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Abstract: High-performance electrocatalysts are critical to support emerging electrochemical energy
storage and conversion technologies. Graphite-derived materials, including fullerenes, carbon nan-
otubes, and graphene, have been recognized as promising electrocatalysts and electrocatalyst supports
for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reac-
tion (HER), and carbon dioxide reduction reaction (CO2RR). Effective modification/functionalization
of graphite-derived materials can promote higher electrocatalytic activity, stability, and durability.
In this review, the mechanisms and evaluation parameters for the above-outlined electrochemical
reactions are introduced first. Then, we emphasize the preparation methods for graphite-derived
materials and modification strategies. We further highlight the importance of the structural changes of
modified graphite-derived materials on electrocatalytic activity and stability. Finally, future directions
and perspectives towards new and better graphite-derived materials are presented.

Keywords: graphite-derived materials; fullerenes; carbon nanotubes; graphene; electrocatalysis

1. Introduction

The sustainable development of green and clean energy systems is one of the most
complex problems facing human society. The vigorous development of electrochemical
energy storage and conversion systems, such as new metal-air cells, fuel cells, water split-
ting, and carbon dioxide reduction, has pointed out a new direction for solving world
energy problems. However, the slow reaction in core electrochemical reactions, including
the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution
reaction (HER), and carbon dioxide reduction reaction (CO2RR), have become the bottle-
neck restricting the development of new energy technologies. Noble metal materials like
platinum (Pt), iridium (Ir), and ruthenium (Ru) have been found to be the most efficient
and selective electrocatalysts [1–3]. However, the limited reserves and the poor selectiv-
ity of these noble metals gravely impede practical applications of the technologies [4,5].
Carbon materials are promising substitutes for noble-metal-based electrocatalysts due to
their abundant resources and easy modification. Among them, graphite-derived materials
(fullerene, carbon nanotubes, and graphene) have attracted much attention owing to mag-
nificent characteristics, such as high surface area, electron carrier mobility, and excellent
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catalytic activity [6–8]. This review intends to summarize recent progress in emerging
electrocatalysts based on graphite-derived materials (Figure 1). Moreover, we discuss
various means to boost electrocatalytic performance based on summarizing the structures
and properties of different graphite-derived materials. Besides, the challenges and outlooks
in this field are also presented to clarify the current situation of the reconstruction strategy
of graphite-derived materials and the rational designs of high-performance electrocatalysts.
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Figure 1. Graphite-derived materials and modification approaches used to develop advanced electro-
catalysts for electrochemical energy storage and conversion systems based on the four redox reactions
depicted in the figure.

2. Overview of Electrocatalysis

Electrocatalysis with high catalytic activity and superior durability is required to
achieve high power density and stability for electrochemical energy storage and conversion
devices. Nevertheless, the core electrochemical reactions, such as ORR, OER, HER, and
CO2RR, have high overpotential, and slow electron transfer dynamics, which has dramati-
cally hindered the development of electrocatalysis [9–11]. Therefore, the use of highly active
and selective catalysts to overcome the kinetics barriers related to the multi-step electron
transfer process characterizing these reactions plays a pivotal role in electrocatalysis [12,13].

Electrochemical water splitting is a green, environmentally friendly, and efficient way
to produce hydrogen, which involves two reactions: OER and HER. Among them, HER
involves a double-electron transfer process, including the adsorption of water molecules
or protons on the active site on the electrocatalyst surface (the Volmer step) and the des-
orption of hydrogen molecules from the cathode through the Tafel or Heyrovsky pathway
(Figure 2a) [8,14,15]. Compared with HER, the OER involves a complex four-electron-
proton transfer process and multiple reaction intermediates (Figure 2b), resulting in slower
kinetics and higher overpotentials. OER restricts water-splitting development and is a
significant constraint for new energy technologies such as regenerative fuel cells and
rechargeable metal-air batteries [8,16–19].

The ORR reaction processes can generally be divided into two types: the four-electron
(4-e−) reduction pathway, which directly transports oxygen to produce water; and the two-
electron (2-e−) reduction pathway, which involves the conversion of oxygen to hydrogen
peroxide and then to water (Figure 2c) [8]. The slow reaction kinetics of the ORR hinder
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the development of fuel cells and metal-air batteries [8,20–22]. Pt plays a significant role in
ORR catalysis [23].
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Figure 2. (a) HER mechanism in acid (blue line) and alkaline (red line) electrolytes. (b) OER
mechanism in acid (blue line) and alkaline (red line) electrolytes. (c) ORR mechanism in acid
(blue line) and alkaline (red line) electrolytes. Reproduced with permission [8]. Copyright 2020,
Elsevier Ltd., Amsterdam, Netherlands. (d) CO2RR mechanism. Reproduced with permission [24].
Copyright 2019, Nature Publishing Group. (e) HER volcano plot for metals and MoS2. (f) OER
volcano plot for metal oxides. (g) ORR volcano plot for metals. Reproduced with permission [17].
Copyright 2017, American Association for the Advancement of Science. (h) CO2 reduction metal
classification. Reproduced with permission [25]. Copyright 2017, Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, Germany.

The CO2RR reaction mainly consists of three steps: chemisorption of CO2 from the elec-
trolyte to the catalyst surface, electron or proton transfer to break C-O bonds and form C-H
bonds, and product desorption from the catalyst surface(Figure 2d) [24,25]. This reaction
provides a clean, sustainable route for producing high-value-added fuels and chemical pre-
cursors [26]. However, factors such as the chemical inertness of CO2, the reaction competition
between HER and CO2RR, and the complex intermediates generated by the multiproton and
electron reaction process lead to sluggish CO2RR kinetics [24,27,28]. Meanwhile, Cu-based
materials are considered the only heterogeneous catalysts that promote the formation of various
byproducts (e.g., hydrocarbon products and oxygenates) from the CO2RR [29].

Efficient catalysts can effectively reduce reaction barriers, promote the conversion
of reaction intermediates, and accelerate reaction kinetics [30]. Therefore, developing
highly active catalysts has become the top priority in developing the above-mentioned
electrochemistry-based energy conversion and storage systems. The electrocatalytic activity
largely depends on the binding energy between the reaction intermediates and the catalyst
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surface. Empirically, the bond strength between the catalyst and reaction intermediates is
neither too strong nor too weak, which is shown by the volcano trends (Figure 2e–h) that
can be used to evaluate the intrinsic activity of the electrocatalyst [17,25].

To comprehensively evaluate the catalytic activity of catalysts in the ORR, OER, HER,
and CO2RR, the following standardized parameters will be considered further in the text:
including overpotential (ηX, X represents current density), onset overpotential (Eonset),
half-wave potential (E1/2), electrochemical impedance spectroscopy (EIS), electrochemical
active surface area (ECSA), turnover frequency (TOF), faradaic efficiency (FE), current
density, limiting current density, Tafel slope, and stability.

3. Research Status on Graphite-Derived Materials

The graphite-derived materials such as fullerenes, carbon nanotubes, and graphene
are widely used in the preparation of electrochemical catalysts due to their high specific
surface area, environmental friendliness, excellent electrical properties, and the easiness of
their surface functionalization.

Graphite, which is listed as a strategic mineral for crucial development and protection
by some countries [31], is widely used in electrocatalysis [32], environmental protection [33],
energy storage [34], refractories [31], thermal management [35], and many other industries.
It has become an indispensable non-metallic material for many new strategic sectors.
Fullerenes, carbon nanotubes, graphene, and other graphite-derived materials further
broaden the application space of graphite in electrocatalysis.

Since Kroto discovered fullerene (C60) for the first time in the experiment of laser
irradiation and evaporation of graphite, he then successively discovered fullerene molecules
such as C70, C80, and C90. C60, which have high stability and ideal spherical structure.
These fullerene molecules are considered the most representative zero-dimensional carbon
material [36]. Due to the highly degenerate molecular energy level and small energy range,
C60 has a high electronic affinity and solid chemical activity. It is often used as an electron
acceptor to construct composite functional materials [37]. Currently, the main preparation
methods of fullerenes include the laser, arc, and chemical synthesis methods [38].

Iijima of NEC in Japan accidentally discovered carbon nanotubes while preparing
carbon fibers [39]. Carbon nanotubes can be divided into armchair-type carbon nanotubes,
sawtooth-type carbon nanotubes, and chiral-type carbon nanotubes according to different
crimping directions of graphene [40,41]. Based on the different layers of graphene, carbon
nanotubes can be named single-walled carbon nanotubes (SWCNTs), double-walled carbon
nanotubes (DWCNTs), and multi-walled carbon nanotubes (MWCNTs) (Figure 3a). Cur-
rently, arc-discharge, laser ablation, and chemical vapor deposition (CVD) are commonly
used to prepare carbon nanotubes (Figure 3b) [42]. The tubes as carriers are characterized
by high electrical conductivity, large specific surface area, and adjustable surface [43], which
can greatly improve the conductivity of supported catalysts [44,45].

Graphene was successfully obtained by the research group of Professor Geim through
mechanical stripping [46]. Graphene, as a two-dimensional carbon material, is composed
of carbon atoms with sp2 hybrid orbital in a hexagonal honeycomb arrangement, which
can be divided into a single-layer, double-layer, few-layers (3–10 layers) and multi-layer
graphene (more than 10 layers, and less than 10 nm). Because of its good mechanical
properties, extremely high carriers (electrons and holes) migration speed, superior electrical
conductivity, and huge specific surface area [47,48], the star material has aroused great
attention in many fields [49]. The existing preparation methods for graphene mainly include
mechanical liquid phase, electrochemical, (CVD), and oxidation-reduction methods, which
allow the synthesis of a wide range of graphene in terms of size, quality, and price for
any particular application (Figure 3c) [50,51]. The zero-dimensional (0D) fullerenes, one-
dimensional (1D) carbon nanotubes, and two-dimensional (2D) graphene constitute a
family of graphite-derived materials (Figure 3d). Graphite is composed of multilayer
graphene with weak van der Waals force. Carbon nanotubes can be regarded as graphene
sheets rolled, which is attributed to the sp2 hybridization of carbon atoms and part of the sp3
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hybridization. Fullerenes are made by bending graphene into balls. Therefore, graphene is
the basic structural unit of various carbon sp2 hybrids materials such as fullerenes, carbon
nanotubes, and graphite. Furthermore, graphite-derived materials that can be compounded
with each other can improve the specific surface area, electron mobility, and energy band
structure, thereby effectively improving the electrocatalytic activity [52].
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form fullerene, carbon nanotubes, and graphite. Reproduced with permission [52]. Copyright 2007,
Nature Publishing Group.

4. Research Status on Fullerenes in Electrocatalysis
4.1. Doped Fullerene

Heteroatom doping can change the intrinsic electronic properties, atomic spin, charge
density, energy band structure, and electronic state of carbon materials. Consequently, it
can improve the electrocatalytic activity of carbon materials by introducing defects, holes,
and more catalytically active sites [53,54]. The doping modification of C60 by heteroatoms
(N, B, S, P, Si) has received extensive attention. Wang et al. [55] studied the influence of N,
P, and Si doping on the catalytic activity of C60 in ORR by density functional theory (DFT).
They found that heteroatom doping induces charge redistribution (Figure 4a). Besides, the
catalysts’ free energy curve has been proved to be an efficient method to estimate the ORR
catalytic performance. It shows that C59N and C59Si were the best and worst ORR catalysts,
respectively (Figure 4b). Meanwhile, C60 with the high curvature and pentagonal defect
has a high ORR catalytic activity. Chen et al. [56] paid attention to the ORR mechanism
and catalytic performance of pure fullerenes and N-doped fullerenes in combination with
DFT. They investigated the size effect of pure doped fullerenes on the ORR activity. The
results reveal that the smallest (C20 and C19N) and the largest (C180 and C179N) fullerenes
enable strong adsorption of the ORR species. In contrast, C39N with the reduced energy of
the rate-determining step manifests a high ORR activity. Furthermore, the catalytic ORR
pathway on C39N was predicted: O2→*O2→*O + *OH→*O + H2O→*OH + H2O→2H2O
(Figure 4c,d). Seung Hyo Noh et al. [57] discussed the effect of nitrogen doping content on
the OER and ORR catalytic activities of nitrogen-doped fullerenes. Combined with DFT
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calculations, the experiment showed that nitrogen-doped fullerenes with a 10% doping
content had a higher bifunctional catalytic activity (Figure 4e,f). In conclusion, strategies
such as introducing defects and doping can be used to develop efficient fullerene-based
metal-free electrocatalysts for electrochemical energy storage and conversion systems.
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the reduction of O2 at different electrode potentials, U, in alkaline medium on C60, C59N, C59P, C59Si.
Reproduced with permission [55]. Copyright 2017, Elsevier Ltd. (c) Calculated formation energies of
N-doped fullerenes. (d) Relative energy profiles of the possible ORR pathways. Reproduced with
permission [56]. Copyright 2017, Elsevier Ltd. (e) N-Fullerene of the 5 at% N aromatic precursor with
C57N3H33 molecules, and azafullerenes doped with N-doping levels of 10 and 20 at%, respectively.
(f) Gibbs free energy diagrams of ORR in alkaline media with N-doping levels of 5, 10, and 20 at%.
Used with permission [57]. Copyright 2017, The Royal Society of Chemistry.

4.2. Fullerene-Based Composites
4.2.1. Metals and Metal Oxides

A catalyst’s support, which impacts the activity and durability of the catalyst [58],
should have excellent electrical conductivity, corrosion resistance, and a large specific
surface area, and ensure uniform and stable attachment of the active catalyst nanopar-
ticles. C60 has the characteristics of a particular shape, strong donor-acceptor charge
transfer ability, and easy-to-regulate morphology, which provide the possibility for it to
become an excellent catalyst carrier [59,60]. Considering these factors, Gopalan Saianand
et al. [61] prepared Cu/Cu2O nanoparticles (NPs) anchored on mesoporous fullerenes
(MFC60) by hard template synthesis method and wet impregnation (Figure 5a,b). The
obtained Cu/Cu2O-MFC60 catalysts with a 15 wt.% Cu/Cu2O NPs loading had the highest
ORR catalytic activity among the investigated electrodes. It achieved an onset potential of
0.86 V vs. reversible hydrogen electrode (RHE) and a diffusion-limiting current density of
−5.18 mA cm−2 (Figure 5c,d). In detail, the excellent catalytic activity of Cu/Cu2O-MFC60
was mainly attributed to the well-ordered mesoporous properties, abundant active sites,
suitable specific surface area, and synergistic coupling effect of Cu/Cu2O NPs and C60.
Mercy R. Benzigar et al. [62] adopted a hard template method to load highly crystalline
α-Fe2O3 onto mesoporous C60 to synthesize a Fe-MFC60 catalyst (Figure 5e), which dis-
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plays high ORR catalytic activity with an onset potential at 0.85 V vs. RHE and half-wave
potential at 0.78 V vs. RHE (Figure 5f,g).

Studies have shown that metal encapsulation of carbon materials can also improve
catalytic activity and stability [63,64]. Compared with other two-dimensional supported
materials, the most significant difference of C60 is its larger hollow spherical structure,
which allows encapsulating metal nanoparticles. He et al. [65] reported that M@C60
(M = Na, K, Rb, Cs, Sc, Ti, Mn, Fe) had a high HER catalytic activity when C60 was sep-
arated into 20 metal atoms, which was mainly because the charge transfer of metal atoms
to C60 changes the charge distribution and enhances the adsorption strength of H atoms
on M@C60. Chen et al. [66] focused on the catalytic performance of C60 encapsulated
bimetals M1xM24−x@Cn (M1xM24−x represents FexCo4−x, FexNi4−x, CoxNi4−x; x = 1, 2, 3;
n = 40, 50, 60) by using DFT methods. Notably, the smaller fullerenes led to the greater
charge transfer between the alloy core and the carbon shell, which was also confirmed
by the most positive charges on the active site of Co3Ni1@C40 (Figure 5h). Furthermore,
the volcano relationship indicated that Co1Ni3@C50 and Co2Ni2@C60 yielded high ORR
activity (ηORR = 0.35 V) and OER activity (ηOER = 0.36 V), respectively (Figure 5i,j).
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Figure 5. (a) Low and (b) high resolution TEM images of Cu(15%)-MFC60. (c) Consolidated ORR
polarization curves were recorded at 1600 rpm in O2-saturated 0.1 M KOH (scan rate: 10 mV s−1) for
the studied catalysts. (d) The respective onset potential. Reproduced with permission [61]. Copyright
2020, Elsevier Ltd. (e) Pictorial representation of mesoporous iron oxide C60 (Fe-MFC60). (f) TEM
images of Fe-MFC60-150. (g) Linear Sweep Voltammetry (LSV) curves of Fe-MFC60-150 were recorded
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2019, Elsevier Inc. (h) Charge distributions on Co3Ni1@C40, Co3Ni1@C50, and Co3Ni1@C60. (i) The
volcano relationship between overpotential and ∆G*OH. (j) Free energy diagrams of ORR and OER
on Co1Ni3@C50 and Co2Ni2@C60. Reproduced with permission [66]. Copyright 2021, Elsevier B.V.

4.2.2. Molybdenum Disulfide

As the most representative transition metal dichalcogenide material, molybdenum
disulfide (MoS2) is an excellent HER electrocatalyst due to its great planar active sites
(active edges, S-vacancies, and grain boundaries) and high planar carrier mobility [67,68].
Yun-Hyuk Choi et al. [69] utilized a step-wise synthesis method including vapor transport,
reduction, and topochemical sulfidation to grow 3D MoS2 nanosheets on carbon fiber paper
(CFP) substrates. Then, they used a simple solution deposition method to prepare 3D
MoS2 nanosheets and fullerene nanoclusters composite nC60/MoS2. The HER activity of
nC60/MoS2 was significantly enhanced due to the improved interfacial charge transfer
of the hybrid nC60/MoS2 p-n heterojunction. Based on the one-pot synthesis of vdW
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MoS2/C60 heterojunctions, Alain R. Puente Santiago et al. [70] studied the effect of C60
concentration on the HER catalytic activity. The results showed a solid interfacial interaction
between C60 and MoS2 in 1T-MOS2/C60 supplemented with 20 wt% C60. The optimal
binding strength of H atoms at the active site resulted in a Pt-like initial potential and an
ultra-low ∆GH*(−0.03 eV).

4.2.3. Other Graphite Derivatives

C60 has become a key component of functional micro/nanostructures due to its unique
spherical structure, excellent electron-accepting ability, and high electron conductivity [36,71].
Aliyeh Hasanzadeh et al. [72] synthesized C60-CNTs hybrid materials by covalently connecting
fullerenes with carbon nanotubes for efficient ORR. C60-CNTs possessed a large specific surface
area, good intermolecular electronic transitions, fast mass transport, and defective sp3-C bonds,
which promoted O2 adsorption and OOH desorption. Gao et al. [73] reported a C60 as the
electron acceptor adsorbed on SWCNTs, which effectively induced charge transfer between
C60 and SWCNTs (Figure 6a). Raman spectra of C60-SWCNTn (n = 5, 10, and 15 min) exhibit an
upshift in the peak position with increasing C60 adsorption time (Figure 6b), which supports
the charge transfer from SWCNTs to the electron-withdrawing C60. Moreover, the increased
intensity ratio of the D-band to the G-band indicates that the nanotube structure became
slightly more rich in defects (Figure 6b). The formed new metal-free, heteroatom/defect-free
C60-SWCNTs material served as a multifunctional catalyst for ORR, OER, and HER over a
wide pH range (Figure 6c–j).
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Figure 6. (a) Illustration of charge-transfer process and ORR/OER/HER on C60-SWCNTs. (b) Raman
spectra of C60 and C60-SWCNTn (n = 0, 5, 10, and 15 min). LSVs of (c) OER, (d) ORR, and (e) HER for
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and (j) HER for pure C60, SWCNTs, C60-SWCNT15, and RuO2 in 0.5 M H2SO4. Reproduced with
permission [73]. Copyright 2019, American Chemical Society.

5. Application of Carbon Nanotubes in Electrocatalysis
5.1. Doping Effect
5.1.1. Nitrogen Doping

Carbon nanotubes have been widely used in electrocatalysis due to their sufficient
surface area, high conductivity, and well-established surface modification. However, the de-
fects of CNTs, such as aggregation, chemical inertness, and solubility, are not insignificant.
Existing methods, such as introducing defects, hetero-doping, and surface modification,
have been used to modify CNTs. Notably, N-doping of carbon nanotubes (NCNTs)’ surfaces
effectively controls the electronic structure and charge density distribution and generates
more active sites, thus improving chemical reactivity [74]. Several locations accepting nitro-
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gen doping in the carbon structure affect the catalytic activity of nitrogen-doped carbon
materials. The common N doping types mainly include pyridinic N (398.6 EV), pyrrolic N
(400.6 EV), and graphitic N (401.6 EV) (Figure 7a) [75]. Huang et al. [76] successfully devel-
oped NCNTs with fixed defect concentration by low-temperature preheating. They found
that the higher the temperature for nitrogen doping, the higher the graphite N content.
Moreover, combined with characterization, pyridinic N and pyrrolic N were identified as
the active sites for the two-electron ORR pathway, while graphitic N accelerated the four-
electron ORR pathway. The precise nitrogen doping can not only determine the real active
sites of the catalyst but also explore the relationship between structure and properties. Ma
et al. [77] synthesized NCNTs with a high concentration of pyridinic N (62.3% of the total
nitrogen) by pyrolysis. The high concentration of pyridinic N, combined with gas-phase
CO2 electrolysis, was proved to effectively enhance the enrichment of CO2 on the surface of
NCNTs, which promoted the subsequent CO2RR reaction (Figure 7b). Furthermore, based
on the DFT calculations of the CO2 reduction reaction on NCNTs, the author demonstrated
that electron transfer (red arrow in Figure 7c) becomes the rate-determining step (RDS),
which attributes to high pyridinic N concentration.

Nitrogen-doped carbon nanotubes’ wall number and growth mode also affect catalytic
activity. Zhang et al. [78] found that NCNTs with an average wall number of 2.5 had higher
ORR catalytic activity. For this sample, the inner layer provided an effective conductive
path to transfer electrons from the inner layer to the outer layer through the tunneling effect.
Nevertheless, the tunneling effect became weaker with increasing or decreasing the wall
number of NCNTs, leading to the falling catalytic activity of NCNTs, which was further
experimentally validated by others [79,80]. Besides, Yang et al. [81] focused on the active
source of pure SWCNTs and non-metal-doped SWCNTs in the ORR process. They found
that the pyramidalization angle is an excellent descriptor to study ORR activity on nitrogen-
and boron-doped and undoped SWCNTs through machine learning tools, which enables
prediction of the optimal diameter and the best doping type for the SWCNTs surfaces during
the ORR. Li et al. [82] successfully prepared cactus-like NCNTs by directional growth using
layered double hydroxides (LDHs) as catalyst precursors and metal-organic frameworks
(MOFs) particles as carbon and nitrogen sources. Due to the unique hierarchical array
structure, uniform N doping, and low charge transfer resistance, NCNTs yielded high
catalytic activity in ORR and OER. Wu et al. [83] developed Co/Co2P@NCNTs catalysts
with Co/Co2P heterojunction encapsulated in bamboo-like N-doped carbon nanotubes
(Figure 7d,e). The Co/Co2P@NCNTs with the effect of abundant pyridinic N and graphitic
N active sites, and highly ordered NCNTs, significantly enhanced the ORR kinetics and
effectively attenuated the negative effects of high oxidation potential (during the OER
process) on the ORR performance in alkaline electrolyte, showing high ORR activity with
a half-wave potential (E1/2) of 0.87 V (Figure 7f). Meanwhile, the dynamic active state
transformation from the Co/Co2P heterojunctions into Co3+ Oh-containing CoOx(OH)y
active species contributed to the markedly improved OER catalytic activity (Figure 7g,h).

5.1.2. Polyatomic Doping

Carbon nanotubes doped with two or more heteroatoms can also significantly im-
prove the catalytic performance, owing to the existence of doped atoms and the effect of
synergistic coupling on carbon nanotubes. Qu et al. [84] synthesized N,S co-doped carbon
nanotubes (N,S-CNT) by the two-step “graft-and-pyrolyze” method. The N,S-CNT catalysts
with uniform and high concentration of S doping (5.6 at%) displayed superb OER and HER
bifunctional catalytic activities in alkaline electrolytes. Furthermore, secondary S-doping
had a crucial role in forming electrocatalytically active sites and enhancing charge transfer.
Liu et al. [85] demonstrated that Ru@Co/N-CNTs were highly functional for HER in acid
and alkaline electrolytes by anchoring Ru nanoclusters on Co/N-doped carbon nanotubes.
In detail, the as-prepared optimal catalyst showed a remarkable performance with low
overpotentials of 48 and 92 mV at 10 mA cm−2 in alkaline and acidic media, respectively.
The excellent stability and hydrogen production efficiency of Ru@Co/N-CNTs were mainly
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attributed to a large ECSA and high exposure of Ru active sites. Based on the successful
synthesis of B, N co-doped graphene nanosheets (BCN), Hassina Tabassum et al. [86] used
polyethylene glycol (PEG) with different molecular weights as guiding agents to roll BCN
into BCN nanotubes with adjustable sizes and atomic bonds. The synthetic catalyst with a
large specific surface area, abundant active sites, high concentration of pyridinic N, and
numerous B-C, N-C bonds exhibited high ORR and HER bifunctional catalytic activity.
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Figure 7. (a) Nitrogen doping into carbon plane at different locations. Reproduced with permis-
sion [75]. Copyright 2016, Elsevier Ltd. (b) LSV curves for NCNT-NH3, NCNT-Ar, CNT-NH3, and
CNT-Ar in CO2-saturated 0.5 M NaHCO3 aqueous solution at 50 mV s−1. (c) Mechanism of the CO2

reduction reaction on NCNTs. Reproduced with permission [77]. Copyright 2019, American Chemical
Society. (d) Schematic procedure for synthesizing the gram-scale Co/Co2P@NCNTs. (e) TEM images
of the Co/Co2P@NCNTs. (f) ORR polarization plots of the M/M2P@NCNTs (M = Co, Ni, or Fe) and
the N, P-C (rotation rate of 1600 rpm) in an O2-saturated 1.0 M KOH solution. (g) Normalized Co
K-edge XANES spectra of the Co/Co2P@NCNTs before and after the accelerated cycling durability
test, and (h) the corresponding magnitude Fourier transforms of Co K-edge EXAFS oscillations k3χ(k)
(k weight of 3). The dashed vertical lines show the Co3+-O, Co3+ Oh-Co3+ Oh, and Co2+ Td-Co3+ Oh
distances of 1.48, 2.44, and 3.03 Å, respectively. Reproduced with permission [83]. Copyright 2021,
American Chemical Society.

5.2. Carrier Effect

Carbon nanotubes can be composited with monoatomic metals [87], metal oxides [88–90],
and other graphite-derived carbon materials [91], to improve activity and durability [92]. As
supported catalysts, it not only acts as a conductive carrier but also controls the electron distribution
on the surface by utilizing the interaction with the supporting materials.

The beneficial effect of carbon nanotubes as a support has been demonstrated by strength-
ening the in-plane support and electrical conductivity of the composites. Li et al. [93] first
synthesized pomegranate-like MoP@PC-CNTs by simple carbonization and phosphating pro-
cess with POMOFs-CNTs composite as a precursor (Figure 8a,b). The introduction of CNTs
offered more catalytic sites and enhanced long-range conductivity. Benefiting from the car-
rier, the composite displayed a low onset overpotential of 75 mV and a small Tafel slope of
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55.9 mV dec−1 for the HER (Figure 8c,d). Wu et al. [94] prepared an ORR and OER bifunctional
electrocatalyst (Fe2Ni2N/Co@NCNT) with nanoclusters uniformly anchored on nitrogen-doped
carbon nanotubes (Figure 8e,g). Due to the coupling effects in Fe2Ni2N/Co@NCNT, the electron
transfer from the metal atoms (Fe, Ni) to the neighboring N and O atoms was revealed by
the analysis of XAFS (Figure 8f). At the same time, the NCNT accelerated exchange kinetics
of O2−/OH− and provided abundant contact area, strong adhesion, and low aggregation of
Fe2Ni2N/Co nanoclusters. Hou et al. [95] preparedcore–shell nanorods by coating ZnO with
bimetallic zeolitic-imidazolate framework-NiZn (ZIF-NiZn), to obtain porous N-doped carbon
nanotubes stabilized Ni SACs (Ni/NCTs) by a pyrolysis process. Based on EXAFS curves, the
fitting result showed that the coordination number of Ni-N in Ni/NCTs-50 is near to that of
NiPc with Ni-N4 structure (Figure 8h). Due to the porous nanotube structure, high specific
surface area, and atomized Ni-N coordination active sites, Ni/NCTs exhibited superior CO2RR
activity with a CO Faradaic efficiency of nearly 100% over a wide potential range of−0.6 V to
−1.0 V vs. RHE (Figure 8i–k).
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HER Tafel plots. Reproduced with permission [93]. Copyright 2018, Elsevier Ltd. (e) Illustration
of ORR and OER on Fe2Ni2N/Co@NCNT. (f) Co K-edge XANES and spectra of various catalysts
and standard samples, including FePc (Iron (II) phthalocyanine), CoPc (Cobalt (II) phthalocyanine)
and NiPc (Nickle (II) phthalocyanine). (g) LSV curves for ORR and OER of Fe2Ni2N/Co@NCNT in
O2-saturated 1.0 M KOH at a scan rate of 5 mV s−1, with the inset showing ORR (left) and OER (right)
Tafel plots of the Fe2Ni2N/Co@NCNT. Reproduced with permission [94]. Copyright 2019, Elsevier
Ltd. (h) The corresponding EXAFS fitting curves of Ni/NCTs-50. (i) LSV curves, (j) FECO and (k) CO
partial current densities for Ni/NCTs-50, Ni/NCTs-100, Ni/NC and NCTs in CO2-saturated 0.5 M
KHCO3 solution at various applied potentials. Reproduced with permission [95]. Copyright 2020,
Elsevier B.V.

6. Application of Graphene in the Field of Electrocatalysis
6.1. Heteroatom Doping

Due to the advantages of extremely high surface area, high electron mobility, and
variations of graphene doping structures, graphene has broad application prospects in
various fields [96]. However, the inert carbon plane and zero band gap structure of
impurity-free graphene, which exhibits poor electrocatalytic activity, are unsuitable for
electrocatalysis [97]. Considering graphene’s inert structure, heteroatom doping becomes
an essential approach in graphene modification [98]. Graphene doping elements mainly
include N, P, B, and S, which introduce defects, change the electronic structure near the
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doped graphene atoms, and introduce more active sites, thus improving the catalytic
activity [99–101].

6.1.1. Single Atom Doping

N-doping has been the most intensively studied in the graphene doping electrocat-
alytic material. The role of N-doped graphene’s active sites in ORR catalysis is still contro-
versial. Yan et al. [102] performed simulation calculations on pure graphene, graphitic N,
pyridine N, and graphene doped with graphitic N and pyridine N, respectively. The result
indicated that the composite doping of graphitic nitrogen and pyridine nitrogen achieves
charge redistribution, thereby promoting the adsorption of O2. Compared to mono-N-
doping in graphene, binary-N-doped graphene possessed excellent catalytic activity for
the CO2RR due to its stable adsorption of reactants [103]. Wang et al. [104] introduced
several disordered structures through high-concentration KOH etching based on N-doped
graphene. The experiments reveal that the high HER activity came from more active
sites of dual defective graphene-based materials. In addition, many studies demonstrate
that S- P-doping, B- P-doping, and P-doping also enhance the catalytic performance of
graphene [105–108]. For instance, Li et al. [109] employed DFT to explore the ORR activity
and mechanism of heteroatom-doped graphene catalysts with single X-doped graphene
(X = N, P, As, Sb, S). They find that binding energies of *OH (ORR intermediates) on
the catalysts can serve as a descriptor for the ORR activity, which was attributed to the
abundance of electronic states at the Fermi level.

6.1.2. Polyatomic Doping

Compared with single heteroatom doping, polyatomic co-doped graphene is easier
to introduce defects and modification of the electronic structure due to the synergistic
effect between doping atoms, consequently leading to the enhancement of electrocatalytic
activity [110–112]. Liang et al. [113] selected highly active N and S atoms as dopants
to prepare N, S double-doped graphene (N-S-G). The ORR performance of N-S-G was
significantly better than that of S single-doped(S-G) or N single-doped (N-G) catalysts.
Additionally, DFT calculation confirmed that N, S double-doped graphene resulted in
the redistribution of spin and charge density, leading to the enhancement of synergistic
catalytic activity. Among double-doped graphene, the incorporation of metal elements
enhances the electrical conductivity of doped graphene, thus exhibiting efficient catalytic
performance [114–116]. Furthermore, Zhang et al. [117] prepared N, P, and F tri-doped
graphene by a pyrolysis method. The corresponding synergistic effect of the doping atoms
created highly active graphene-based ORR, OER, and HER catalysts.

6.2. Graphene Supported Metal

Because of the high electron transfer [6], advanced pore structure [118], great specific
surface area [119], and easy coupling and synergistic effect with metals [120,121], graphene,
especially doped graphene, has become a very popular candidate as a metal catalyst carrier.

6.2.1. Single Atom Catalysts

Single-atom catalysts (SACs) have attracted extensive attention due to their sufficient
atomic efficiency, high catalytic activity, and excellent selectivity among electrocatalytic ma-
terials. However, single-atom agglomeration without substrate has dramatically impeded
the limited performance [122]. Doped graphene effectively alleviates atom agglomera-
tion and provides a fantastic conductive substrate, enriches loading sites, and enhances
single atom adsorption [123,124]. Zhang et al. [125] employed graphene oxide (GO) as a
precursor to anchor atomic Fe-N4 to nitrogen-doped graphene (Fe/NG) through simple
heat treatment, yielding a catalyst with better CO2RR catalytic activity, high selectivity, and
stability (Figure 9a–c). The isolated Fe-N4 structure is more critical for the reduction of
CO2 to CO, which was confirmed by XAFS (Figure 9d,e). Furthermore, the mechanism of
the CO2 reduction reaction on Fe-N4 moieties embedded in N-doped graphene showed a
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potential promotional effect of nitrogen-doping of graphene (Figure 9f,g). Li et al. [126] also
demonstrated that Fe-N4 has impressive activity for CO2RR. Nitrogen-doped graphene-
supported single Mo atoms (Mo@NG) [127] and single Ni atoms (Ni-NG) [128] have been
confirmed to improve the CO2RR catalytic activity. However, the active sites of Mo@NG
and Ni-NG were not the M-N4 structure but the high dispersion of single metal atoms,
abundant atomic catalytic efficiency, and the combined metal-N effect. Besides, N-doped
graphene-supported single-atom Ni also exhibited unusual OER and ORR activities, which
were attributed to the rich Ni doping, porous structure of N-doped graphene, and Ni, N
co-doping (Figure 9h–k) [129].
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6.2.2. Metals and Metal Oxides

Apart from highly dispersed metal single atoms, metal nanoparticles or metal nan-
oclusters also have particular activity owing to stable geometric structures, metal strain ef-
fect, and lattice defects [125,130–132]. Wang et al. [133] reported an electrocatalyst (Ir-NSG)
with uniformly dispersed and intercalated Ir nanoclusters into N, S co-doped graphene.
The superb performance in HER and OER originated from the Ir site’s electronic state and
coordination environment. N and S doping optimized the adsorption of hydrogen and
oxygen intermediates on the Ir site and accelerated both HER and OER reaction kinetics.
Meanwhile, N, S doped graphene provided a durable carrier and sufficient adsorption
sites for Ir nanoclusters. Huang et al. [134] focused on the combination of metal nanopar-
ticles and graphene, producing dispersed oxidized cobalt nanoparticles (5 nm) onto the
monolayer of single-layer nitrogen-doped graphene (PO-5 nm Co/SL-NG) by a simple
one-pot synthesis strategy. The synergistic effect of proton and electron multiple transfers
in the CO2RR process is attributed to the high surface area, high conductivity, and synergy
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with PO-5 nm Co of SL-NG. Besides the role of catalyst support, graphene can also act as a
protective layer by coating metal nanoparticles [135]. For instance, a single-layer graphene
covering the Cu surface effectively weakened the morphological changes of Cu during the
electrocatalysis process and improved the catalytic stability [136]. In addition, metal oxides
also yield good catalytic efficiency and selectivity due to the oxygen vacancy defects caused
by oxygen introduction [137–140]. Particularly, Zhang et al. [141] deposited ultrasmall
SnO2 nanocrystals on the surface of nitrogen-doped graphene (SnO2/rGO) via an in situ
conversion strategy, which resulted in an enhancement of the conversion efficiency and
selectivity in the CO2RR. The oxygen vacancies in SnO2 nanocrystals minimized severe
agglomeration and poor electrical conductivity.

6.2.3. Other Metal Compounds

Benefits arising from the changes in the electronic structure and coordination environ-
ment caused by non-metallic elements, metal phosphides [142], metal nitrides [143], and
metal sulfides [144] have tremendous implications for electrocatalysis applications [145,146].
Guo et al. [147] synthesized (N, S)-RGO@CoN by combining spray drying and atomic layer
deposition, producing a catalyst that showed efficient and durable OER performance in the
neutral electrolyte. The improved OER performance was related to the synergistic effects
of short charge transfer paths, abundant active sites, and stable chemical coupling with
CoN provided by the (N, S)-RGO substrate. At the same time, the unique 3D structure of
P, S double-doped rGO(PSG) had also been confirmed to be beneficial for exposing more
active sites and promoting the mass transfer of the electrolyte to electroactive sites on the
electrocatalyst [148].

6.3. Graphene Quantum Dots

As the carbon material family’s new member, graphene quantum dots (GQDs) are a 0D
graphene material, which is characterized by 1 or 2 layers of graphitic planes with lateral
dimensions typically <10 nm [149]. Compared with 2D graphene, the GQDs are currently
explored as potential electrocatalysis due to unique advantages such as excellent dispersion,
high surface area, facile chemical modification, abundant active sites, and surface functional
groups [150–152]. When the size of the carrier is reduced to the GQDs level, the single
atom on the catalyst surface is isolated from each other, which can impressively improve
that single atomic load. For example, Xia et al. [153] used GQDs as intermediate carbon
supports to increase the loading of Ni atoms, thereby improving the catalytic activity of
the CO2RR reaction (Figure 10a,b). Simultaneously, Tran Van Tam et al. [154] focused on
doped graphene quantum dots (BGQDs) with higher B doping content (4.25%), which
improved CO2RR catalytic activity compared to GQDs. Compared with N single-doped
GQDs, the N and S Co-doped GQDs changed the N doping state due to the introduction of
S, resulting in the generation of asymmetric spin and the increase of charge density, thus
showing improved activity [155]. In addition, heterojunctions have become an emerging
frontier trend in electrocatalysis due to their synergistic effects, strain effects, and electronic
interactions [156]. Gong et al. [157] reported a strategy to compound 2D microsheets
with a large number of 0D/2D van der Waals heterojunctions (vdWHs) on the surface
(Figure 10c,d). Using amphiphilic GQDs as intercalators and dispersants, the N and S
Co-doped GQDs formed van der Waals heterojunctions with 2D graphene sheets. The
GQD/MoS2 van der Waals heterojunctions(GQD/MoS2 vdWHs) significantly reduced HER
overpotential and improved the electrode’s long-term stability because of the synergistic
coupling effect with the OD/2D heterojunction (Figure 10e,f) [158].

6.4. Other Graphene-Based Composites

Given the strong van der Waals interactions in the preparation process, graphene
is prone to aggregation and stacking, which reduces active sites and mass transport rate
during the catalytic process, which seriously affects its electrocatalytic activity [159–161]. To
solve these issues, several feasible methods have been reported for designing 3D structure
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nanocomposites composed of carbon nanotubes [162], 3D graphite foams [163,164], and
graphene. Yang et al. [165] assembled carbon nanotubes and graphene into N, P co-doped
hybrid nanosphere aerosols (N, P-CGHNs), which effectively prevented graphene stacking.
The hybrid structure could form efficient charge transfer pathways that synergistically
improved the ORR reaction electron transfer efficiency. Moreover, Mohammad Tavakkoli
et al. [166] prepared N-Co-Mo-GF/CNT loaded simultaneously with single atoms of N, Co,
and Mo by vapor deposition method using the graphene nanosheet (GF)-carbon nanotube
(CNT) hybrid structure as the carrier. This GF/CNT, with high specific surface area and
mesoporous structure, promoted mass transport during the catalytic reaction, thereby
enhancing the catalytic activity of the ORR and OER reactions. However, in contrast to
other hybrid designs of graphene and carbon nanotubes, Lai et al. [167] constructed N, S co-
doped carbon nanotube/graphene nanosheet composites (N−S−CNTs) with a unique 3D
structure, yielding high electrical conductivity, uniform dispersion of Ni3Fe, and exposure
of active electrocatalytic sites.

Molecules 2022, 27, x FOR PEER REVIEW 16 of 25 
 

 

 
Figure 10. (a) The steady-state current densities and the corresponding Faradaic efficiencies of CO 
(FECO) of ~7.5 wt% Ni-N-C and ~15 wt% Ni-N-C catalyst in an anion membrane electrode assembly 
(MEA). (b) The corresponding CO partial current densities (jCO) of ~7.5 wt% Ni-N-C and ~15 wt% 
Ni-N-C catalyst at different applied cell voltages. Reproduced with permission [153]. Copyright 
2021, Nature Publishing Group. (c) Schematic illustration of GQD-assisted exfoliation of MoS2, h-
BN, WS2 and g-C3N4 microsheets. (d) HRTEM images of GQD/MoS2. (e) Polarization curves of bulk 
MoS2. (f) Stability test of GQD/MoS2 and Pt/C. Reproduced with permission [158]. Copyright 2021, 
Elsevier Ltd. 

6.4. Other Graphene-Based Composites 
Given the strong van der Waals interactions in the preparation process, graphene is 

prone to aggregation and stacking, which reduces active sites and mass transport rate 
during the catalytic process, which seriously affects its electrocatalytic activity [159–161]. 
To solve these issues, several feasible methods have been reported for designing 3D struc-
ture nanocomposites composed of carbon nanotubes [162], 3D graphite foams [163,164], 
and graphene. Yang et al. [165] assembled carbon nanotubes and graphene into N, P co-
doped hybrid nanosphere aerosols (N, P-CGHNs), which effectively prevented graphene 
stacking. The hybrid structure could form efficient charge transfer pathways that syner-
gistically improved the ORR reaction electron transfer efficiency. Moreover, Mohammad 
Tavakkoli et al. [166] prepared N-Co-Mo-GF/CNT loaded simultaneously with single at-
oms of N, Co, and Mo by vapor deposition method using the graphene nanosheet (GF)-
carbon nanotube (CNT) hybrid structure as the carrier. This GF/CNT, with high specific 
surface area and mesoporous structure, promoted mass transport during the catalytic re-
action, thereby enhancing the catalytic activity of the ORR and OER reactions. However, 

Figure 10. (a) The steady-state current densities and the corresponding Faradaic efficiencies of CO
(FECO) of ~7.5 wt% Ni-N-C and ~15 wt% Ni-N-C catalyst in an anion membrane electrode assembly
(MEA). (b) The corresponding CO partial current densities (jCO) of ~7.5 wt% Ni-N-C and ~15 wt%
Ni-N-C catalyst at different applied cell voltages. Reproduced with permission [153]. Copyright
2021, Nature Publishing Group. (c) Schematic illustration of GQD-assisted exfoliation of MoS2, h-BN,
WS2 and g-C3N4 microsheets. (d) HRTEM images of GQD/MoS2. (e) Polarization curves of bulk
MoS2. (f) Stability test of GQD/MoS2 and Pt/C. Reproduced with permission [158]. Copyright 2021,
Elsevier Ltd.



Molecules 2022, 27, 8644 16 of 24

7. Conclusions and Perspective

The recent advances in the design of electrocatalysts for ORR, OER, HER, and CO2RR
based on graphite-derived materials have been summarized in this manuscript, and the
performance-related information is presented in Table 1. There are generally two strategies
to improve the electrocatalytic activity: (i) increasing the intrinsic activity of catalysts, and
(ii) increasing the number of exposed active sites. This paper discusses structural regulation
strategies and carrier function of graphite-derived materials for the above-mentioned
electrochemical reactions in terms of: (1) hetero doping modification, (2) defect control,
(3) heterojunction introduction, and (4) uniformity of metal active electrocatalyst dispersion.

Table 1. Summary of Catalytic performance of discussed catalysts in the main text.

Catalysts Strategies Catalytic Performance/vs. RHE Ref.

Cu/Cu2O-MFC60
Loaded
Defect

ORR 0.86 V@Eonset,
−5.183 mA cm−2@diffusion-limiting current density [61]

Fe-MFC60
Doped
Loaded ORR 0.85 V@Eonset, 0.78 V@E1/2 [62]

ANG co-doped ORR 0.99 V@Eonset, 0.85 V@E1/2, 4.5 mA cm−2 Current density at 0.8 V [114]

CPS@GN,S,P
Doped
Loaded

ORR 0.8 V@E1/2,
29 mV dec−1@ Tafel slope [142]

N,P-CGHNs Doped
Loaded ORR 0.94 V@Eonset, 0.82 V@E1/2 [165]

10% F/BCN Doped
Loaded

ORR 0.92 V@Eonset, 0.79 V@E1/2, 12 h at 0.75 V@ Stability
OER 390 mV@η10,

79 mV dec−1@ Tafel slope
HER 0.042 V@Eonset,

87 mV dec−1@ Tafel slope

[71]

Co/Co2P@NCNTs Doped
Loaded

ORR 0.90 V@E1/2
OER 480 mV@η50, 1.58 V@Ej=10

[83]

np-graphene co-doped
Defect

ORR 96% current retention
after a long-term 50 h test

OER 1.45 V@Eonset, 270 mV@η10,
59 mV dec−1@ Tafel slope

[129]

S-Ni3FeN/NSG co-doped

ORR 0.878 V@E1/2,
40 mV dec−1@ Tafel slope

OER 260 mV@η10,
76 mV dec−1@ Tafel slope

[143]

Ni3Fe/N-S-CNTs co-doped
Loaded

ORR 0.877 V@E1/2, 353 mV@η10,
43.2 mV dec−1@ Tafel slope

OER 215 mV@η10,
44.1 mV dec−1@ Tafel slope

[167]

N,S-CNT co-doped

OER 1.59 V@Ej=10,
56 mV dec−1@ Tafel slope

HER −0.4 V at 5 mA cm−2,
133 mV dec−1@ Tafel slope

[84]

Co2P@N,P-PCN/CNTs co-doped
Loaded

OER 280 mV@η10,
72 mV dec−1@ Tafel slope

HER 154 mV@η10,
52 mV dec−1@ Tafel slope

[88]

Ir-NSG co-doped
Loaded

OER 307 mV@η10,
74.2 mV dec−1@ Tafel slope

HER 22 mV@η10,
21.2 mV dec−1@ Tafel slope

[133]

Ru@Co/N-CNTs co-doped
Loaded

HER in 1 M KOH 48 mV@η10,
33 mV dec−1@ Tafel slope,
0.25 s−1 at -0.05 V @ TOF

HER in 0.5 M H2SO4 92 mV@η10,
45 mV dec−1@ Tafel slope

[85]

R-PtOx/CNT Doped
Loaded

HER 19.4 mV@η10,
34.6 mV dec−1@ Tafel slope [89]
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Table 1. Cont.

Catalysts Strategies Catalytic Performance/vs. RHE Ref.

Ni/NiS/P,N,S-rGO co-doped
Defect

HER 155 mV@η10,
135 mV dec−1@ Tafel slope [144]

GQD/MoS2

van der
Waals hetero-

junction

HER 160 mV@η10,
56.9 mV dec−1@ Tafel slope [158]

NCNTs Rich-doped CO2RR > 94.5%@FE,
20.2 mA cm−2at -(0.6–0.9 V) [77]

Ni/NCTs-50 Doped
Loaded

CO2RR 9366 h−1@TOF, 98%@FE,
34.3 mA cm−2 at −1.0 V

[95]

Fe/NG-750 Doped
Loaded CO2RR ≈ 80%@FE [125]

PO-5 nm
-Co/SL-NG

Doped
Loaded

CO2RR(versus SCE) 380 mVη10,
71.4%@FE at −0.90 V [134]

SnO2@N-rGO Doped
Loaded CO2RR 21.3 mA cm−2at −0.8 V, 89%@FE [141]

15 wt% Ni-N-C
GQD loaded

high
single-atom

CO2RR 122 mA cm−2 @CO partial current [153]

Based on the review of the literature presented in the current manuscript, the following
are the recommendations proposed:

(1) Deeper insights into the electrocatalytic active sites of modified graphite-derives are
required, especially doped graphite-derived materials. Advanced operando charac-
terization methods are also necessary to deeply explore the effect of doping on the
electronic distribution of active sites. By combining theoretical DFT simulations and
various advanced in situ characterization methods, including in situ X-ray diffraction
(XRD), X-ray absorption spectra (XAS), Raman, and Fourier-transform infrared (FTIR),
the role of doping can be well understood.

(2) Systematic understanding of the carrier role of graphite-derived materials. Due to the
large specific surface area, easily regulated structures, and abundant active sites, the
fullerenes, carbon nanotubes, and graphene can act as active catalysts and catalyst
support for other active materials. Furthermore, the interfacial behavior between the
carrier and the active catalyst should be paid more attention.

(3) Catalyst activity measurement standards should be established to facilitate the com-
parison of the activity of electrocatalysts. Although researchers have developed many
electrocatalysts over a few decades, it is still challenging to compare their perfor-
mances due to the nonstandardized measurements (see Table 1). Therefore, the reports
must establish a standard to appropriately and accurately compare electrocatalysts
for ORR, OER, HER, and CO2RR.
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