
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3.1.3. Docking Calculation

Virtual screening of FDA-approved drugs against ALDH2 was carried out using the
Autodock Vina software (version 1.1.2) [46]. All of the 50 MD-derived receptors were
aligned with the crystal structure of ALDH2 (chain A) via the least-square fitting of protein
backbone atoms. This facilitated the use of a single searching space for all the receptors.
Using the ALDH2/daidzin complex in the protein 2VLE as a reference, the searching
space was centered roughly on the geometrical center of the inhibitor, and its size in each
dimension was 3.0 nm. Other input parameters for the Vina docking were set by default.
The cofactor NAD™" was regarded as one residue of the receptor and was involved in the
binding with the inhibitors. The binding poses with the strongest binding affinity for each
ligand were collected for further analysis.

3.2. MDD Simulation of ALDH2 Tetramer

Molecular dynamics (MD) simulations of mitochondrial aldehyde dehydrogenase
(ALDH2) tetramers in the apo or complex form were carried out using the GROMACS
software (version 2018.4) [56]. Initial structures were taken from the Protein Data Bank
(PDB ID: 2VLE; resolution: 2.4 A), in which human ALDH2 formed a tetramer bound to
the inhibitor daidzin in the absence of cofactor NAD* [42]. Alignment of protein backbone
atoms with the NAD*-bound protein 1CW3 [44] were able to produce a ALDH?2 tetramer
in complex with both inhibitor and cofactor. Such alignment was carried out using the
GROMACS utility of “gmx confrms” [56]. The Amber 99SB-ILDN force field [58] was
chosen to model ALDH2 and ions (Mg2+, Na™*, and Cl7), and the General Amber Force
Field (GAFF) [59] was used for the inhibitors. After structural optimization in gas phase
at HF /6-31G* via the Gaussian 09 software [60], we calculated the restrained electrostatic
potential (RESP) charges of the inhibitors using the “antechamber” tool [61]. Force field
parameters of NAD* were taken from previous studies [62,63] and can be downloaded
freely from the group of Dr. Richard Bryce (http:/ /research.bmh.manchester.ac.uk/bryce/
amber (accessed on 7 December 2022)). The rigid TIP3P model [64] was utilized to describe
water molecules.

ALDH2 tetramer was placed in the center of a cubic box with a length of 12 nm, and
the distance between the protein and the box edge was roughly 1.0 nm. The box was
filled with water molecules, and Na* and Cl~ ions were then added to the simulation box
via replacing water molecules randomly to neutralize the system to a physiological salt
concentration of 0.15 mol/L. For the simulation of ALDH?2 without cofactor and inhibitor,
for instance, the system contained one ALDH?2 tetramer, 198 Na*, 174 C1~, and 54521 water
molecules. After energy minimization, the systems were equilibrated by 100 ps at NVT and
then by 400 ps at NPT with the position of protein backbone atoms restrained using a force
constant of 1000 k] mol~! nm~2. Subsequently, we turned off the position restraints and
performed production simulations for 30 ns at NPT (P = 1 bar and T = 298.15 K), allowing
equilibration of protein structures and/or protein-ligand interactions. For more details
on the simulation setup, refer to our previous work on the ALDH2 dimer [45]. All of the
figures for 3D and 2D receptor-ligand interactions were generated by the Biovia Discovery
studio visualizer software.

3.3. Toxicity Prediction

Ideal inhibitors are supposed to be potent and have little or low toxicity. The selected
drugs from the virtual screening with a strong binding with ALDH2 were examined by a
web platform of ProTox-II (https://tox-new.charite.de/protox_II (accessed on 7 December
2022)) [47] for toxicity evaluation. Two different levels of toxicity were tested: organ toxicity
(hepatotoxicity) and toxicological endpoints (mutagenicity, carcinotoxicity, cytotoxicity
and immunotoxicity).
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3.4. MM-PBSA Analysis

After toxicity evaluation, the docked complexes of inhibitor candidates with ALDH2
(ALDHZ2/inhibitor/cofactor) tetramers were subjected to 30 ns MD simulations for the
equilibration of receptor-ligand interactions. Only one ALDH2 monomer was adopted to
implement the virtual screening to predict binding modes, and via alignment of protein
backbone atoms (as stated in the Section 3.1.3), we obtained receptor-ligand complexes for
the ALDH2 tetramer and used them as the initial configuration for the MD simulations.

For a production run of, for instance, the ALDH2/daidzin/NAD"* complex, the
simulated system was composed of one ALDH2 tetramer, 4 daidzin, 4 NAD*, 4 Mg2+,
and 194 Nat, 174 Cl1—, and 53,584 water molecules. Water molecules and Na*, Cl—, and
NAD*-bound Mg?* ions were stripped from the production simulations, and simulation
snapshots were then extracted from the last 10 ns trajectory. With an interval of 100 ps,
the resulting 100 conformations of ALDH2/inhibitor/cofactor complexes were used to
compute the binding energy (AEp;,q) between receptor and ligand molecules from the
molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis (Equation (2)).

AEping = AEmm + AGpolar + AGnonpolar )

where AEppy is the molecular mechanics (MM) part including the contributions from
van der Waals (AE,qw) and electrostatic (AEje) interactions. AGpglar and AGponpolar are
the polar and nonpolar solvation contributions. Such a task was accomplished by the
“g_mmpbsa” toolkit [50]. Note that the results from eq 2 are binding energies and adding
an entropy part (—TAS) would give rise to binding free energies. A module for the entropy
calculation was not yet incorporated into the “g_mmpbsa” toolkit. AGpolar was computed
by the built-in APBS software [65], and a solvent accessible surface area (SASA) model [50]
was utilized to calculate AGponpolar- The scripts (MmPbSaStat.py and MmPbSaDecomp.py)
downloaded from http:/ /rashmikumari.github.io/g_mmpbsa/Usage.html (accessed on
7 December 2022) were used for the energy statistics and decompositions in the MM-
PBSA analysis.

3.5. Inhibition against Different ALDHs

The 19 NAD(P)*-dependent members in the human ALDH superfamily were chosen to
evaluate the selectivity of inhibitor candidates via docking predictions. Receptor structures
were extracted for the Protein Data Bank (PDB) or AlphaFold Protein Structure Database
(https://alphafold.ebi.ac.uk/ (accessed on 7 December 2022)) [66]; the former included
the predicted structures in the latter as well. The members in the ALDH family show
a similar architecture with three domains for substrate binding, cofactor binding, and
oligomerization (Figure 1) [53]. Alignment with the ALDH2/daidzin/NAD™" complex
therefore allows a determination of the substrate/cofactor binding regions of ALDHs,
and one can define the search space in the docking then. The alignment of protein 3D
structures was carried out by the GR-Align software (version 1.5) with the graphlet degree
similarity [54]. Similar search space and docking protocol were used for the docking
calculations, as mentioned above.

4. Conclusions

Through virtual screening of FDA-approved drugs, toxicity evaluation, molecular
dynamics (MD) simulation of ALDH2-inhibitor complexes, and MM-PBSA analysis on the
binding energies, we showed that butenafine (net charge g = +1 e) and olaparib (7 = 0) can
be potent inhibitors against ALDH2. Binding energies (AEp;,q) for these two compounds
were —313.4 and —127.6 kJ /mol, respectively; the binding strengths were comparable to
or stronger than the previously reported inhibitors of daidzin (AEpg = —110.1 kJ/mol)
and CVT-10216 (AEping = —132.3 kJ/mol) [15,26,31,45]. The strong binding of butenafine
was mainly ascribed to its positive charge offering electrostatic attraction with the negative
receptor (g = —6 ¢ for ALDH2 plus NAD"). Several negatively charged compounds were
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also hit from the screening with the Autodock Vina software. However, the MM-PBSA
analysis demonstrated that owing to electrostatic repulsion, these compounds were un-
favorable in the thermodynamics of binding with ALDH?2. This pointed out an issue of
the Vina scoring in the evaluation of strong charge—charge interactions. Because the Vina
scoring, as designed, did not use atomic charges to deal with electrostatic interactions,
the scoring results should be used with care, in particular for highly charged molecules.
Further verification of the selected compounds from high-accuracy predictions and experi-
mental measurements is necessary to test the enzyme inhibition activity and selectivity. The
identified key residues responsible for ALDH2-inhibitor associations indicated that there
is still room for the design of ALDH2 inhibitors with enhanced binding via, for instance, a
rational use of the interacting residues at both ends of the substrate-binding hydrophobic
tunnel of the receptor ALDH2.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /molecules27248773 /s1, Energy decomposition for identified
key residues with a large contribution to the ALDH2 binding with butenafine (Table S1), olaparib
(Table S2), fexofenadine (Table S3), and daidzin (Table S4).
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