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Abstract: Aging process is characterized by a progressive decline of several organic, physiologi-
cal, and metabolic functions whose precise mechanism remains unclear. Metabolomics allows the
identification of several metabolites and may contribute to clarifying the aging-regulated metabolic
pathways. We aimed to investigate aging-related serum metabolic changes using a metabolomics
approach. Fasting blood serum samples from 138 apparently healthy individuals (20–70 years old,
56% men) were analyzed by Proton Nuclear Magnetic Resonance spectroscopy (1H NMR) and Liquid
Chromatography-High-Resolution Mass Spectrometry (LC-HRMS), and for clinical markers. Associa-
tions of the metabolic profile with age were explored via Correlations (r); Metabolite Set Enrichment
Analysis; Multiple Linear Regression; and Aging Metabolism Breakpoint. The age increase was posi-
tively correlated (0.212 ≤ r ≤ 0.370, p < 0.05) with the clinical markers (total cholesterol, HDL, LDL,
VLDL, triacylglyceride, and glucose levels); negatively correlated (−0.285 ≤ r ≤ −0.214, p < 0.05)
with tryptophan, 3-hydroxyisobutyrate, asparagine, isoleucine, leucine, and valine levels, but posi-
tively (0.237 ≤ r ≤ 0.269, p < 0.05) with aspartate and ornithine levels. These metabolites resulted
in three enriched pathways: valine, leucine, and isoleucine degradation, urea cycle, and ammonia
recycling. Additionally, serum metabolic levels of 3-hydroxyisobutyrate, isoleucine, aspartate, and
ornithine explained 27.3% of the age variation, with the aging metabolism breakpoint occurring
after the third decade of life. These results indicate that the aging process is potentially associated
with reduced serum branched-chain amino acid levels (especially after the third decade of life) and
progressively increased levels of serum metabolites indicative of the urea cycle.

Keywords: metabolism; metabolome; nuclear magnetic resonance; liquid chromatography-high-
resolution mass spectrometry

1. Introduction

Aging is a natural biological phenomenon, characterized by a gradual and progressive
decline of physiological and metabolic functions at multiple levels (molecular, organellar,
cellular, tissue, and organic), which is influenced by genetic, environmental, and lifestyle
factors, leading to impairment of the general functions of the organism, and increased
vulnerability to death [1–3].

Metabolically, the aging process involves extensive alterations in body composition
and insulin resistance, as well as promotes physiological declines in multiple signaling
pathways including growth hormone, insulin/insulin-like growth factor 1 (IGF-1), and
sex steroids regulation [4,5]. Aging also affects several biochemical processes, such as
inflammation [6], proteostasis [7], oxidative stress response [8], excretion [9], and energy
metabolism [10].

Studies show that aging is the main risk factor associated with several morbidities
such as cardiovascular disease, diabetes, neurodegenerative conditions, cancers, and other
prevalent malignancies [11,12]. In this sense, understanding the metabolic and biochemical
context of aging can contribute to the discovery of new biomarkers and the development
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of predictive models capable of helping clinicians to recognize people at high risk of
developing diseases or with poor health conditions [4,13].

In this perspective, metabolomics has emerged as a powerful tool for characterizing
phenotypes, identifying metabolites, metabolic pathways, and new biomarkers related
to aging [1,3,13–15]. Metabolomics allow the characterization and quantification of a
wide range of compounds and metabolites in different biological systems, under specific
time and conditions, typically using techniques such as proton nuclear magnetic reso-
nance spectroscopy (1H NMR) and liquid chromatography coupled to high-resolution
mass spectrometry (LC-HRMS) [16–18]. Metabolites are intermediate cellular products of
metabolic reactions, which reflect the final response to genomic, transcriptomic, proteomic,
or environmental changes in a biological system [19,20].

Recent studies have shown that metabolite profiles may reflect health and biological
aging in humans [21–23]. Lower levels of carnitines and citrate cycle intermediates have
been associated with higher biological age, indicating a reduced mitochondrial performance
with aging evidenced by a decreased capacity for fatty acid utilization and adenosine
triphosphate (ATP) production [22]. Additionally, people living in a more longevous
region, characterized by a high centenarian incidence, tend to exhibit healthier aging
metabolic patterns compared to those from a less longevous region, evidenced by elevated
plasma levels of citrate, tyrosine, choline, carnitine, valine, as well as lower contents of very-
low-density lipoprotein (VLDL), lactate, alanine, N-acetyl glycoprotein, trimethylamine
oxide, α-glucose, and β-glucose [23]. From a systemic metabolic perspective, the key
characteristics for longevity have been associated with the proper regulation of amino acid,
lipid, carbohydrate, citrate cycle, and redox metabolisms [3,22–24].

Despite substantial research activities in recent decades, the precise biological mecha-
nisms related to aging and longevity are still not fully understood [2,4,9]. Many metabolomic
studies have treated age as a covariate [25,26], investigated metabolomic age scores related
to biological or chronological age [13,22,27], and compared groups of different ages, even
including centenarian people [23,24]. Although current studies have contributed to the
advancement in the discovery of aging-regulated metabolic pathways, for a broad coverage
of the metabolome and their metabolic networks, it is important to consider the use of
complementary analytical platforms (e.g.,: 1H NMR or LC-HRMS), which is a limitation in
most previous studies on this topic [9]. Furthermore, to our knowledge, no studies have
shown when the greatest disturbance in metabolism is expected to occur with aging.

Therefore, the aim of this study was to identify which metabolites in human serum
are associated with aging, highlighting the main regulated metabolic pathways, as well as
identifying a breakpoint in metabolism with aging using a metabolomics approach based
on 1H NMR and LC-HRMS. Identifying the moment of the most significant disturbance in
metabolism with aging has implications for the adoption of early medical interventions
and the development of strategies for personalized treatment aimed at healthy aging.

2. Results
2.1. Metabolomics Data

The 1H NMR and LC-HRMS techniques yielded 47 and 128 serum compounds, respec-
tively, which were included in the final data analysis. The significant compounds [(p < 0.05
and <False Discovery Rate (FDR)] related to the aging process were selected and their
identification presented in detail (Tables S1 and S2). The selected compounds determined
by 1H NMR were 3-hydroxyisobutyrate, asparagine, isoleucine, leucine, valine, aspartate,
and ornithine, while those determined by LC-HRMS were tryptophan and other three
unknown compounds.

2.2. Participant Characteristics

The total study sample consisted of 138 apparently healthy (without any health con-
ditions, such as cardiovascular, respiratory, musculoskeletal, metabolic, and neurological
issues) and untrained individuals, randomly split into: Training sample (n = 105), 58 men
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(55.2%) and 47 women (44.8%) with a median age of 42 years old (range: 20 to 69 years);
and a Test sample (n = 33, validation study subgroup), 19 men (57.6%) and 14 women
(42.4%) with a median age of 40 years old (range: 22 to 70 years). There were no significant
differences between the Training and Test samples for physical and clinical characteristics
of participants, and male-to-female ratio (p > 0.05 for all, Table 1).

Table 1. Age, physical, and clinical characteristics of the participants (n = 138). Data are median
(interquartile range).

Variables Training Sample (n = 105) Test Sample (n = 33) p-Value #

Age (years) 42.0 (30.0–51.5) 40.0 (29.0–53.0) 0.887
Height (m) 1.69 (1.62–1.76) 1.65 (1.62–1.77) 0.467
Body mass (kg) 70.4 (63.1–80.0) 68.4 (58.6–80.0) 0.485
BMI (km·m−2) 24.8 (22.9–26.9) 24.9 (21.7–26.6) 0.873
Total cholesterol (mg·dL−1) 188.0 (165.0–204.0) 184.0 (163.0–203.0) 0.454
HDL (mg·dL−1) 52.0 (43.5–63.0) 57.0 (44.0–66.5) 0.455
LDL (mg·dL−1) 113.0 (93.0–130) 103.0 (90.5–120.0) 0.177
VLDL (mg·dL−1) 19.0 (14.0–24.5) 15.0 (13.5–28.0) 0.974
Triacylglyceride (mg·dL−1) 93.0 (69.0–122.5) 77.0 (67.5–138.5) 0.998
Uric acid (mg·dL−1) 5.10 (4.35–6.10) 5.20 (4.3–6.40) 0.851
Creatinine (mg·dL−1) 0.88 (0.76–1.00) 0.94 (0.78–1.02) 0.417
Glucose (mg·dL−1) 90.8 (86.0–94.0) 94.0 (86.5–97.5) 0.110
Urea (mg·dL−1) 31.0 (27.0–37.0) 32.0 (25.5–34.5) 0.367
hs-CRP (mg·dL−1) 0.62 (0.18–1.22) 0.37 (0.14–1.29) 0.307

Body mass index (BMI); High-density lipoprotein (HDL); High-sensitivity C-reactive protein (hs-CRP); Low-
density lipoprotein (LDL); Very low-density lipoprotein (VLDL). # p-values obtained by Student’s t-test for
independent samples.

2.3. Association of Physical and Clinical Characteristics of the Participants, and Metabolomic
Profile with Age

Body mass index (BMI) was positively correlated with age increase (r = 0.225, p = 0.021),
but not with sex (p = 0.408). Therefore, subsequent correlation analyses were adjusted
only for BMI. The age increase was positively correlated with total cholesterol (r = 0.370,
p < 0.001), high-density lipoprotein (HDL, r = 0.219, p = 0.034), low-density lipopro-
tein (LDL, r = 0.243, p = 0.018), VLDL (r = 0.214, p = 0.039), triacylglyceride (r = 0.212,
p = 0.040), and glucose (r = 0.213, p = 0.039) levels (Table S3, Supplementary Materials).
For metabolomics, the age increase was negatively correlated with tryptophan (r = −0.285,
p = 0.005), 3-hydroxyisobutyrate (r = −0.257, p = 0.013), asparagine (r = −0.214, p = 0.038),
isoleucine (r = −0.280, p = 0.006), leucine (r = −0.215, p = 0.038), and valine (r = −0.225,
p = 0.029), but positively, with aspartate (r = 0.237, p = 0.021) and ornithine (r = 0.269,
p = 0.009) (Tables S4 and S5). All p-values reported herein were False Discovery Rate (FDR)-
corrected for multiple hypothesis testing. Therefore, variables with p-values < 0.05 and
< FDR-corrected p-values were considered statistically significant and retained for further
analysis. The overall correlation heatmap between age, clinical markers, and metabolite
levels is presented in Figure 1. The metabolites significantly associated with age, obtained
by 1H NMR and LC-HRMS were also graphically presented in Figure S1.
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Figure 1. Overall correlation heatmap between age, clinical markers, and metabolite levels. Blue and
green colors represent positive and negative correlations (r), respectively. High-density lipoprotein
(HDL); Low-density lipoprotein (LDL); Very low-density lipoprotein (VLDL).

2.4. Metabolite Set Enrichment Analysis

For pathway enrichment analysis, lipids and metabolites that significantly corre-
lated with age were used (triacylglyceride, cholesterol, glucose, 3-hydroxyisobutyrate,
asparagine, aspartate, isoleucine, leucine, l-tryptophan, ornithine, and valine). A total of
three distinct pathways were identified and significantly related to aging: valine, leucine,
and isoleucine degradation (hits: valine, leucine, isoleucine, and 3-hydroxyisobutyrate);
urea cycle (hits: aspartate and ornithine); and ammonia recycling (asparagine and aspar-
tate). The complete list of identified pathways is summarized in detail in Table S6. The
metabolic pathways and their connections with the most enriched pathways related to the
aging process are labeled in Figure 2.
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Figure 2. Metabolite Set Enrichment Analysis. The size and color (varying from red to white) of
each circle represent the pathway enrichment ratio (computed by Hits/Expected hits) and p-value,
respectively. The most enriched pathways enjoying connections were labeled.

2.5. Summary of Key Metabolites Associated with Aging

Metabolites significantly selected in the previous two steps (correlation and path-
way enrichment analysis) were further analyzed by a multiple linear regression model
adjusted by BMI to determine the overall contribution of the serum metabolic levels on the
aging process.

The multiple linear regression model demonstrated that 3-hydroxyisobutyrate (β =−3.3,
p = 0.032), isoleucine (β = −3.5, p = 0.018), aspartate (β = 3.1, p = 0.028), and ornithine
(β = 3.0, p = 0.041) levels explained 27.3% adjusted for BMI (rmultiple = 0.506). To further
assess the replicability and stability of our findings, we performed a similar analysis in the
Test sample achieving similar results (rmultiple = 0.605).

2.6. Identifying the Breakpoint in Metabolism Related to Aging

Metabolites selected from steps 1 and 2 (3-hydroxyisobutyrate, asparagine, aspartate,
isoleucine, leucine, ornithine, and valine) with addition of BMI were also analyzed by a
principal component analysis (PCA) to extract a representative score of the main factors of
variability in the metabolism weighted for each metabolite and BMI. The higher variability
in the metabolism was explained by PC1 (Figure 3A) with higher factor loadings observed
for valine (Training sample = 0.926; Teste sample = 0.960), leucine (Training sample = 0.904;
Teste sample = 0.971), isoleucine (Training sample = 0.933; Teste sample = 0.845), and
3-hydroxyisobutyrate (Training sample = 0.684; Teste sample = 0.646) (Figure 3C,D). Both
Training and Test samples presented a similar grouping of variables with more significant
loadings for valine, leucine, isoleucine, and 3-hydroxyisobutyrate in PC1, demonstrating
the replicability of the main results.
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Figure 3. Score (A) and loading (C,D) plots of Principal Component Analysis (PCA) of main serum
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Training and Test samples, respectively.

Interestingly, there was a breakpoint in the linear relationship between age and PC1
scores, as observed by the intersection between the two straight lines around 32 years
(Figure 3B).

3. Discussion

This study showed that age increase was positively associated with the clinical mark-
ers (total cholesterol, HDL, LDL, VLDL, triacylglyceride, and glucose levels); negatively
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associated with tryptophan, 3-hydroxyisobutyrate, asparagine, isoleucine, leucine, and va-
line levels, but positively with aspartate and ornithine levels. These metabolites resulted in
three enriched pathways including valine, leucine, and isoleucine degradation, urea cycle,
and ammonia recycling. Additionally, serum metabolic levels of 3-hydroxyisobutyrate,
isoleucine, aspartate, and ornithine explained 27.3% of the age variation adjusted by BMI,
with the aging metabolism breakpoint occurring after the third decade of life with branched-
chain amino acids being the main source of variation in the metabolome.

For clinical markers, the positive association of the total cholesterol, HDL, LDL, VLDL,
triacylglyceride, and glucose levels with age have been extensively demonstrated in the lit-
erature, mainly from twenty to sixty years old for most of them [28,29], which corroborates
the age range considered in our study. These results demonstrate the importance of contin-
uous monitoring of these clinical markers with aging, since very high total cholesterol, LDL,
triacylglyceride, and glucose levels are associated with additional risks of cardiovascular
disease, coronary heart disease, or even all-cause mortality [30–33].

Interestingly, several amino acids and 3-hydroxyisobutyrate were negatively associ-
ated with aging. The serum levels of the branched-chain amino acids (BCAAs: leucine,
isoleucine, and valine) are expected to decrease in heathy individuals due to the involuntary
loss of muscle mass with aging [34,35], a phenomenon called sarcopenia [36]. The BCAAs
are the most abundant amino acids in proteins and are involved in the maintenance of
skeletal muscle [35,37]. This argument can be supported in part by the positive association
observed between BMI and aging. Although BMI does not directly reflect the distribution
of lean body mass or muscle mass [38], the increase in BMI with aging in healthy and
untrained individuals, as in the present study, is expected to occur mainly due to the gain
in body fat mass and reduction in muscle body mass [38–40]. An intermediate in valine
degradation, 3-hydroxyisobutyrate regulates the trans-endothelial flux of fatty acids; its
lower level with aging is also in accordance with lower levels of valine [41]. The excessive
catabolic flux of BCAAs can lead to a range of adverse cardiometabolic risk factors with
aging, including obesity, insulin resistance, and dyslipidemia [41,42]. Curiously, the break-
point in the metabolism occurred after the third decade of life, with BCAAs being the main
ones responsible for modifications. This finding is supported by substantial reduction in
the production of IGF-1, the main mediator for the trophic effects of growth hormone, that
plays an important role in maintaining lean mass and bone mass [43], accompanied by a
decline in the relative fat free mass, especially after the third decade of life [44,45].

Tryptophan and asparagine also were negatively associated with aging in agreement
with other studies [37,46,47]. Tryptophan is a glucogenic and ketogenic essential amino
acid which is a precursor for the neurotransmitter serotonin and melatonin that regulates
circadian rhythms [37], and a precursor for the nicotinamide adenine dinucleotide (NAD+)
whose decrease with aging is associated with metabolic and neurodegenerative diseases
and various cancers [48]. The decrease in serum tryptophan with aging and the increase
in its toxic catabolites have been attributed likely due to increased levels of the enzyme
indoleamine-2,3-dioxygenase (IDO). IDO breaks down tryptophan to kynurenine in tissues
outside the liver induced by pro-inflammatory cytokines and superoxide which increase
with aging [37,49]. Asparagine is a glutamine-derived metabolite. Although the cause of its
decrease in blood serum with aging is not well understood, asparagine plays an important
role in blood vessel formation [50], proliferating cells, regulation of protein and nucleotide
synthesis [51], and coordinates cellular homeostatic responses with metabolic fuel reserves
and availability [50].

On the other hand, aspartate and ornithine were positively associated with aging as
also observed in previous studies [9,46,52]. Both these amino acids play an important role in
the urea cycle. While aspartate is an important carrier of nitrogen atoms for the urea cycle,
ornithine is an intermediate in this cycle [53]. An possible interpretation of our finding is
that the mechanisms of excretion of these metabolites through the urea cycle may be more
compromised with increasing age due to the decrease in the rate of clearance of urea by the
kidney [54], but not on a pathological level since our participants presented clinical profiles
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indicative of normal functioning kidneys (based on serum urea and creatinine levels). This
reasoning can be supported since a greater efficiency of this cycle is expected to reflect in
the higher flux of urea excretion, resulting in lower levels of these amino acids [15], contrary
to what was observed in the present study with aging. Interestingly, we only observed a
trend (p = 0.064, Table S3) toward an increase in serum urea levels with aging, however,
previous studies have confirmed this positive association [34,55]. There is evidence that
the accumulation of intermediate metabolites from the urea cycle is toxic for hepatocyte
mitochondria due to the toxicity of ammonia [56].

In summary, our findings demonstrate that aging-induced changes in metabolism
are related to the increased regulation of the valine, leucine, and isoleucine degradation
pathway, especially after the third decade of life, which is accompanied by a progressive
decrease in the ability of the urea cycle in excreting its degradation by-products. These
results contribute to determining the metabolic underpinning of aging and have potential
clinical implications for health monitoring as they mark important changes in metabolism,
which may be useful for carrying out early therapeutic, pharmacological, and dietary
interventions, aiming to mitigate possible deleterious effects of aging, such as loss of
muscle mass and reduced liver/kidney efficiency.

Some limitations and strengths of the present study should be highlighted. Although,
metabolic sex differences have been extensively documented in the literature [46,47,57,58],
it was not possible to analyze the specific effects of each sex given our sample size. How-
ever, there were no differences in the proportion between sexes in our sample, and sex was
not statistically associated with the main outcome. Then, our results can be interpreted
regardless of sex. This is an observational study based on a specific cohort of participants
(apparently healthy and untrained individuals from 20 to 70 years old). Therefore, causal
relationships and extrapolation of our findings to other populations should be avoided.
The participants’ dietary and physical activity habits were not recorded. However, all blood
samples were collected after a 12-h fast and participants were untrained and not engaged
in a regular exercise program. On the other hand, our results were based essentially on
the commonality among various levels of evidence (correlations, MSEA, multiple linear
regression, and aging metabolism breakpoint) minimizing the occurrence of metabolites
occasionally associated with aging. Our result appears to be robust since the age variance
explained by metabolite levels was replicated and cross-validated in a Test sample. Finally,
our metabolomic analysis was based on data from two analytical platforms (1H NMR
and LC-HRMS) allowing for more comprehensive coverage of the metabolome, which
represents a typical limitation in most of the previously reported studies. Interestingly,
although a broader number of compounds was obtained through LC-HRMS, most com-
pounds significantly related to aging were obtained by 1H NMR, highlighting the potential
of this technique for conducting studies on this topic.

4. Materials and Methods
4.1. Subjects and Study Design

Participated in this study 138 apparently healthy and untrained individuals (20–70 years
old), recruited through electronic and print-based media, as well as through contacts using
the Cardiovascular Physical Therapy Laboratory (LFCV) database at the Universidade
Federal de São Carlos (UFSCar), São Carlos, Brazil. All participants had undergone physi-
cal exams (height, weight, and BMI measurements) and anamnesis including a detailed
personal medical and disease history, history of family diseases, use of regular medications,
reports about specific diets, and physical activity. All included participants were free
from health conditions such as respiratory, musculoskeletal, metabolic, and neurologi-
cal issues as well as from any history of cardiovascular disease; nonsmokers; non-obese
(BMI < 30 kg·m−2); non-alcoholics or users of illicit drugs or regular medications related to
chronic conditions. The cardiovascular condition of the participants was examined by a
cardiologist in rest and ergometric test. All subjects who had cardiovascular alterations
such as excessive arrhythmias, myocardium ischemic signals, or blood pressure hyperreac-
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tivity in the ergometric test and/or cardiopulmonary exercise test [59], as well as severe
or recurrent hypotension, evident blood test alterations during the experimental protocol,
were excluded. A detailed flowchart describing the recruitment process of this study is
presented in Figure S2.

The study was approved by the Human Research Ethics Committee (number: 173/2011)
and conducted in accordance with the standards set by the Declaration of Helsinki. All
participants signed a free and informed consent form after agreeing to participate in
this study.

Resting blood samples were collected from each participant for clinical markers and
metabolomic analysis. The metabolomics analysis was performed using 1H NMR and
LC-HRMS.

4.2. Blood Sample Collection

Resting venous blood samples were collected in the fasted state (12 h) in the morning
by puncture of the antecubital vein in vacuum tubes without anticoagulant by experienced
professional. In addition, participants were instructed not to perform any strenuous
exertion for at least two days before the blood collection, and not to consume any stimulant
drink or food (such as coffee, energy drinks, chocolate, and foods with a lot of sugar), and
alcoholic beverages on the day before blood collection.

For clinical markers, blood tubes were analyzed in a specialized laboratory (UNIMED
Clinical Analysis Laboratory of São Carlos) to assess the participants’ health status. For
metabolomic analysis, blood samples were collected in serology tubes (S-Monovette 4.9 mL,
Sarstedt, Germany) and centrifuged at 1450× g for 10 min (Sorvall ST Benchtop Centrifuge,
Thermo Scientific, Waltham, MA USA), and the supernatant serum was collected and stored
at −80 ◦C until further analyses [60].

As the phase of the menstrual cycle, is known to impact the metabolite profile in
women [61], for all women of reproductive age, blood sampling was performed between the
7th and 10th day of the menstrual cycle (follicular phase) [60]. The status of postmenopausal
women was determined by the absence of menstrual bleeding for at least one year [62]. All
involved women were not using contraceptives (reproductive age) or hormone replacement
therapy (post-menopausal age).

4.3. Clinical Markers

The health status of the participants was verified by the fasting values of clinical
markers, such as total cholesterol, VLDL, LDL, HDL, triacylglyceride, glucose, uric acid,
urea, creatinine, and high-sensitivity C-reactive protein (hs-CRP). The total cholesterol,
triacylglyceride, uric acid, urea, glucose, and creatinine were measured using wet chemistry
(except for LDL that was calculated from the Friedewald equation) (Advia 1800, Siemens,
Erlangen, Germany). The hs-CRP was quantified by turbidimetry (Advia 1800, Siemens,
Erlangen, Germany).

4.4. 1H NMR-Based Metabolomics

Serum samples (500 µL) were filtered in 3 kDa filters (Amicon Ultra) by centrifugation
at 14,000× g for 30 min at 4 ◦C to macromolecule removal. Previously, filters were washed
five times with 500 µL of Milli-Q water, followed by centrifugation at 14,000× g for 5 min at
4 ◦C, and spinning (filter reverse and rotation at 7500× g for 60 s) to eliminate any residue
of Milli-Q water. The filtered sample was transferred to 5-mm NMR tubes containing phos-
phate buffer [(monobasic sodium phosphate, NaH2PO4, 119.97 g·mol−1; dibasic sodium
phosphate, Na2HPO4, 141.96 g·mol−1), TMSP-d4 (3-(trimethylsilyl)-2,2′,3,3′- tetradeutero-
propionic acid) at 5 mmol·L−1 as an internal reference], and D2O (99.9%; Sigma-Aldrich,
San Luis, CA, USA) [63], with the respective proportion: 100 µL, 40 µL, and 260 µL. The
final concentration of the internal reference (TMSP-d4) was 0.5 mmol·L−1

. All the NMR
measurements were acquired from a 14.1 Tesla Bruker spectrometer (600 MHz for hydrogen
frequency), equipped with a 5 mm TCI cryoprobe at 298 K. For the 1D 1H NMR spec-
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trum acquisition, a pulse sequence with H2O presaturation signal (named by Bruker as
noesypr1d) was used adopting a continuous wave, assuming the following acquisition
parameters: acquisition time (AQ = 3.63 s), spectral width (SW = 30 ppm), relaxation delay
(d1 = 4 s), the 90º pulse time (p1 = 9.5 µs) and number of scans (ns = 128). All spectra
were processed with 0.3 Hz line broadening (lb) to attenuate the noise in the spectral
signals. After spectrum acquisition, baseline corrections, characterization, and quantifi-
cation of metabolites present in the samples were conducted using Suite 8.6 Chenomx
software (Chenomx Inc., Edmonton, AB, Canada) by the TMSP-d4 (0.5 mmol·L−1) sig-
nal as an internal reference to quantify other metabolites (Figure S3). Additionally, 2D
Hetero Single Quantum Coherance (HSQC), Heteronuclear Multiple Bond Correlation
(HMBC), and COrrelated SpectroscopY (COSY) experiments were used to auxiliate in the
identification of the most relevant compounds initially characterized by Chenomx software
(Table S1). The followed parameters were assumed for the HSQC and HMBC experiments:
SWF1 238.88 ppm and SWHF2 30.03 ppm, d1 = 2 s, number of experiments in F1 = 256
and F2 = 4096, ns = 128 for HSQC and ns = 256 for HMBC; and for COSY experiment:
SWF1 = 30.03 ppm and SWHF2 = 30.03 ppm, d1 = 2 s, number of experiments in F1 = 256
and F2 = 4096, and ns = 64. All data were processed using TopSpin 3.1.3 software.

4.5. LC-HRMS-Based Metabolomics

Serum samples, stored at −80 ◦C, were firstly thawed on ice and vortexed for 15 s.
Afterward, the samples were submitted to a protein precipitation sample treatment. An
aliquot of 150 µL of serum was transferred to a new Eppendorf and 450 µL of cold methanol
was added to the sample to initiate the protein precipitation and metabolite extraction.
The mixture was stored at −20 ◦C for 5 min. Then, the tubes were vortexed for 20 s and
centrifuged at 7267× g at 4 ◦C for 10 min. Next, aliquots of 200 µL of the supernatant were
transferred to new microtubes and 20 µL of an internal standard (5 mmol·L−1 of anhydrous
L-Leucine-enkephalin acetate) was added to the samples and stored at−20 ◦C until analysis
by LC-HRMS. A blank sample was prepared with 100 µL of methanol. Quality control (QC)
samples were prepared from aliquots of 15 µL of the all-serum samples that had already
been subjected to the protein precipitation process as described above and were injected in
triplicate throughout the batch of experimental samples.

The UHPLC Agilent system (model 1290 Infinity II, Agilent Technologies, Santa Clara,
CA, USA) consisted of a binary LC-G712A pump with a blend assist G7104A, a vial sampler
LC injector G7129C, and a column compartment G7129B. HyStar workstation software
was used for data acquisition (HyStar v2, Bruker Daltonics, Bremen, Germany) and a
Compass Data Analysis was used for data analysis and processing (DataAnalysis v3.2,
Bruker Daltonics). Chromatographic analyses were performed with an Eclipse SDB-C18
column (100 × 3.0 mm i.d; 3.5 µm) (Agilent Technologies) employing a gradient elution
using water + 0.1% formic acid (solvent A) and acetonitrile + 1% formic acid (solvent B)
as the mobile phase at a flow rate of 0.4 mL·min−1 and temperature set at 40 ◦C. The total
run time was 30 min using the following multistep gradient: 0 min, 1% B; 0–3.0 min, 1–2%
B; 3–10 min, 2–30% B; 10–15 min, 30–50% B; 15–18 min, 50–80% B; 18–20 min, 80–90% B;
20–22 min, 90–95% B; 22–26 min, 95–99% B; 26.01–28 min, 99% B, for column cleaning and
a conditioning cycle time of 3 min with the same initial conditions of 1% B. The injection
volume was 5 µL.

The detection of compounds was performed on a quadrupole time-of-flight mass
spectrometer (QqTOF), model Impact HD (Bruker Daltonics) equipped with an electrospray
(ESI) interface operating in negative or positive ionization mode. Centroid acquisition
mode was used for data collection and storage. The full MS and MS/MS data were acquired
through Compass QtofControl v3.4 (Bruker Daltonics) and the data were processed using
DataAnalysis v4.2 software (Bruker Daltonics). The ion source optimal parameters were
set as follows: capillary voltage, 3600 V and 3000 V for the positive and negative ionization
mode, respectively. All other parameters were the same for both ionization modes used:
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end plate offset, 450 V; nebulizer, 4 bar; dry heater temperature, 180 ◦C; dry gas flow,
8 L·min−1; quadrupole ion energy, 5 eV, and full-MS scan range, m/z 50–1300.

A dynamic stepping was used for data-dependent acquisition (DDA) MS/MS mode
where the collision RF was set to vary between 200.0 to 550.0% Vpp; the transfer time
was set to vary 50.0 to 90.0 µs; with 50.0% timing each. The collision energy for the ion
fragmentation was programmed to vary from 100 to 250.0% from 20 eV initially set, with
the following isolation mass: m/z 100, 200, and 300:4 width; for m/z 700 and 1000:6 width.
Funnels RF 1 and 2 were 250.0 and 150.0 Vpp, respectively. The hexapole RF was 50.0 Vpp,
the quadrupole ion energy was 5.0 eV with a pre pulse storage of 6.0 µs. Quadrupole
ion energy and collision cell energy were both set at 5 eV. The parameters used to trigger
the MS/MS fragmentation were 2.0 Hz for low counts (10,000 cts/per 1000 sum) and
4.0 Hz for high counts (100,000 counts/per 1000 sum), using a total cycle time range of 3 s;
absolute threshold of 1491 counts (302 counts/per 1000 sum), active exclusion 1 spectra;
release after 0.90 min, while the full MS acquisition was set at 2.0 Hz. Internal mass
spectrometer calibration was performed with 1 mmol·L−1 of sodium formate prepared
in acetonitrile, using a quadratic high-precision calibration (HPC) regression mode. The
calibration solution was injected at the end of each analytical run, and all the spectra were
recalibrated before compound identification.

Bruker Profile Analysis v2.1 software (Bruker Daltonics) was used to process the
LC-HRMS data. The bucket generation was performed with the following parameters: S/N
threshold = 2; correlation coefficient threshold = 0.2; minimum compound length = 10 spectra;
smoothing width = 1. All features detected by the LC-MS were subjected to data processing
consisting of the inclusion of features based on values greater than 5% from blank samples;
coefficient of variation (CV%) of QCs samples (mean of replicates) lower than 20%; missing
data lower than 10% in experimental samples. The remaining features were normalized
by non-linear local regression (LOESS) to account for the instrumental stability using the
Noreva 2.0 software (Figure S4) [64].

Data Analysis v4.2 (Bruker Daltonics) was used to perform the identification of the
fragment ions (MS/MS) of those detected compounds, which were further putatively con-
firmed by comparing their fragment ions with those data in the HMDB (https://hmdb.ca
(accessed on 26 April 2022)), Mass Bank (https://massbank.eu/MassBank/ (accessed on
26 April 2022)), CEU Mass Mediator (http://ceumass.eps.uspceu.es/ (accessed on 26 April
2022)) databases. Compounds were identifyed based on protonated, desprotonated, and
adduct ions as following: [M + H]+, [M + H-2H2O]+, [M + H-H2O]+, [M + NH4-H2O]+,
[M + NH4]+, [M + Na]+, [M + CH3OH + H]+, [M + K]+, [M + ACN + H]+, [M + 2Na-H]+,
[M + IsoProp + H]+, [M + ACN + Na]+, [M + 2K-H]+, [M + 2ACN + H]+, [M + IsoProp +
Na + H]+, [M + H + HCOONa]+, [2M + H]+, [2M + NH4]+, [2M + Na]+, [2M + 2H + 3H2O]+,
[2M + K]+, [2M + ACN + H]+, [2M + ACN + Na]+, [2M + H-H2O]+, [M + 2H]+, [M + H
+ NH4]+, [M + H + Na]+, [M + H + K]+, [M + ACN + 2H]+, [M + 2Na]+, [M + H + Na]+,
[M + 2ACN + 2H]+, [M + 3ACN + 2H]+, [M + 3H]+, [M + 2H + Na]+, [M + H + 2Na]+,
[M + 3Na]+, and [M + H + 2K]+ for the positive ionization mode; and [M-H]−, [M-H2O-
H]−, [M-Na-2H]−, [M + Cl]−, [M + K-2H]−, [M-FA-H]−, [M-Hac-H]−, [M-TFA-H]−,
[M-H + HCOONa]−, [2M-H]−, [2M + FA-H]−, [2M + Hac-H]−, [3M-H]−, and [M-3H]− for
the negative ionization mode.

4.6. Statistical Analysis

Multiple imputations were conducted for missing values of compounds and sample
characterization variables (except age), using the Markov Chain Monte Carlo (MCMC)
approach for nonmonotone missing data [65]. The median and maximum number of
missing values per variable within the entire data set was two (interquartile range: 0–3) and
13, respectively. The total number of missing values within the entire data set was <2%.

For all continuous variables, the data distributions were checked using the Shapiro-
Wilk test. To improve normality of distributions, all variables were Box-Cox transformed for
subsequent analyses [66]. However, all transformed data were presented in their original

https://hmdb.ca
https://massbank.eu/MassBank/
http://ceumass.eps.uspceu.es/
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scale for easier interpretation. A Student’s t-test for independent samples and a Chi-square
test were used to compare physical and clinical characteristics of the participants between
Training and Test samples.

To investigate the aging-related serum metabolic profile, firstly linear regression
including physical characteristics of the participants (BMI and sex) as independent variables
and age as the dependent variable were performed. After, partial correlations using Pearson
correlation coefficients were run to determine the relationship of the clinical markers
and serum metabolite levels with age whilst controlling for BMI. For these hypothesis-
generating analyses, we used the Benjamini-Hochberg procedure to account for multiple
tests and employed a FDR of 0.2 and a significance level threshold at a nominal value of
p < 0.05 to determine statistical significance [67].

For the identification of aging-regulated metabolic pathways, based on all correlational
analyses performed, clinical markers and metabolites that showed significant correlation
were listed for a Metabolite Set Enrichment Analysis (MSEA) based on normal human
metabolic pathways [The Small Molecule Pathway Database (SMPD) library] using an
algorithm for Over Representation Analysis and Hypergeometric test to evaluate whether
a particular metabolite set is represented more than expected by chance within the given
compound list [68]. Additionally, the network of the most enriched pathways enjoying
connections was displayed. These analyzes were performed using the web-based tool
MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/ (accessed on 23 May 2022)).

To determine the overall contribution of the serum metabolic levels on the aging
process, metabolites significantly retained in the previous two steps (correlation and MSEA)
were analyzed in a multiple linear regression model with forward stepwise selection.
This approach allowed select metabolites with statistical and biological relevance, mini-
mizing the occurrence of metabolites occasionally associated with the phenotype in final
model [69,70]. Prior to this analysis, the data set was randomly split into a Training set
(n = 105, ~75% of the cohort) that was used for the main analysis and an independent
Test set (n = 33, ~25% of the cohort) for cross-validation. Metabolite levels as well as BMI
(covariate) were Box-Cox transformed and standardized to mean = 0 and multiples of one
standard deviation. For Box-Cox transformations, the lambda value was optimized for
each variable, being selected the lambda value in a range of −10 to 10 that resulted in the
smallest standard deviation. For both Training and Testing samples, the same optimized
lambda value was applied. Scaling in the Test sample was applied using the same mean
and standard deviation used to scaling the Training sample [71]. The assumption of multi-
collinearity of measures between the independent variables was assessed by the variance
inflation factor (VIF~1) and the normality of residue distribution was confirmed by visual
inspection of the frequency histograms.

Afterward, metabolites retained in the correlation and MSEA steps also were analyzed
in a PCA to extract a score representative of the major factor of variability in the metabolism
weighted for each metabolite and BMI. PCA also was cross-validated using Training and
Test samples. Then, the scores from the first principal component (PC1), representing
a major portion of the variability in metabolism for each individual were plotted as a
function of age to identify a metabolism breakpoint. Each point on the graph corresponds
to a representation of metabolism at a given age for each individual. The total points were
divided into two sets of points. The first 35 points, representing one-third of the sample,
were arbitrarily included in the first set, with the remaining points included in a second set.
After that, a straight regression line (PC1 scores vs. age) was fitted to each set of points,
and the coefficient of determination (r2) from each line was calculated. The product of
these two coefficients, which represent the linearity of the two sets of points, resulted in an
index and was recorded for further analysis. The initial value of the second set of points
was included in the first set of points, increasing the number of points in the first set and
decreasing the number of points in the second set. New regression lines were plotted, and
the corresponding regression coefficients calculated, resulting in a new index for two new
sets of points. This procedure was repeated, and at each time incorporated the next value

https://www.metaboanalyst.ca/
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of the second set of points into the first set of points, until the second set was composed of
the last 35 points of the file (one-third of the sample) and the first set with the remainder of
the points. The two sets of points that elicited the pair of lines with the largest product of
the two coefficients of determination were chosen and the intersection between these lines
was identified and defined as the metabolism breakpoint with aging [72,73]. Figure 3B
shows the metabolism breakpoint procedure.

All the analyses described above (comparisons between groups, correlations, linear
regressions, and PCAs), were performed using SPSS 25.0 software (Chicago, IL, USA). The
level of significance adopted was 5%.

5. Conclusions

The aging process is potentially associated with an increased flux of the branched-
chain amino acids (valine, leucine, and isoleucine) degradation pathway, especially after
the third decade of life, which is accompanied by a decrease in the urea cycle’s ability to
excrete its degradation by-products, evidenced by a progressive increase in serum levels of
ornithine and aspartate.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27248656/s1. Figure S1: Scatter plots of the partial
correlations (adjusted by body mass index—BMI) between age and metabolites levels (main findings).
Metabolite levels were Box-Cox transformed and standardized to mean = 0 and multiples of one
standard deviation (z-score). Blue and yellow colors represent low and high BMI values (z-score);
Figure S2: Flowchart describing the recruitment process; Figure S3: 1H NMR spectrum with the main
aging-associated serum metabolites highlighted in red, 14.1 T, 25 ◦C in D2O. TMSP-d4 was used as
internal reference; Figure S4: Instrumental stability assessed through quality control samples for data
obtained by LC-HRMS in positive and negative ionization mode; Table S1: Chemical structure and
chemical shift (δ-ppm) of metabolites significantly associated with aging obtained by 1H NMR-based
metabolomics; Table S2: Identification parameters of the compounds significantly associated with
aging obtained by LC-HRMS-based metabolomics; Table S3. Correlations between clinical markers
and age; Table S4. Correlations between obtained compounds by LC-HRMS and age; Table S5.
Correlations between obtained compounds by 1H NMR and age; Table S6. Summary of the metabolic
pathways associated with aging after Metabolite Set Enrichment Analysis.
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