
Citation: Rabaan, A.A.; Bukhamsin, R.;

AlSaihati, H.; Alshamrani, S.A.;

AlSihati, J.; Al-Afghani, H.M.;

Alsubki, R.A.; Abuzaid, A.A.;

Al-Abdulhadi, S.; Aldawood, Y.; et al.

Recent Trends and Developments in

Multifunctional Nanoparticles for

Cancer Theranostics. Molecules 2022,

27, 8659. https://doi.org/10.3390/

molecules27248659

Academic Editor: Raida Al-Kassas

Received: 31 October 2022

Accepted: 30 November 2022

Published: 7 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Recent Trends and Developments in Multifunctional
Nanoparticles for Cancer Theranostics
Ali A. Rabaan 1,2,3,* , Rehab Bukhamsin 4, Hajir AlSaihati 5 , Saleh A. Alshamrani 6, Jehad AlSihati 7,
Hani M. Al-Afghani 8,9, Roua A. Alsubki 10 , Abdulmonem A. Abuzaid 11, Saleh Al-Abdulhadi 12,13 ,
Yahya Aldawood 14, Abdulmonem A. Alsaleh 14 , Yousef N. Alhashem 14 , Jenan A. Almatouq 14,
Talha Bin Emran 15,16 , Shamsah H. Al-Ahmed 17, Firzan Nainu 18 and Ranjan K. Mohapatra 19,*

1 Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
2 College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
3 Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
4 Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
5 Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin,

Hafr Al Batin 39831, Saudi Arabia
6 Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University,

Najran 61441, Saudi Arabia
7 Internal Medicine Department, Gastroenterology Section, King Fahad Specialist Hospital,

Dammam 31311, Saudi Arabia
8 Laboratory Department, Security Forces Hospital, Makkah 24269, Saudi Arabia
9 iGene Center for Research and Training, Jeddah 23484, Saudi Arabia
10 Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University,

Riyadh 11362, Saudi Arabia
11 Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
12 Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin

Abdulaziz University, Riyadh 11942, Saudi Arabia
13 Dr. Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam

Bin Abdulaziz University, Dammam 32411, Saudi Arabia
14 Department of Clinical Laboratory Sciences, Mohammed AlMana College of Health Sciences,

Dammam 34222, Saudi Arabia
15 Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
16 Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University,

Dhaka 1207, Bangladesh
17 Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
18 Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
19 Department of Chemistry, Government College of Engineering, Keonjhar 758002, India
* Correspondence: arabaan@gmail.com (A.A.R.); ranjank_mohapatra@yahoo.com (R.K.M.)

Abstract: Conventional anticancer treatments, such as radiotherapy and chemotherapy, have signifi-
cantly improved cancer therapy. Nevertheless, the existing traditional anticancer treatments have
been reported to cause serious side effects and resistance to cancer and even to severely affect the
quality of life of cancer survivors, which indicates the utmost urgency to develop effective and safe
anticancer treatments. As the primary focus of cancer nanotheranostics, nanomaterials with unique
surface chemistry and shape have been investigated for integrating cancer diagnostics with treatment
techniques, including guiding a prompt diagnosis, precise imaging, treatment with an effective dose,
and real-time supervision of therapeutic efficacy. Several theranostic nanosystems have been ex-
plored for cancer diagnosis and treatment in the past decade. However, metal-based nanotheranostics
continue to be the most common types of nonentities. Consequently, the present review covers the
physical characteristics of effective metallic, functionalized, and hybrid nanotheranostic systems. The
scope of coverage also includes the clinical advantages and limitations of cancer nanotheranostics. In
light of these viewpoints, future research directions exploring the robustness and clinical viability of
cancer nanotheranostics through various strategies to enhance the biocompatibility of theranostic
nanoparticles are summarised.
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1. Introduction

Due to limitations in the early identification and diagnosis of solid internal tumours,
effective cancer therapy has been limited for many years. Standard chemotherapy for cancer
also kills normal bystander cells and has a detrimental effect on the illness outcome. In the
past several decades, numerous strategies have been developed for the targeted delivery
of medications to cancer cells, including liposomes, nano-delivery systems, and antibody-
conjugated drug delivery systems. The success of these strategies varies, depending on
the type of cancer being treated. However, the early identification or diagnosis of cancer,
followed by targeted medication administration, is still the most sought-after method for
the effective treatment of cancer.

Recently, considerable attention has been paid to advancing innovative diagnostic
techniques for more efficient and successful cancer treatment. Previously, recent advances
in imaging techniques have led to nanoparticle-based cancer detection, which has changed
cancer diagnosis. In the past, nanostructure formulations have been approved and widely
used to supplement conventional chemotherapy in cancer patients. However, recent ad-
vances in employing these formulations for significant therapeutic and diagnostic purposes
(theranostics) have considerably enhanced the treatment of cancer patients [1]. Theranostic
NPs are nanoscale diagnostic and therapeutic systems that are biocompatible, biodegrad-
able, and multifunctional. Numerous diseases, including cancer, diabetes, and infectious
diseases, have been managed on an intuitive level with the use of these technologies [2].
The ideal characteristics, namely, (i) biocompatibility, (ii) targeted accumulation in tissues
of interest, (iii), the unravelling of morphological and biochemical scenarios under disease
conditions, (iv) targeted drug delivery, and (v) the ability to be metabolised into non-toxic
by-products, should be demonstrated with NP-based theranostics. Additionally, selective
tumour targeting can be achieved by conjugating NPs with ligands specific to oncogenic
(overexpressed in cancer) receptors such as folate and integrin. Other receptors include
Prostate Specific Membrane Antigen (PSMA) and Urokinase Plasminogen Activator Recep-
tor (UPAR). Moreover, the NPs can be conjugated with siRNAs against these receptors and
a fluorescent dye to report their specific binding [3].

1.1. Working Principle of Cancer Nanotheranostics

Nanotechnology has gained attention in the therapeutic and diagnostic domains, as
it works on targeting a specific site. In therapeutics, drug molecules, including small
drugs, peptides, and nucleic acids, either encapsulate or bind with the nanomaterials. This
forms a nano-sized therapeutic entity that targets the cancerous cells without attaching
to the healthy cells. After targeting the cancerous cell, the therapeutic entities from the
nanoparticle are released to the site and perform the therapeutic action. Similarly, in
diagnostics, nanoparticles are designed to identify tumour cells. Here, differently shaped
nanoparticles are formed, which include nanotubes and nanoshells. The antibody is
attached to a nanoshell, recognises the tumour cell and gives the signal. The antibody
indirectly binds to the nanoparticle, first linking to polyethylene glycol (PEG) and then to
the nanoparticle.

1.1.1. Metallic Nanoparticles for Cancer Theranostics

Metallic nanoparticles have unique physicochemical properties and are the ideal
materials for the therapeutic targeting of diseases such as cancer. They can be synthesised
using several methods, including wet chemical synthesis, pyrolysis, hydrothermal process,
precipitation, co-precipitation, sol–gel procedure, microemulsion, sonolysis, and reduction.

The physical properties, such as fluorescence, luminescence, and surface plasmon
resonance, along with the chemical properties, including the augmentation of enzymatic
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activity, are preferred when designing targeted therapeutics. Additionally, these nanoparti-
cles exhibit a high ratio of surface area to volume, enhancing their likelihood as suitable
candidates to be coated with various drugs and small molecules. The surface function-
alization of these nanoparticles makes them preferred for targeted cancer therapeutics,
leading to reduced adverse effects. Furthermore, metal nanoparticles have been implicated
in cancer imaging and diagnosis [4–6]. For instance, metallic nanoparticles with paramag-
netic/superparamagnetic/ferromagnetic features can be used for imaging cancer tissue.
The photoluminescent ability of these NPs can create reactive nitrogen and reactive oxygen
species that could be responsible for killing cancerous cells [7,8].

Furthermore, the nanoparticle-induced destruction of cancer cells can be attributed to
other phenomena, including hyperthermia and the photothermal effect. The ability of NPs
to induce these processes depends on the topographical features, form, and morphology of
the nanoparticles. Metal NPs are biocompatible, have inherent anticancer potential, do not
accumulate in the body, and can be modified to be encapsulated in conjugates with other
NPs. For imaging purposes, they can also be various fluorescent dyes and radioisotopes [9].
Figure 1 summarizes different types of metallic nanoparticles used for cancer theranostic.

Figure 1. Physicochemical characteristics of nanoparticles.

1.1.2. Types of Metallic Nanoparticles in Cancer Nanotheranostics

Metallic nanoparticles are directly hazardous to live cells, but encapsulating these
NPs into host biofilms makes them useful for cancer therapy and diagnostics. Gold (Au)
is widely used in cellular imaging for diagnostic purposes. Gold is also a plasmonic NP,
and it is used in photothermal therapy to destroy brain tumour cells. Silica (Si) is used as
a drug carrier and for gene delivery. Iron (Fe) has magnetic properties; thus, it is used in
magnetic imaging for cancer diagnostics. Silver (Ag) NPs are used in radiation therapy
for cancer, either independently or in combination with Fe3O4. The various methods for
synthesising metallic or metalloid NPs are summarised in Table 1.

Table 1. Methods for the synthesis of metallic/metalloid NPs.

Type of NP Method of Synthesis References

FeNPs Co-precipitation, hydrothermal synthesis, microemulsion [1,10–12]
AuNPs Block co-polymer method [1,11,12]
ZnNPs Precipitation, solid-state pyrolysis, wet chemical synthesis [1,11,12]
AgNPs Chemical, physical, and biological synthesis [1,11,12]

CdNPs Microwave irradiation
Photochemical synthesis [1,10–12]
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1.2. Application of Metallic Nanoparticles in Cancer Theranostics

Metal nanoparticles are used for numerous biomedical applications, including anti-
cancer applications, radiotherapy enhancement, drug delivery, thermal ablation, antibac-
terial applications, diagnostic assays, antifungal applications, and gene delivery. They
are functionalized with various functional groups, including peptides, antibodies, RNA,
DNA, and potentially biocompatible polymers, to target distinct cell types. For instance, a
nanostructure composed of branching gold shells was employed to treat breast cancer. In
addition, magnetic nanoparticles were also used to treat cancer cells. In cancer theranostics,
metal nanoparticles are the most widely employed agents. They have several benefits over
traditional cancer treatment, including fewer side effects and a decreased incidence of drug
resistance. Recent modifications of these NPs with aptamers, silica, DNA, photosensitizers,
photoluminescence, and fluorescent molecules have made them more suitable for imaging,
diagnostics, and therapy [13,14].

These modifications are summarised in Figures 2 and 3. Figure 2 mentions the surface
modifications of NPs for imaging (diagnostic) purposes. Radioisotopes are bound to the
Au-NPs that are used to label the targeted site. Similarly, fluorescence chemical groups are
bound with nanoparticles so that the nanoparticle can be easily identified when it binds
with the target cell. As shown in Figure 2, superparamagnetic iron nanoparticles are the
type of magnetic nanoparticle that offers magnetic properties in the presence of an external
magnetic field and is used for imaging. Figure 3 shows the surface modifications of NPs
for therapeutic purposes. Therapeutic antibodies, including small molecules, peptides,
antibodies, siRNA, and photosensitizers, are attached to the nanoparticles and targeted
to the cancerous cell. They target and destroy tumour cells. Several such preparations of
modified metal NPs are currently in clinical trials and not yet approved. Through extensive
laboratory studies, these modified metal NPs need to be pre-optimized in terms of stability,
dosage, preparation method, and side effects. Once these conditions are satisfied, they can
be used as a vital cancer-fighting medicinal tool. Moreover, the study conducted by Li et al.
(2021) constructed peptide-conjugated metal clusters as catalytic antibodies, which work as
biomarkers for specific diagnosis and treatment [15].

Figure 2. Surface modifications of metallic/metalloids NPs for cancer imaging (diagnostics).
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Figure 3. Surface modification of metallic/metalloid NPs for cancer therapeutics.

2. Various Plasmonic Nanoparticles and Their Application in Cancer Theranostic
2.1. Gold Nanoparticles

Gold nanoparticles (AuNPs) can absorb light and transform it into heat using a non-
radioactive process [16–20]. This generated heat can then be transferred into the surround-
ing environment. For this photothermal therapy (PTT), a continuous-wave laser is used,
having an absorption spectrum overlapping with that of AuNPs [21,22]. However, this
treatment is generally suitable for superficial tumours, such as skin tumours [21,23]. In PTT,
nanoparticles (the photothermal conversion agent) are accountable for the transformation
of light into heat. Thus, they operate as nanosources of heat to raise the local temperature.
In addition, PTT is used in the synthesis of the optical characteristics of several nanoparticle
types, including gold nanoparticles [24]. In a recent study, antibodies against the EGFR
receptors, conjugated onto AuNPs, induced PTT in carcinoma cells, leading to the inhibi-
tion of the tumour [25]. In another study, the coating of HA, a ligand for CD44, onto the
surface of Au nanocages resulted in the specific recognition and targeting of cancer cells
with overexpression of CD44 [26]. These HA-conjugated Au nanocages can be preloaded
with doxycycline. They are taken up in the cells via the process of receptor-mediated
endocytosis and are degraded inside the lysosomes, leading to the release of doxycycline.
DOX-loaded, HA-conjugated Au NPs inhibited tumour growth, and when combined
with PTT, they resulted to be complete tumour inhibitors. Moreover, ROS-mediated gold
nanocages (AuNCs) with PEG initiated tumour cell apoptosis [26,27]. In another study, the
lipid HB-AuNC combination was developed for in vitro two-photon photothermal cancer
treatment. The combination of photosensitizers and photothermal transducers as well as
the use of the two-photon methods resulted in one-time administration and irradiation for
antitumor therapy [28]. In addition, the study conducted by Gao et al. (2015) constructed a
peptide AuNP nanoprobe to quantitatively determine the GPIIb/IIIa on the cell membrane,
which works as a biomarker to identify the relevant diseases [29]. Table 2 shows the types
and applications of Au NPs.
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Table 2. Different types of Au-NPs used in cancer therapy.

Therapeutic Entity Type of Au NP Application

LIN LIN-AuNPs Breast cancer
K K-AuNPs Breast cancer
PI PI-AuNPs Colon and breast cancer

DOX DOX-PEC-AuNP Hepatocarcinoma cells
5-FU AuNP-PEG-5Fu-FA Cholangiocarcinoma cells
DTX DTX-HA-cl-AuNP Anticancer therapy

2.2. Zinc Nanoparticles

Zinc oxide nanoparticles (ZnO NPs) are semiconductors in nature with an intrinsic
photoluminescent nature. The former property can be employed to generate reactive
oxygen species (ROS). The latter is more applicable to biosensors [8,30]. ZnO NPs are
generally biocompatible, making them the preferred choice for drug delivery. They have
the unique characteristic of being inherently cytotoxic against cancer cells. This effect is
because of their inherent semiconductor property, which leads to the generation of ROS
and thus the killing of cancerous cells [30].

In the case of semiconductors, electrons in certain bands possess energy, leaving void
bands (band gaps) in between. On the other hand, metals have continuous electronic states
with no void gaps, as in the case of ZnO. This void gap is approximately 3.3 eV. The valence
band of crystalline ZnO is left with vacant electron locations when UV light is incident
upon it because the electrons are promoted to the conduction band when the light strikes it.
These promoted electrons and empty electron positions, or holes, then travel up to the NP
surface and react with OH- ions and oxygen, respectively [8]. In the context of ZnO NPs,
numerous electron holes are present without UV stimulation, making them less conductive.
Thus, in ZnO NPs, the size is inversely proportional to the quality of the NPs. Defects in
the nanocrystals create more electron holes, which leads to ROS production [31]. ROS, in
turn, trigger a signalling cascade, causing irreversible cellular damage due to oxidative
stress and eventually leading to cell death. Table 3 shows the applications and types of
ZnO NP in cancer treatment.

Table 3. Types and applications of ZnO NPs in cancer treatment.

Type of ZnO NP Application

ZnO-peptide Colon cancer
Dox-ZnO Hepatocarcinoma

RGD (Arg-Gly-Asp)-targeted ZnO Breast cancer
ZnO NPs and Al-ZnO

NPs Lung cancer

DOX-ZnO/PEG nanocomposites Cervical cancer
PMMA-AA/ZnO NPs and PMMA-PEG/ZnO w Gastric cancer

HA/ZnO nanocomposites Acute promyelocytic leukaemia

2.3. Silver Nanoparticles

Silver nanoparticles (AgNPs) can scatter and absorb some of the light incident on
them. This light may then be used for the targeted destruction of cancer cells once it
has been absorbed. The selective penetration of AgNPs can be achieved by coating the
surfaces with tumour-specific ligands. On the other hand, scattered light can be employed
for cancer imaging among the metals that exhibit the property of plasmon resonance,
namely, Cu, Ag, and Au. Here, Ag NPs show the maximum efficiency due to the equal
number of positive and negative ions. These plasmons combine with visible light to display
SPR [32]. Ag NPs, upon selective entry into cancerous cells, impair the activity of the
proteins required to neutralise ROS, such as thioredoxin and glutathione. This leads to an
accumulation of ROS that initiates an inflammatory response, leading to mitochondrial
damage. Once the mitochondria are damaged, apoptosis-inducing factors are released,
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leading to programmed cell death [33]. Table 4 shows the applications and types of AgNPs
in cancer treatment.

Table 4. Types of AgNPs and their applications in cancer therapy.

Therapeutic Entity Type of Ag NP Application References

Doxorubicin (DOX) Tat-FeAgNP-Dox Anti-tumour [34]
Olax Scanden Anticancer [35]

cisplatin (CDDP) AgNPs/CDDP Synergistic cellular response [36]
PEGylated bovine serum albumin

AND Indocyanine green
PEG-BSA-

AgNP/ICG Photothermal cancer therapy [37]

Gallic acid (GA) GA-AgNPs Cancer treatment and therapy [38]

2.4. Iron Nanoparticles

Iron is the most widely implicated metal in cancer therapeutics. Iron oxide nanopar-
ticles (FexOn NPs, where x = 1, 2, and 3, and n = 1, 3, and 4), defined as FeNPs, have
been used for cancer diagnosis, imaging, and therapeutics. They are widely used for liver
imaging (MRI) to enhance contrast. These NPs can be implicated as drug carriers through
drug conjugation at the NP surface, i.e., covalent conjugation, and via entrapment in the
polymeric matrix. Many studies have shown the conjugation of cancer drugs on these NPs,
such as doxorubicin, methotrexate, and paclitaxel [39–41].

Recently, iron oxide NPs conjugated to methotrexate and chlorotoxin were used to
target cancer therapeutics. In this complex, chlorotoxin acted as a targeting ligand, while
methotrexate worked as a therapeutic agent. The complex showed better cytotoxic effects
towards tumour cells and exhibited theranostic applications [42]. In other studies, FeNPs
coated with monoclonal antibodies were used to detect ovarian cancers overexpressing
mucin-1 (MUC-1). These NPs showed better accumulation inside the tumour and exhibited
faster tumour detection without any toxic effects [43]. Folic acid was shown to be conjugated
in another investigation, and FeNPs showed specificity for detecting breast cancer cells [44].
Table 5 shows the applications and types of Fe-NPs.

Additionally, aptamers can be coupled with FeNPs to target hepatocellular cancer in
a particular manner for imaging and medicine administration purposes. The aptamer, in
this case, is specific to the DNA of the molecule for the adherence of epithelial cells [45].
These NPs have also been implicated in the delivery of macromolecules such as DNA,
proteins, and peptides. For the delivery of these macromolecules, NPs are coated with
positively charged polymers, such as dextran, chitosan, and polyethyleneimine. Recently,
nanocomposites of polycation and iron oxide have been used as siRNA carriers that are
visible through MRI and can combat the multidrug resistance phenotype [46]. It has
been shown that the generation of telomerase in hepatocellular carcinoma cells may be
suppressed by the conditional release of siRNA in response to deteriorating conditions
inside the cells. This finally leads to the death of the cell [47]. The various types of
metallic nanoparticles and their theranostic applications against different cancer types are
summarized in Figure 4. Apart from the traditional and most widely used metal NPs,
several recent advancements have led to the synthesis of NPs that are better suited for
cancer theranostics. These are discussed in the following sections.
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Table 5. Types of FeNPs and their applications in cancer therapy.

Therapeutic Entity Type of Fe NP Application References

Magnetic hyperthermia
(MHT)

Superparamagnetic iron
oxide nanoparticles

Normal cell restoration after cancer
cell destruction [48]

OVA Fe3O4-OVA Tumour inhibition [49]
poly(lactic-co-glycolic

acid) (PLGA) and chlorin
E6 (Ce6)

Fe3O4-PLGA-Ce6 Tumour cell ferroptosis [50]

DOX DOX-Fe3O4
Tumour lymph node detection and

therapy [51]

Doxorubicin–
Gelatin/Fe3O4–Alginate DG/FA NPs Targeted drug delivery and cancer

therapy [52]

Figure 4. Summary of metallic nanoparticles used in various cancer types.

2.5. Chalcogenide Nanoparticles
2.5.1. Chalcogens

Elements such as selenium, tellurium, sulphur, polonium, oxygen, and livermorium
have usually been linked with chalcogens [53]. Sulphur, selenium, and tellurium are the
metalloids that have been explored the most as nanocomposites with cancer treatment po-
tential. Common applications of sulphur and compounds containing sulphur are fertilisers,
antimicrobials, and antifungal compounds. On the other hand, sulphur has fascinating
nanoscale characteristics, including biodegradability, safety, and biocompatibility, which
play vital roles in catalytic bioremediation, as well as in antibacterial and anticancer com-
pounds [53–57]. Selenium (metalloid), with chemopreventive characteristics, also serves
as a regulating element in the body. Chalcogens such as sulphur, tellurium, and selenium
react chemically with other metals to generate chalcogenide NPs at the nanoscale. Accord-
ing to how many distinct chalcogens they contain, they are classified as mono-, di-, or
polychalcogenides. Binary and ternary nanocrystals were also identified in chalcogenides.
Nanoclusters, NPs, and quantum dots are all structural forms of chalcogenide nanoassem-
blies [58,59]. The chemical synthesis of NP involves the use of various processes, including
the polymerization of monomers, the dispersal of prepared polymers, and ionic gelation.
Various chalcogens and chalcogenides have demonstrated exceptional physicochemical and
pharmacological qualities that are important in cancer prevention and treatment [60,61].
Moreover, Table 6 shows the chalcogenide nanoparticles used in cancer treatment.
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Table 6. Types of chalcogenide nanoparticles with their applications in cancer.

Entity Type of Nanoparticle Type of Cancer References

Tellurium chalcogenide
nanoparticles TeNPs Melanoma [62,63]

Silver chalcogenides Ag2X Anticancer [64]
Copper chalcogenide hybrid

nanostructures Au@Cu2−xS Anticancer [65]

Non-stoichiometric copper
chalcogenides Cu2−xSe NPs Anticancer [65,66]

Selenium chalcogenide nanoparticles SeNPs Breast cancer [65,67]

2.5.2. Selenium

Antimicrobial, photocatalytic, antioxidant, and anticancer properties have been re-
ported for green selenium nanoparticles (SeNPs). Their antioxidant properties are con-
nected to their ability to sequester Se at the release site of reactive oxygen species (ROS),
thus inhibiting the generation of free radicals that cause DNA oxidative stress [68]. SeNPs
with smaller sizes have superior scavenging action than more significant NPs, owing to
the central significance of NP size in free radical scavenging [69]. The SeNP capacity to
form bonds with metal ions and proteins found inside the cell has been related to their
anticancer action. SeNPs, for example, interact and bind with Cu2+ and DNA to create
a ternary complex, reducing Cu2+ to Cu+, which is then re-oxidized to produce reactive
oxygen species that cause cell apoptosis. A cancer-specific apoptosis mechanism has been
reported, because copper (Cu) ions (found to be present in plenty of cancer cells) are re-
quired for the generation of free radicals that cause oxidative damage [70]. After being
exposed to SeNPs, human melanoma (A375) cells exhibited cellular oxidative stress and
mitochondrial malfunction. This finding demonstrates that SeNPs react with intracellular
proteins participating in mitochondrial and glycolytic activities. This was the case before
induced apoptosis occurred [71].

2.5.3. Tellurium

Tellurium nanoparticles (TeNPs) (synthesised as nanodots, nanorods, nanowires, and
nanocubes) exhibit antibacterial, antioxidant, and cancer-fighting properties [72–75]. Com-
pared with their chemically derived counterparts, biogenic NPs have the added benefit
of selective toxicity. The cytotoxicity of TeNPs may be linked to their potential to bind
DNA and cellular proteins, which results in oxidative damage and DNA degradation and
ultimately leads to cell apoptosis via mitochondrial pathways. Furthermore, the biocom-
patibility of biogenic TeNPs may be influenced by the biomolecule capping type [74,76].
TeNPs can be produced using citrus fruit extracts; orange extract (OR-TeNPs) and lemon
extract (LEM-TeNPs) were compared in a comparative study [62]. Research on biogenic
TeNPs’ anticancer properties is limited, but it is intriguing and worth investigating.

2.5.4. Sulphur

By controlling redox imbalances, sulphur has been demonstrated to have an oncopro-
tective effect on several bioactive chemicals in plants [77,78]. Its cytoprotective antioxidant
capacity has also been shown in mouse models. Its existence in amino acids such as cysteine
and methionine, as well as the production of disulphide connections in tertiary protein
structures, might explain this [79]. These amino acids have also been demonstrated to
perform free radical scavenging [80]. Methionine has been identified as an antioxidative
barrier in several proteins, where it is easily oxidised and crucial to the oxidative stress
repair pathway. As a result, they function as endogenous antioxidants within cells [81].
Sulphur nanoparticles (SNPs) were the first to show an anticancer effect on oral cancer
cells by inducing apoptosis. Even though the cause of SNP cancer cell cytotoxicity is
still unknown, three cytotoxic processes have been linked to SNP anticancer properties:
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ion-dependent oxidative damage, membrane permeation, and cell cycle arrest induction of
apoptosis [82].

2.5.5. Cadmium

Cadmium sulphide quantum dots (CdS-QDs) have been used to induce cellular oxida-
tive stress in photodynamic treatment for treating cancer cells. Cd-based chalcogenides,
such as CdSe and CdTe, have shown anticancer properties through processes comparable
to CdS [83–85]. CdTe QDs link to serum proteins and pass through the cellular membrane
through clathrin-mediated endocytosis. They are destroyed in the lysosomes after being
incorporated into the cells. Cd2+ is discharged, causing mitochondrial augmentation and
also causing cancer cells to die by inducing internal and extrinsic apoptosis [86]. The lethal
action of CdSe QD in A549 cells has also been shown to be mediated by ROS-induced DNA
damage, which results in the induction of apoptosis [87]. Photodynamic therapy (PDT) for
treating cancers has also been used with QDs. QDs absorb photons of a specified wave-
length and form excitons (e- holes). Their energy is subsequently transmitted to nearby
species or molecular oxygen, resulting in singlet (no net magnetic momentum) oxygen radi-
cals that cause cell damage [88]. The various types of metalloid/chalcogenide nanoparticles
and their implications across multiple cancer types are summarized in Figure 5.

Figure 5. Summary of chalcogen nanoparticles with their therapeutic usage.

3. Silica Nanoparticles

Among the different types of functional NPs, silica (SiO2) NPs possess distinctive
structural and functional characteristics. In the context of light-based nanomedicines
for the imaging and therapeutics of cancer and other diseases, SiO2 NPs have shown
significant potential. SiO2 NPs that are mesoporous and non-porous have excellent light-
absorbing abilities in the visible and near-infrared regions. These optical properties make
them suitable for in vivo imaging even at the nanoscale. Additionally, SiO2 NPs have
shown tremendous potential in combining light-based diagnosis with therapeutics, such as
photo-theranostics.

SiO2 NPs can be classified into inorganic and organic types based on their precursors’
synthesis methods. Inorganic NPs do not contain any carbon molecules, although they
may have been synthesised from carbon-containing precursors such as alkoxysilanes. In
contrast, organic silica NPs are further classified into “organically modified silane NPs”,
or ORMOSIL, and functional organosilica NPs. While ORMOSIL NPs do not contain any
functional groups, functional organosilica NPs do contain functional groups, i.e., epoxy
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and thiol groups. These functional organosilica NPs can be synthesised using organosilane
reagents with functional groups [89–92]. Inorganic silica NPs conjugated with aptamers
have been used for various applications, such as extraction and fluorescent labelling in acute
lymphoblastic leukaemia cell lines, breast carcinoma cell lines, and Burkitt’s lymphoma
cell lines [93–95].

On the other hand, ORMOSIL NPs coated with Rhodamine B and conjugated to bioac-
tive molecules such as monoclonal antibodies are used to target drug delivery specifically
to pancreatic cancer cell lines. The conjugation of NPs with bioactive molecules enhances
the uptake efficiency of these NPs [96]. In addition, SiO2 NPs containing photosensitizers
such as protoporphyrin IX and hypocrellin B are excellent tools for photodynamic therapy,
or PDT [97–99], in tumour tissues. Table 6 shows the chalcogenide nanoparticles used in
cancer treatment.

Overall, the mechanical actions by which metallic or metalloid NPs induce cancer cell
death are summarized in Figure 6.

Figure 6. Mechanism of metal nanoparticle-mediated cell death.

4. Hybrid Nanoparticles
4.1. Magnetic NPs

Magnetic nanoparticles (MNPs) have various uses in biomedicine, including medi-
cation administration, auxiliary evaluation and assessment, and therapy [100]. In a high-
frequency magnetic field, MNPs have a magnetocaloric action, which can eradicate tumour
cells indirectly [101]. They are made of nickel, iron, cobalt, and some other metals, as
well as their oxides. The diameter of superparamagnetic MNPs is predominantly that
of superparamagnetic iron oxide nanoparticles (SPIONs), <50 nm [102]. MNPs are mag-
netically non-permanent. They show magnetism in an externally applied magnetic field
and are primarily employed to research the role of MNPs in vivo. MNPs have highly
definite surface areas and can contain a range of tiny proteins, molecules, RNA, and other
compounds [103,104]. These characteristics make it simpler to enrich and sort them and
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to move and detect them in different directions. The following sections discuss various
modifications of the basic magnetic NPs for specific applications.

4.2. Silica-Coated Magnetic Nanoparticles

Silica can be coated onto the surface of magnetic NPs (MNPs) [105–108]. Moreover,
SiO2-coated MNPs can also be doped with Mn2+ to be cast off as a contrast agent for
magnetic resonance imaging (MRI) [109,110]. Similarly, NPs of other metals can also be
coated with silica to develop multifunctional NPs. The hydrophobic core of IONPs can be
coated with silica using a micro-emulsion method, leading to the generation of silica NPs
that can be detected using MRI [111]. Inhalation, topical skin penetration, and injection
are all options for introducing nSiO2 microspheres into organisms. When inhaled, the
nSiO2 microsphere drug-carrying mechanism crosses the barrier between lungs and blood
to enter the bloodstream directly, allowing systemic delivery to be performed [112]. Iron
oxide NPs encapsulated in nSiO2 microspheres may have their surfaces changed with -OH,
-COOH, or -NH2 to make them active and persistent to react, resulting in a new type of
silica nanoparticle that can chemically connect with proteins and increase its application
range [113]. Simultaneously, because of the magnetic silica nanoparticle small particle size,
large definite surface area, and potent magnetic and adsorption reactions, if active groups
on the surface can reattach functional polymers or small molecules, they can turn out to be
a versatile drug carrier substance with high performance.

4.3. Vesicle-Type Magnetic Nanoparticles

The framework of vesicle-type magnetic nanoparticles is a phospholipid bilayer with
MNPs scattered inside. MNPs in liposomes range in dimension from 1 nm to 10 nm. They
do not clog and discharge smoothly from the body due to their tiny size. They are made
by encapsulating superparamagnetic magnetic nanoparticles in lipid unilamellar vesicles
using size exclusion chromatography [114]. MNPs can be distributed into hydrophobic
nanomagnetic liposomes (MNPs enclosed in a phospholipid bilayer), hydrophilic MNPs
(liposomes with hydrophilic magnetic nanoparticles in the inner water core), or magnetic
nanoparticles implanted on the phospholipid membrane surface [115]. Due to their biocom-
patibility and low toxicity, they are also used as biomedical magnetic resonance contrast
agents, drug carriers, and hyperthermia intermediaries.

4.4. Polymer-Coated Magnetic Nanoparticles

Self-assembly and chemical covalent bond modification are two approaches for making
magnetic polymer drug carriers [116]. The most significant research and application barrier
is that magnetic nanoparticles are vulnerable to accumulation due to their high surface
energy and distinct surface area, which makes uniform dispersion in polymers challenging.
Several studies have changed the active groups (sulfo and amino groups) present on
the membrane of magnetic nanoparticle carriers and packed biomolecules, along with
stimulus-responsive and functional capabilities on the carrier, which depend on the MNPs
and modify the polymer. On this basis, a responsive (quick to respond) magnetic polymer
drug-carrying system was built using a set of intelligent nano-drug-controlled release
mechanisms [116–118].

4.5. Super-Magnetic Iron Oxide Nanoparticles

Iron oxide, namely, Fe3O4 and Fe2O3, is a significant component of magnetic nanopar-
ticles. Super-paramagnetism and coercive force are seen under a condition where the
magnitude of iron oxide nanoparticles is less than a particular threshold point according
to the limit value and saturation magnetization is lowered [119]. Thermal decomposition
and co-precipitation, laser pyrolysis, microemulsions, and sol–gel are some processes that
are used to make nanoscale metal cores [120]. Clinical trials have employed SPION for-
mulations because they are nontoxic and biocompatible and also have good paramagnetic
characteristics [121]. They can also bind to haemoglobin via regular physiological and
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metabolic routes, preventing build-ups inside the body. It can help people with weak
renal and liver functions. SPIONs may also increase or decrease the intensity of T2WI
signals [122]. They have significant utility in tumour detection, therapy, and disease mon-
itoring. Moreover, various hybrid nanoparticles and their application in cancer therapy
defined in Table 7.

Table 7. Types of hybrid nanoparticles and their applications in cancer therapy.

Entity Type of NP Type of Cancer References

Gold nanoparticles (GNPOPs)-single wall
carbon nanotubes (SWCNts) Breast cancer [123]

RBC-B16 hybrid membrane camouflaged
doxorubicin (DOX)-loaded hollow copper

sulphide nanoparticles

DCuS@[RBC-B16]
NPs Melanoma [124]

Dendrimer-entrapped gold nanoparticles Au DENPs-FA Lung cancer [125]
Polymer lipid hybrid nanoparticles (PLNs)

plus doxorubicin (Dox) Dox-PLNs Breast cancer [126]

Hybrid elastin like polypeptide/liposome
nanoparticles Prostate cancer [127]

Core-shell lipid-polymer hybrid
nanoparticles CSLPHNPs Prostate cancer [128]

Sialic acid-modified chitosan-PLGA hybrid
nanoparticles SC-PLGA NPs Lymphoma [129]

Genistein-PEGylated silica hybrid
nanomaterials Gen-PEG-SiHNMs Colon cancer [130]

5. Applications of Magnetic Nanoparticles in Theranostics
5.1. Drug and siRNA Delivery

MNPs with magnetizable implants or external magnetic fields can transport and attach
elements at local locations in the magnetic drug targeting (MDT) technique, allowing the
drug to be delivered remotely. Due to their tiny diameter, Fe3O4 MNPs have low toxicity,
steady performance, high sensitivity, and simple access to raw components [131,132]. The
quantity of iron in carriers is less than the total iron in anaemic patients’ supplements, which
is harmless, and any excess iron in the body may be eliminated through the skin, bile, kid-
neys, and other organs. By slowing the drug loss and half-life during drug administration,
the practicality of utilising iron oxide magnetic nanoparticles for targeted drug delivery is
increased, and the medication time and efficiency are enhanced [126,131,133]. According to
a study, doxorubicin (DOX) packing and folic acid transformation on SPIONs significantly
improved DOX@FASPIONs in MCF-7 cells in vitro, and the mouse xenotransplantated
MCF-7 breast tumour development inhibition effectiveness of DOX@FASPIONs showed
high r2 relaxation (81.77 mM-1S-1) and no toxic effects on mouse organs after 35 days of
treatment [134]. In a different study, DOX-containing heparin superparamagnetic iron
oxide (DH-SPIO) nanoparticles were observed to be more effective than DOX in preventing
tumour development and extending the rate of survival of tumour-bearing mice in vivo.
The degree of pathological injury to cardiac tissue in the mice given DH-SPIO nanoparticles
remained much smaller than that in animals given a similar dose of free DOX, suggesting
that DH-SPIO nanoparticles have the potential to be used in drug combination treatment
and clinical imaging [135]. Morever, in this section it was attempted to define numerous
types of magnetic nanoparticles their drug delivery systems, and their use for the treatment
of various forms of cancer as shown in Table 8.
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Table 8. Various types of magnetic nanoparticle and their drug delivery systems and applications in
various types of cancer.

Nanoparticle Type of Cancer Drug Delivery System References

Magnetic iron oxide nanoparticles Breast cancer siRNA and miRNA co-delivery
system [136]

Doxorubicin-loaded,
aptamer-mesoporous silica

nanoparticles (MSNs)
Breast cancer

Conjugation of aptamers
(targeting agents) and

endo/lysosomal escape
[137]

SLNs (solid lipid-based nanoparticles) Lung cancer Site-specific drug delivery [138]
Super-magnetic iron oxide

nanoparticles (SPIONs) Lung cancer Composite inhalable drug
delivery systems [139]

Liposome, mesoporous silica
nanoparticles

T-cell
lymphoma

Interleukin 2-diptheria toxin
fusion protein (Deniliekin,

Diffitox)
[140]

5.2. Magnetic Hyperthermia

Magnetic hyperthermia induced by an external magnetic field has been shown to reduce
cancer cells and boost the efficacy of other therapies. Because of its infinite tissue penetration
capabilities and low risk of skin infection, magnetic hyperthermia is far more capable of
translation than laser photothermal treatment. In a patient with cholangiocarcinoma excision,
chemotherapy (gemcitabine/cisplatin) coupled with magnetic hyperthermia was effective.
The patient demonstrated no advancement of cholangiocarcinoma on computerised tomog-
raphy (CT) after 32 cycles of combination therapy, with no significant consequences within
4 months. Magnetic hyperthermia induced by ion beams can elevate the tumour’s core
temperature to 40 ◦C, limiting tumour development [105,106,111,141–144]. Table 9 shows the
applications and types of magnetic hyperthermia nanoparticles.

Table 9. Types of magnetic nanoparticles and their applications in cancer therapy.

Entity Type of NPs Type of Cancer References

Super magnetic iron oxide nanoparticles SPIONs Lung cancer [145]
Super magnetic iron oxide nanoparticles MF66 Breast cancer [146]
Iron oxide NPs with fourth-generation

polyamidoamine G4@IOPs Breast cancer [147]

Magnetic iron oxide nanoparticles MIONPs Prostate cancer [148]
Magnetic, solid, lipid nanoparticles

composed of iron cores with glyceryl
trimyristate solid matrix

SLN Colon cancer [149]

Doxorubicin with SPIONs DOX@FASPIONs Breast cancer [150]

5.3. Magnetic Nanorobots

Nanobots can aid cancer therapy by selectively delivering therapeutic drugs to tumour
blood vessels, performing circulatory diagnostics, advanced surgery, and tissue regenera-
tion while lowering operation and rehabilitation time [151]. Magnetic nanorobots can also
be used to remotely manage magnetic nanobots in the body for medicine administration or
improved resonance imaging. When they enter the bloodstream, they can target particular
malignant tumour cells and treat them using the in-built computational resources. This can
reduce radiation and chemotherapy adverse effects while allowing more accurate medi-
cation administration and therapy to be performed [152]. Magnetic robots work against
cancer using nanotheranostic technology, as described in Table 10.

Table 10. Nanotheranostics against types of cancer using magnetic robots.

Entity Type of NP Type of Cancer References

Magnesium-based magneto-fluorescent
nanorobots MFNs Breast cancer [153]

Nickel nanorobots Ni-Ag Cervical cancer [154]
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5.4. DNA-Functionalized NPs

In opposition to free DNA molecules, DNA-NPs are created by grafting DNA molecules
with a thiol end on the AuNP surface, resulting in distinct features, such as subsequent
abrupt melting transitions and cooperative binding, as well as resistance to nuclease de-
struction [155–157]. The central core can be then substituted with numerous polymeric
(Pd, Ag, Fe3O4, nanoshells, quantum dots, polymers, and proteins) and inorganic mate-
rials with different optical, catalytic, and physicochemical capabilities [158]. The core of
DNA-NPs is emptied and coated with a single-stranded DNA shell to increase biocom-
patibility [159,160]. A technique for grafting DNA onto lanthanide-doped up-conversion
nanoparticles was demonstrated in a study [161]. Direct DNA-metal ion coordination
produced a sphere-shaped metal-DNA nanostructure for targeted drug therapy [162].
Similarly, DNA-lipid/polymer ampholytes have been studied for their ability to self-
assemble nanostructures with protruding DNA molecules [163,164]. Furthermore, DNA
hybridization-based techniques for integrating DNA nanostructures (DNA-NSs) and DNA-
functionalized nanoparticles (DNA-NPs) into a unified nanoscale structure with enhanced
optical characteristics and unique capabilities have been developed [165].

The negatively charged DNA layer has improved nucleic acid stability and a distinct
structure that is thought to prevent enzymatic nucleic acid breakdown by endogenous
nucleases and the innate immune response [155,166]. Patel et al. found that serum nucleases
and dicers had a lower preference for moderate duplexes than those with 3′ overhangs of
DNA-functionalized nanoparticles and that DNA-functionalized nanoparticles caused a
minor biological reaction in HeLa cells, as evidenced by genome-wide expression profiling.
Because of their capacity to bind and condense large nucleic acids into nano-sized structures,
cationic polymers such as polyethyleneimine are frequently used as transfection agents.
This aids the efficient cellular absorption of nucleic acids. Chou et al. demonstrated the
construction of DNA-NP superstructures for improved tumour growth and eradication by
reducing macrophage sequestration [167]. DNA-NPs were shown to be highly effective
in being taken up by virtually all cell types in the absence of transfection agents. Rosi
et al. validated for the very first time in 2006 how DNA-NPs transported “antisense”
oligonucleotides to eukaryotic cells, together with superior, enhanced, green fluorescence
protein (EGFP) knockdown [168]. Giljohann et al. later described the effective transport
of siRNA molecules in human cancer cell lines using polyvalent RNA-gold NPs (RNA-
Au NPs). The RNA-Au NPs had a longer half-life than free dsRNA, could enter cells
without the need for transfection agents, and had strong gene knockdown capabilities
in vitro [166]. DNA-NPs were used to target genes such as Bcl2L12, miR-182, ganglioside
GM3 synthase, EGFR, and Malat-1. Jensen et al. tested an RNA interference (RNAi)-
centred nanotheranostic for oncogene neutralisation in glioblastoma multiforme (GBM).
AuNPs were fused with tightly packed and strongly aligned si-RNA duplexes to create
DNA-NPs. In glioblastoma multiforme mouse models, the nanoparticles penetrated the
blood–brain barrier (BBB) and accumulated all across the tumour mass [169]. The NPs
were created to attack the p53 inhibitor directly, an oncoprotein called Bcl2Like12 (Bcl2L12),
and effector caspases, which are highly expressed in GBM compared with the healthy
brain. Protein levels and endogenous Bcl2L12 mRNA were effectively knocked down, and
glioma cells experienced therapy-induced death due to the increase in p53 activity and
effector caspase. NPs were later produced to administer miRNA and siRNA to intracranial
glioblastoma multiforme tumour locations using a similar strategy [170]. To test their
effectiveness in vivo, researchers created a reporter xenograft model that could co-express
zn NIR fluorescent protein (iRFP670) and optical reporters for luciferase. The suppression
of DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT; associated
with treatment resistance in glioblastoma multiforme) using nanoparticles containing
MGMT-targeting siRNA duplexes was quantified using non-invasive optical imaging. A
universal injection of nanoparticles into a single tail vein was demonstrated to knock down
the MGMT protein in the brain effectively. Furthermore, nanoparticle pharmacokinetics
and biodistribution demonstrated fast intra-tumoral retention and absorption, enhancing



Molecules 2022, 27, 8659 16 of 27

the anticancer efficacy of temozolomide (TMZ) when given together. Histopathology and
blood chemistry tests confirmed that these NPs had no discernible toxicity. Table 11 shows
the applications and types of DNA-functionalized NPs

Table 11. Types of DNA-based nanoparticles with their applications in cancer therapy.

Therapeutic Entity Type of DNA NP Application References

Gold DNA-Au NPs Colorectal cancer [171]
DNA-gated nitrogen-doped
carbon quantum dots-loaded

hollow mesoporous silica
nanoparticles

DNA-gated
N-CDs@SiO2 NPs Breast cancer [172]

Tris amine (HN3) IONP-HN3-DNA Anticancer [173]
Cu-Au alloy nanostructures
coated in Cy5-labeled DNA

molecules
Au@Au/Ag NPs Imaging and PTT of

lung cancer [174]

Gold nanorods AuNPs with silver
and silica shell

Targeted imaging and
PTT of ovarian cancer

and GBM
[160]

Lanthanum-doped
up-conversion nanoparticles

with silica shell

Targeted
photodynamic

therapy for breast
cancer

[175]

6. Persistent Luminescent Nanoparticle (PLNP)-Guided PTT

PLNPs are a type of hollow/mesoporous optical material with a nanocarrier struc-
ture suitable for drug administration and a persistent luminescence (PersL) feature that
can be employed in treating cancer. They may be created using a variety of emission
wavelengths (UV to NIR). They can retain a portion of the excitation energy and then
produce photonic emission for an extended period after the excitation is stopped [103].
Because of their variable surface functionality, PLNPs can be employed as nanoplatforms
for PersL imaging-guided treatment. Chemodrugs, photothermal agents, genes, or pho-
tosensitizers (PSs) can be packed into nanoplatforms. PLNPs are made up of three main
components [176]. The host serves as an emitter carrier, and the emission and shape of
emitters are determined by the host’s composition and structure [177]. In PLNPs, the
emitter has ions such as Eu2+, Sm3+, Cr3+, Mn2+, Bi3+, and others that are unique, transition
metal ions, and main group elements. These emitters determine the luminous wavelength
of persistent luminescent nanoparticles [178,179]. The traps are intrinsic flaws in the host
or ion doping, influencing the PL duration and intensity [47,180]. PersL is traditionally
produced through a solid-state reaction at high temperatures [103], However, sol–gel, tem-
plate, hydrothermal/solvothermal, and co-synthesis techniques are used in biomedicine.
The surface functionalization of PLNPs, such as silicon coating and hydroxylation, which
is an exterior modification approach performed by eroding NaOH on the surface of persis-
tent luminescent nanoparticles, is required for future biomedical applications. Moreover,
photothermal therapy involves the use of photo-absorbing materials that absorb laser light
to generate sufficient heat to kill cancer cells. Photosorber-based PTT has been used in
numerous preclinical studies due to its superiority in terms of minimal invasiveness and
spatial specificity. PLNPs cannot be used directly in photothermal therapy because of their
low extinction coefficient. They incorporate near-infrared (NIR) materials to achieve PersL
imaging-guided PTT. The developed nanoplatform possesses significant INR absorption
and a good photothermal response, demonstrating effective tumour eradication in vitro
and in vivo. Table 12 shows the applications and types of PLNPs.
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Table 12. Types of PLNPs with their applications in cancer therapy.

Therapeutic Entity Type of PLNP Application References

ZIF8 PLNPs@ZIF-8
Acid-activated

tumour imaging and
drug release

[181]

PLNP- and ICG-co-loaded
mesoporous silica nanoparticles (PLP+ICG)MISO2 Anticancer [182]

Persistent luminescence-polypyrrole
nanocomposites LPLNP@SPP Mammary cancer [183]

Porphyrin-Loaded Nanoparticles

Porphyrins accumulate more in malignant tissues than healthy ones, making them
ideal for cancer imaging and treatment. Due to reactive oxygen species (ROS) that are
activated by ultrasound or light, they are employed as photosensitizers for cancer (PDT
or SDT). They are effective in transporting radioisotopes in radiotherapy because they are
effective metal chelators. Porphyrins can be radioisotopically labelled and combined with
magnetic resonance imaging agents, which are responsible for multifunctional probes for
positron emission tomography (PET) and magnetic resonance imaging [184]. They may be
activated with visible light and produce near-infrared or red fluorescence, which can be
used for diagnostic fluorescence imaging to assess intracellular localization and therapy
efficacy. The most difficult aspect of PDT is getting hydrophobic porphyrins to the targeted
locations. Nanoparticles have been reported to naturally aggregate in solid tumours via
the enhanced permeation and retention (EPR) effect caused by the combination of leaky
vasculature, inadequate increased vascular permeability, and lymphatic drainage [185].
We can generate unique tissue lifetime, targeting, immunological tolerance, hydrophilic-
ity, and other features for porphyrins by attaching them to or encapsulating them into
nanoparticles, making them more suited for tissue administration. Entrapping the çhlorin
of 2-devinyl-2-(1-hexyloxyethyl)pyropheophorbide into organically modified silica-based
nanoparticles resulted in stable monodispersed nanoparticles with higher fluorescence in
aqueous solution than the free drug and effective uptake by tumour cells in vitro, according
to one study [186]. For near-infrared fluorescence imaging-assisted PDT therapy of gastric
cancer tumours in vivo, researchers established a new theranostic program based on chlorin
e6 (Ce6)-conjugated carbon dots with remarkable tumour-homing capabilities [187]. The
most recent advancements in metallic/metalloid NPs are shown in Table 13, and Table 14
shows the applications and types of porphyrin NPs.

Table 13. Recent advancements in metallic/metalloid NPs.

Type of NP Recent Advancement References

Au NPs DNA grafting [158–160]
Au NPs, Ag NPs Polymer coating [116–118]

Fe NPs Functional silica coating [105–108]
Au NPs Encapsulation of photosensitizers [16–20]

Au NPs, Ag NPs Coating with tumour-specific ligands or antibodies [21,22,32,33]
Fe NPs Encapsulation of anticancer drugs [188]
Fe NPs Aptamer coating [45,46]
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Table 14. Types of porphyrin NPs with their applications in cancer therapy.

Therapeutic Entity Type of Porphyrin NP Application References

meso-tetrakis (4-sulphonatophenyl)
porphyrin/QCS-SH/gold nanoparticles TPPS/QCS-SH/AuNPs Anticancer therapy [184]

Gelatin A4por-GNPs Anticancer therapy [189]
methoxypolyethyleneglycol-thiol-SPIONs-gold-

meso-tetrakis(4-hydroxyphenyl)
porphyrin

Breast cancer [190]

Doxorubicin and meso-tetrakis(4-sulfonatophenyl)
porphyrin (TPPS) armoured on gold nanoparticles DOX@TPPS-AuNPs Breast cancer [191]

7. Limitations and Challenges in Cancer Nanotheranostics

The selection of various polymers and other materials must be based on their profiles
of biocompatibility and biodegradability. Additionally, various modifications can be incor-
porated in order to conceal the toxicity of gold particles and attain the desired properties.
For instance, a silica coating on gold particles is also used as a therapeutic material and
has been investigated as a carrier for various dyes, imaging mechanisms, and therapeutic
agents. Although it has been concluded that the use of biocompatible nanoparticles is more
advantageous due to the fact that they are less toxic and other elements can be used to
mitigate their effects, this does not preclude the use of toxic nanoparticles. The successful
clinical translation of tumour-specific nanoparticle delivery needs to overcome multiple bio-
logical constraints and exhibit superior therapeutic efficacy in comparison with the current
standard of care [192]. A tumour absorption and tumour visualisation study with anti-
EGFR-coated gold nanoparticles of 20 nm in size demonstrated high tumour uptake, while
gold nanoparticles of 50 nm in size demonstrated the greatest CT contrast enhancement.
The aforementioned study indicated that the size-dependent distribution of theranostic
nanomedicines in tumours restricts their use as theranostic agents [193]. Table 15 illustrates
the nanoparticle circulation time in cancer therapy. In addition, through Table 16 it was
attempted to describe current studies on cancer therapies related to nanotheranostic.

Table 15. Circulation time of nanoparticles in cancer therapy.

Nanoparticle Circulation Time References

Gold NPs More than 24 h after accumulation [194]
Silver NPs 90 days; in pregnant female mice, 1 to 4 days [195]
Zinc oxide NPs 24 h after administration [8]
Iron NPs 24 -36 h after administration [196]

Table 16. Recent literature studies on nanotheranostic cancer therapy.

Title Publication Year Remarks Accession Date References

Cancer Nanotheranostics: A
Nanomedicinal Approach for
Cancer Therapy and Diagnosis

2020

In this study, multimodal
therapeutic nanoprobes were
used in cancer therapy and
diagnosis.

24 November 2022 [197]

The Role of Magnetic
Nanoparticles in Cancer
Nanotheranostics

2020

This study described the role
of magnetic nanoparticles as
nanotheranostic agents for
drug delivery in cancer
therapy.

24 November 2022 [198]

Current Trends in Cancer
Nanotheranostics: Metallic,
Polymeric, and Lipid-Based
Systems

2019
The study focused on skin
cancer treatment using hybrid
nanoparticles.

24 November 2022 [199]
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Table 16. Cont.

Title Publication Year Remarks Accession Date References

Gold Nanoparticles; Potential
Nanotheranostic Agent in
Breast Cancer: A
Comprehensive Review with
Systematic Search Strategy

2020

In this study, gold
nanoparticles were used as
potential nanothernostic
agents to treat breast cancer.

24 November 2022 [200]

A Novel Theranostic Platform:
Integration of Magnetomotive
and Thermal Ultrasound
Imaging With Magnetic
Hyperthermia

2021

This study described how
magnetic nanoparticles can be
used as potential theranostic
agents for drug delivery in
various temperature ranges.

24 November 2022 [201]

Conjugated-Polymer-Based
Nanomaterials for
Photothermal Therapy

2020

This study focused on
conjugated polymer-based
nanomaterials that could be
employed as useful
photothermal agents for the
treatment of numerous
diseases.

24 November 2022 [202]

Copper-based nanomaterials
for cancer theranostics 2022

The study focused on a
copper-based nanomaterial,
which can be used as a
potential theranostic agent for
drug delivery and can also be
conjugated with PTT for
image-related diagnosis and
further treatment.

24 November 2022 [203]

8. Conclusions

Nanotechnology has been recognised as a prominent field of study, expanding into
various biomedical fields, including therapeutics, imaging, and diagnostics. Due to their
versatility and differing morphological characteristics, metallic nanoparticles are an es-
sential field of study. In this review, we describe various metallic nanoparticles and their
modified and hybrid versions to understand their role in cancer therapy. Cancer thera-
nostics is a vast field that needs to be investigated, and it shows various challenges and
limitations due to the size and biocompatibility of nanoparticles. In all the studies, metallic
nanoparticles such as iron and silica nanoparticles were considered more beneficial be-
cause of their lesser toxic degradation and their use of less energy to modify themselves
as nanoparticles. Despite advancements and promises, nanotheranostic systems need to
be significantly improved before they can be used in clinics. The safety, stability, and
complexity of nanoparticles must be prioritised when designing nanotheranostics.
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