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Abstract: The chemical insecticide flonicamid is widely used to control aphids on crops. Differences
among crops make the universality of detection methods a particularly important consideration.
The aim of this study was to establish a universal, sensitive, accurate and efficient method for the
determination of flonicamid residues in peach, cucumber, cabbage and cotton. QuEChERS pretreat-
ment was combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry
(UHPLC-MS/MS). A satisfactory recovery rate of 84.3–99.3% was achieved at three spiking levels,
and the relative standard deviation (RSD) was 0.41–5.95%. The limit of quantification (LOQ) of
flonicamid in the four matrices was 0.01 mg/kg. The residue and dissipation kinetics of flonicamid
in four types of crops in various locations were determined by using the optimized method. The
results showed that flonicamid had a high dissipation rate in the four different types of crops and a
half-life in the different matrices and locations of 2.28–9.74 days. The terminal residue of flonicamid
was lower than the maximum residue limit (MRL). The risk quotient (RQ) of flonicamid was 4.4%,
which is significantly lower than 100%. This result shows that the dietary risk presented by using
flonicamid at the maximum recommended dose is low and acceptable. The comprehensive long-term
dietary risk assessment of flonicamid performed in this study provides a reference for the protection
of consumer health and safe insecticide use.

Keywords: flonicamid; QuEChERS; dissipation; final residues; dietary risk assessment

1. Introduction

Cucumber (Cucumis sativus L.) belongs to the Cucurbitaceae family, and cabbage
(Brassica oleracea L.) belongs to the Cruciferae family. Both of these vegetables are major
products [1,2] that are widely distributed throughout China. Peach (Prunus persica L.)
belongs to the Rosaceae family and accounts for a high proportion of fruit production
in China [3]. Cotton (Gossypium spp.), belonging to the Malvaceae family, is one of the
most important crops in the world economically and plays an important role in China’s
economic development [4]. However, infestation by aphids significantly affects crop yield
and quality, which severely limits the healthy development of related industries. Aphids
have the characteristics of rapid reproduction and a short development cycle and have been
treated with frequent pesticide application, resulting in severe aphid resistance to pesticides
and difficulty in controlling these pests. Pyrethroid and neonicotinoid insecticides are
commonly used to control aphids, but are also harmful to beneficial insects. Flonicamid
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is safe for humans, has low toxicity to fish and natural enemies, and exhibits no cross-
resistance with pyrethroid and neonicotinoid insecticides. However, flonicamid poses
certain risks to honey bees, so it should be used carefully when applied or sprayed in
vegetable protection areas pollinated by honey bees [5]. Therefore, the use of flonicamid
has become a major component of the control of crop aphids.

Flonicamid is a novel pyridine amide insecticide that exerts its effect by hindering
pest sucking. Pests stop sucking soon after ingesting the pesticide and finally die of
starvation [6]. Flonicamid has a high efficiency, low toxicity, strong internal absorption and
long duration. The unique action mechanism of flonicamid enables the control of aphids
and other piercing-sucking pests in vegetables, fruit, tea, grain and oil crops [7–9].

Pesticide use ensures crop yield and quality, but is associated with negative health
risks [10,11]. More attention should be given to the problem of pesticide residues. To ensure
safety and protect the environment, it is necessary to assess the residual behavior, field
dynamic dissipation behavior and dietary risk of flonicamid in various crops. However,
no studies have been performed to simultaneously assess the detection methods, dynamic
dissipation behavior and dietary risk of flonicamid in vegetables, fruit, grain and oil
crops. There are a large number of reports on analytical methods for flonicamid detection.
Flonicamid has been determined in hops by acetonitrile extraction, C18 and solid-phase-
extraction column purification, and liquid-liquid extraction [12]. The average recovery for
flonicamid extraction from cucumber and apple using phosphate buffer and ethyl acetate
can reach 82.9–104.1% [13]. Addition of sodium citrate and disodium citrate to a salting-out
agent resulted in an average recovery of fipronamide from pepper of 78.4–109.3% [14]. The
quantity of flonicamid in pepper was detected by UHPLC-Orbitrap-MS with an average
recovery of 84–98% [15]. Flonicamid in cucumber was detected by acetonitrile extraction
and C18 purification using acetonitrile and water as the mobile phase [16]. However, the
abovementioned methods are complex and time-consuming. A simpler and more univer-
sal detection method was developed in this study: sample pretreatment and detection
methods were optimized, resulting in the efficient and accurate detection of flonicamid
in four different crops. The residue analysis and chronic risk assessment of flonicamid in
apple, cabbage, honeysuckle and paprika have been reported in the literature [9,15,17,18].
However, as far as we know, there is no article discussing the dissipation rules on peaches,
cucumbers, cabbage and cotton at the same time, which is of great significance for assessing
their potential dietary intake hazards to consumers and ensuring food safety.

In this study, UHPLC-MS/MS with optimized QuEChERS sample pretreatment tech-
nology was used to simultaneously determine the concentrations of flonicamid in four
different crops. This method is generally applicable to crops with high contents of sugar,
water, pigment and oil. The established method was used to spray a 20% flonicamid sus-
pension (SC) on four matrices in various regions, and the terminal residue and dissipation
dynamics of flonicamid in the four matrices were evaluated. Finally, field experiments
were performed, and the results were used to assess the long-term intake risk assessment
of flonicamid to consumers. This study can provide data support for the establishment of
guidelines for the safe use of flonicamid, as well as maximum residue limit standards. This
data can also provide support and assistance for protecting consumer health and evaluating
the quality and safety of agricultural production.

2. Materials and Methods
2.1. Chemicals and Reagents

A 96% flonicamid solution was provided by Hebei Xingbai Agricultural Technology
Co., Ltd. (Hebei, China). Acetonitrile (UHPLC grade) and methyl alcohol (UHPLC grade)
were purchased from Merck (KGaA, Darmstadt, Germany). Formic acid (UHPLC grade)
was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).
Sodium chloride (NaCl) (analytical grade) was purchased from Shanghai Guangnuo Chem-
ical Technology Co., Ltd. (Shanghai, China). Anhydrous magnesium sulfate (MgSO4) was
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purchased from Tianjin Kemeiou Chemical Reagent Co., Ltd. (Tianjin, China). PSA and C18
were purchased from Tianjin Agela Technologies Co., Ltd. (Tianjin, China).

2.2. Sample Extraction and Purification

All samples were pretreated using the QuEChERS method [19]. Then, 20 mL of
acetonitrile were added to a homogenate of cucumber, cabbage, peach and cottonseed, and
the resulting mixture was shaken for 5 min (the cottonseed samples were soaked in 10 mL
of deionized water for 30 min in advance). NaCl and MgSO4 were added to the solution,
and the mixture was shaken for 3 min. The mixture was centrifuged at 4000 r/min for
2 min, and 1.5 mL of the supernatant were prepared for purification.

Various quantities of PSA and MgSO4 were placed in a 2 mL centrifuge tube (30 mg
of C18 were added for the cottonseed samples). The previously withdrawn supernatant
(1.5 mL) was placed in a 2 mL centrifuge tube. The sample was shaken for 5 min and
then centrifuged at 10,000 r/min for 2 min. The supernatant was diluted five times. The
sample was passed through a 0.22 µm membrane filter. The membrane pore size was
sufficiently small to filter out impurities other than the target compound and thereby
reduce the influence of other matrices on the results. The weights of the agents used for
homogenization, salting-out and purification by various treatments are shown in Table S1.

2.3. UHPLC-MS/MS Parameters

UHPLC-MS/MS analysis of flonicamid was performed using a Waters ACQUITY
UHPLC®BEH C18 column (2.1 mm × 50 mm; i.d., 1.7 µm) equipped with an electrospray
ionization (ESI) source. The flow rate was 0.2 mL/min, and the injection volume was 1 µL.
Formic acid (0.05%) in deionized water and methanol were used for gradient elution. The
gradient elution parameters are listed in Table S2. Reliable and fast separation of flonicamid
was achieved under the optimized UHPLC conditions. Multiple reaction monitoring
(MRM) was utilized to quantify and selectively detect the pesticide in a variety of crops.
MS/MS was carried out using an electrospray ionization source in negative ion mode.

2.4. Preparation of Stock Solutions and Generation of Standard Curves

The 96% flonicamid solution was diluted with acetonitrile to prepare 1000 mg/L
standard stock solutions, which were stored at −20 ◦C until use.

The sample matrices were treated with solvent standard solutions and matrix standard
solutions at concentrations of 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005 and 0.001 mg/L; the resulting
mixtures were passed through a 0.22-µm membrane filter in preparation for UHPLC-
MS/MS detection.

2.5. The Addition and Reclamation Test

Flonicamid standard solutions of three concentrations were added to blank samples with
five replicates per level. The addition concentrations of flonicamid in the matrix were 0.01, 1
and 5 mg/kg; the addition recovery and relative standard deviation were determined.

2.6. Method Validation

A guidance document for the validation of analytical methods and quality control
procedures for pesticide residues in food and feed was referred to in this study [20]. To
verify the feasibility of the proposed method, the linearity, matrix effect (ME), accuracy,
precision and limit of quantification (LOQ) of the method were determined. To evaluate the
accuracy and precision of the method, flonicamid standard solutions at three concentrations
were added to blank samples of the four crops. Five replicates were used for each treatment.
The addition concentrations were 0.01, 1 and 5 mg/kg (the addition concentrations for the
cottonseed blank sample were 0.01, 1 and 3 mg/kg), and the recovery rate and relative
standard deviation (RSD) were calculated to determine the best combination of purifying
agents. The sensitivity of the method was evaluated in terms of the LOD and LOQ. The
LOQ of the proposed method was defined as the lowest spiked concentration quantification.
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As co-extracts formed during the pretreatment process affect the accuracy of the
results, it is necessary to calculate and exclude the matrix effect. The ME was calculated
from the slopes of the solvent calibration curve and matrix-matched calibration curve [21].
The calculation formula is:

ME/% = [(kmatrix − ksolvent)/ksolvent] × 100

where is the slope of the solvent calibration curve and is the slope of the matrix-matched
calibration curve. If |ME| is less than 10%, there is no discernible matrix effect. If |ME| is
greater than 10%, there is a clear matrix strengthening or weakening effect.

2.7. Field Trials

Field experiments were performed consisting of residual dissipation experiments
and terminal residue experiments. Terminal residue experiments were carried out on
flonicamid in peaches in Inner Mongolia, Shanxi, Beijing, Shandong, Henan, Jiangsu,
Hunan and Guizhou. Residual dissipation experiments were carried out on peaches in
Shanxi, Beijing, Shandong and Henan. Table S3 is a list of the sites, crop varieties, test types
and planting methods of the four crops used in the experiments on residual dissipation and
terminal residues. Aphids are the most registered control targets of flonicamid. Therefore,
we selected common aphid damage targets and registered crops for the residue experiment.

The terminal residue experiment was performed on one treatment plot and one control
plot. The area of each plot was not less than 50 m2. The treatment and control plots were
set up in adjacent areas with isolation areas between the plots. The residual dissipation
and terminal residue experiments were performed on the same plots. Four regions on
which the residue dissipation test experiments were performed were selected to carry out
terminal residue experiments.

The recommended maximum dose was used as the application dose. The entire plant
was sprayed once before the occurrence of young larvae of aphids or at the initial peak
stage. Samples were collected at fixed intervals after the last application. Three samples
were collected for each treatment. During the first and last sample collections, samples
from the control plot were collected at the same time for dynamic analysis of the residual
dissipation experiment. Samples were collected two days after application for use in the
terminal residue experiment. All the samples were maintained at −20 ◦C for testing. The
application concentration of flonicamid for various crops was the recommended maximum
dose, and samples for the residual dissipation and terminal residue experiments were
collected on days set based on a safety interval.

2.8. Dietary Risk Assessment

The national estimated daily intake (NEDI, mg/kg/day) and risk quotient (RQ) for
the long-term intake risk were calculated using the following formulas [22,23]:

NEDI = STMRi × Fi

RQ (%) = NEDI/ADI × 100%

STMRi refers to the median concentration (mg/L) of the pesticide determined in a
standard residue experiment on a food. Fi (kg/day) represents the average daily intake of
special farm food for the general population in China, which is considered in conjunction
with pesticide registration in China and the per capita dietary structure of Chinese residents.
The recommended daily intake (0.192 mg/kg/day) is the acceptable daily intake of pesticide
residues in China [24]. ADI is the acceptable daily intake of pesticide residues.

The higher the RQ is, the higher the pesticide residue is. An RQ > 100% indicates that
the evaluated food presents an unacceptable health risk to consumers [25–27].
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3. Results and Discussion
3.1. Optimization of UHPLC-MS/MS Conditions

It is very important to screen ionization conditions and chromatographic separation
according to target analytes to improve the sensitivity and accuracy of analysis [28]. A
point-spray positive ionization source (ESI+) mode was used for ionization scanning of
flonicamid. Scanning was performed in multiple reaction detection mode. The parameters
for the precursor ions and daughter ions were manually adjusted. Two characteristic ions
with significant and stable responses were selected as sub ions. The collision energy of
the characteristic ions was optimized. The determined mass spectrometry parameters are
shown in Table 1.

Table 1. Collection parameters of the MRM of flonicamid.

Pesticide Retention Time (min) Precursor Ion (m/z) Daughter Ion (m/z) RF (V) CE (V)

Flonicamid 1.8 230.1 203.0
174.1 116 16.37

17.17

An optimal mobile phase can considerably improve the peak shape in the chro-
matogram and the retention behavior of compounds in liquid chromatography systems.
In this study, the gradient elution method was used to determine the elution efficiency
of a 0.05% formic acid in the aqueous phase. The gradient elution procedure produces
an enhanced peak shape in the chromatogram to improve the analysis efficiency. The
largest flonicamid response was obtained using a mobile phase of 0.05% formic acid in
the aqueous phase. This result showed that a low concentration of formic acid promoted
the ionization of flonicamid. When 0.05% formic acid in water was used as the mobile
phase system, the separation efficiency of flonicamid was high, and an ideal detection effect
was achieved. A stable and strong signal response was detected within 6 min, with no
discernible endogenous interference peaks. Therefore, this method has the advantages of
high efficiency and speed.

3.2. Optimization of Sample Pretreatment

Acetonitrile is a general extraction solvent that is widely used in residue detection
and has a high recovery rate for most pesticides [29]. Therefore, acetonitrile was used as
the extraction reagent to maximize the extraction of residual pesticides in the matrix and
minimize interferences. QuEChERS is commonly used as a pretreatment method because
of simple, rapid operation and low cost [30–32]. In the QuEChERS sample pretreatment
method, the extracted pesticide must be further purified to remove interferences from other
extracts to increase the signal-to-noise ratio. (S/N) [33]. However, different combinations
of purification materials need to be used for various crop types to optimize purification.
As peach has a high sugar content, cucumber has a high pigment content, cucumber and
cabbage have high water contents, and cottonseed has a high oil content, it is necessary
to develop a general sample pretreatment method. PSA and C18 are the most commonly
used solid adsorbents. PSA mainly removes polar impurities, such as organic acids, metal
ions, fatty acids and sugars. C18 mainly removes nonpolar matrices, such as fats and
sterols [34–36]. An optimal purification combination was selected according to the charac-
teristics of the various purification materials used and test crops. Various combinations and
quantities of purification materials were screened for various crops (vegetables: cucumber
and cabbage; fruit: peach; grain and oil group: cotton). As cotton is rich in nonpolar
matrices, such as sterols, the target compounds were purified by C18. The purification
efficiency was evaluated in terms of the recovery rate. The highest recovery obtained was
70–120%. A 0.22-µm organic membrane filter was selected.

The recovery rates obtained by various purification combinations are shown in Figure 1.
The recovery ranges obtained using various purification combinations (150 mg PSA + 50 mg
MgSO4, 100 mg PSA + 100 mg MgSO4, and 50 mg PSA + 150 mg MgSO4) were 62.7–99.3%.
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Figure 1 shows that the quantities of PSA and MgSO4 used considerably impacted the recov-
ery of flonicamid in the four matrices. The recoveries of 50 mg PSA and 150 mg MgSO4 in
peach, cucumber, cabbage and cottonseed were 90%, 98.8%, 99.3% and 91.2%, respectively.
These recovery rates were significantly higher than those obtained using other purification
combinations. The results showed that the optimal purification efficiency was obtained using
a combination of 50 mg PSA and 150 mg MgSO4. In conclusion, the optimal purifier combina-
tion for flonicamid in the peach, cucumber and cabbage samples was 50 mg PSA + 150 mg
MgSO4. The optimal purifier combination for flonicamid in the cottonseed samples was
50 mg PSA + 150 mg MgSO4 + 30 mg C18.
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3.3. Method Validation

A simple and convenient UHPLC-MS/MS method was established for the determi-
nation of flonicamid residues in vegetables, fruits, grain and oil crops. The validation
parameters of the analytical method included the linearity, matrix effect, limit of quan-
titation, precision and accuracy. The linearity was evaluated in terms of the correlation
coefficient (R2) between the calibration curve of flonicamid and the matrix-matched calibra-
tion curve. The linear range is within the acceptable standard for R2 ≥ 0.995 [37]. Table 2
shows the standard curve obtained using 6 data points. The R2 values for the standard
curves of flonicamid solutions in peach, cucumber, cabbage and cotton were 1.000, 1.000,
0.999 and 0.999, respectively. The R2 of the standard curve of the flonicamid solution
and the matrix-matched standard curve were all greater than 0.995 for the four crops,
indicating an excellent linear relationship. The matrix effect (ME) refers to the influence
of matrices other than the target compound on the response value of the target [38]. The
MEs of flonicamid in peach, cucumber, cabbage and cotton were 1.07, 0.98, 0.98 and 0.98,
respectively. The MEs of flonicamid in the four crops ranged from 0.98 to 1.07. There was
no discernible matrix effect. Therefore, other matrices had a negligible influence on the
response value of the target compound. The limit of quantitation of flonicamid in the four
crops was 0.01 mg/kg. The accuracy and precision of the method were verified using
the recovery test and relative standard deviation (RSD). Table 3 and Figure 2 shows the
recovery rates of flonicamid in peach, cucumber, cabbage and cottonseed obtained using
the optimal purifier combination. The recovery ranges of flonicamid in cucumber, cabbage,
peach and cottonseed for the three spiking levels were 84.3–90.2%, 96.7–98.8%, 98.2–99.3%
and 85.0–91.2%, respectively, and the corresponding RSD ranges were 1.6–2.6%, 0.41–5.95%,
1.07–4.12% and 1.6–4.6%. Thus, high recoveries of flonicamid at three spiking levels were
obtained using the proposed method. The results show that the proposed method has good
accuracy and precision. The evaluation of the linearity, matrix effect, limit of quantitation,
precision and accuracy of the method shows that the proposed method can be used for
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the quantitative analysis of flonicamid in various crop samples. This method is suitable
for the quantitative analysis of pesticide residues in vegetables, fruits, grain and oil crops.
The method reduces the quantity of organic solvent used and improves environmental
safety compared to conventional methods. The method has a high detection efficiency
and a low cost. The method also has the advantages of high reliability, good stability and
high sensitivity.

Table 2. Linear regression equations, determination coefficients, matrix effects and LOQs of flonicamid.

Analyte Matrix Me Linear Regression Equation R2 LOQ (mg/kg)

Flonicamid

Solvent
1.07

y = 2,057,469.1x − 2725.1 0.999
0.01Peach y = 2,198,889.5x − 983.8 1.000

Solvent 0.98 y = 6,267,384.0x − 5559.5 1.000 0.01
Cucumber y = 6,159,848.6x − 397.5 1.000

Solvent 0.98 y = 11,194,433.4x − 26,234.8 0.999 0.01
Cabbage y = 10,975,030.1x − 17,906.0 0.999
Solvent 0.98 y = 9,414,632.4x − 8540.8 0.999 0.01

Cottonseed y = 9,262,984.6x − 7830.6 0.999

Table 3. Recoveries and RSDs of flonicamid in different crops (n = 5).

Pesticide Crop

Spiked Level/(mg/kg)

0.01 1 5 (3 *)

Recovery (%) RSD (%) Recovery (%) RSD (%) Recovery (%) RSD (%)

Flonicamid

Peach 84.3 2.6 90.0 1.6 90.2 2.3
Cucumber 98.0 5.95 96.7 0.41 98.8 4.31
Cabbage 98.2 4.12 98.9 3.48 99.3 1.07

Cottonseed 91.2 3.1 85.0 4.6 89.0 1.6

The band * is the spiked level of flonicamid in cottonseed.
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3.4. Dissipation and Terminal Residues of Flonicamid in Four Crops

The dissipation dynamics of flonicamid in four various crops in different regions
were determined. Figure 3 shows curves for the dissipation dynamics, dissipation kinetics
and flonicamid half-life. Figure 3 shows that the dissipation of flonicamid in the four
crops follows first-order kinetics. The half-life ranges of flonicamid in peach, cucumber,
cabbage and cotton are 3.44–7.63 days, 2.28–9.74 days, 3.30–8.82 days and 2.41–5.41 days,
respectively. The half-life of flonicamid in the same crop is different for various regions.
The volatilization and photolysis of pesticides caused by light and high temperature,
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scouring caused by rain and the physical and chemical properties of pesticides are all
important factors affecting pesticide residues in plants [29]. The curve for the dissipation
dynamics of flonicamid in cabbage is shown in Figure 3C. The half-life of flonicamid in
cabbage in Guangdong is only 3.30 days, and the half-life of flonicamid in cabbage in
Beijing is 8.82 days. The temperature, light and other environmental conditions in the two
regions are quite different. The half-life of flonicamid in cabbage varies considerably across
regions. The half-life and dissipation rate depend strongly on the regional location. The
lower the latitude is, the shorter the half-life and the faster the dissipation rate are. The
dissipation dynamics and half-life of flonicamid in other crops exhibits a similar trend.
Cabbage is planted on land in summer. The temperature is high during the planting and
growing period. After pesticide application, light, temperature and precipitation affect the
dissipation of pesticides. These considerations also explain the experimental results for the
dissipation dynamics and half-lives. The high dissipation rate of flonicamid in the four
crops indicates a low likelihood of food safety problems due to pesticide residues in crops.
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Table 4 shows the terminal residual quantity of flonicamid in the four crops in various
regions. The experiment was performed using the recommended dosage and safety interval.
At the first harvest, the ranges for the final residual quantity of flonicamid in peach, cu-
cumber, cabbage and cotton were 0.01–0.13 mg/kg, 0.0158–0.134 mg/kg, 0.01–0.286 mg/kg
and 0.01–0.246 mg/kg, respectively. At the second harvest, the ranges for the final residual
quantity of flonicamid in peach, cucumber, cabbage and cotton were 0.01–0.022 mg/kg,
0.01–0.108 mg/kg, 0.01–0.129 mg/kg and 0.01–0.129 mg/kg, respectively. The final residues
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of flonicamid in the four crops in various regions were all within the maximum residue
limit (MRL). Table 4 shows the terminal residues of flonicamid in the various crops in
the tested areas arranged in ascending order. At the two harvests, the supervised trial
median residue (STMR) of flonicamid in the four crops was at a low level. At the first
harvest, the highest residue (HR) of flonicamid in peach, cucumber, cabbage and cotton
was 0.130 mg/kg, 0.134 mg/kg, 0.286 mg/kg and 0.246 mg/kg, respectively. At the second
harvest, the HR of flonicamid in peach, cucumber, cabbage and cotton was 0.022 mg/kg,
0.108 mg/kg, 0.129 mg/kg and 0.129 mg/kg, respectively. The HR was low for both
harvests and considerably lower for the second harvest than for the first harvest, which
indicated a low potential risk to consumers presented by flonicamid use in the four crops.
The results showed that flonicamid can be used in vegetables, fruit, grain and oil crops
according to the recommended dosage without leaving a residue exceeding the standard.
These results were used for a dietary risk assessment of the four crops.

Table 4. Terminal residues of flonicamid in four crops.

Test Site Application
Dose

Application
Times (Freq)

Harvest Interval
(Days)

Residual Quantity
(mg/kg)

STMR
(mg/kg)

HR
(mg/kg)

Peach

Inner Mongolia, Shanxi,
Beijing, Shandong,

Henan, Jiangsu, Hunan,
Guizhou

37.5 (mg/kg) 1
14

<0.01, 0.01, 0.013,
0.015, 0.019, 0.049,

0.063, 0.13
0.017 0.130

21 <0.01 (4), 0.013, 0.014,
0.015, 0.022 0.012 0.022

Cucumber

Liaoning, Inner
Mongolia, Shanxi, Beijing,
Shandong Tai’an, Henan,

Shandong Qingdao,
Anhui, Shanghai, Hunan,

Hubei, Guizhou

75 (g/ha) 1

3

0.0158, 0.0192, 0.0202,
0.0218, 0.0427, 0.0447,
0.0520, 0.0571, 0.0717,
0.0764, 0.0777, 0.134

0.0484 0.134

5

<0.01 (2), 0.0155,
0.0160, 0.0175, 0.0257,
0.0301, 0.0327, 0.0331,
0.0708, 0.0730, 0.108

0.0279 0.108

Cabbage

Shanxi, Beijing,
Shandong, Henan, Anhui,
Shanghai, Hunan, Jiangxi,

Guangxi, Hubei,
Guizhou, Guangdong

67.5 (g/ha) 1

7

<0.01 (2), 0.0121,
0.0155, 0.0170, 0.0879,

0.111, 0.112, 0.142,
0.202, 0.247, 0.286

0.0994 0.286

10
<0.01 (5), 0.0135,

0.0263, 0.0291, 0.0556,
0.101, 0.121, 0.129

0.0199 0.129

Cotton
Hebei, Shandong, Henan,

Anhui, Hunan, Jiangxi,
Beijing, Hubei

60 (g/ha) 1

7
<0.01, 0.0119, 0.0175,
0.0889, 0.124, 0.142,

0.227, 0.246
0.0532 0.246

10
<0.01 (2), 0.0135,

0.0151, 0.0163, 0.0572,
0.0930, 0.129

0.0157 0.129

3.5. Dietary Risk Assessment

To evaluate whether using flonicamid as a pesticide is safe for consumers, we con-
ducted a dietary risk assessment based on the residue data in food and the reference residue
limit value (Table 5). The average weight of the general population in China is 63 kg [24].
The NEDI and RQ were calculated using the dietary intake and the average body weight
data of the general population in China, following the principle of risk maximization
combined with the residue of flonicamid in five foods. The dietary risk probability of
flonicamid was assessed in terms of the RQ. The total NEDI of flonicamid was 0.20035 mg.
This value is lower than the ADI determined by the European Union. The RQ was low at
4.4%. Flonicamid had an RQ of less than 100%, which is the acceptable level of flonicamid
detected in registered crops, and is therefore safe for consumers. The results presented
above show that the use of flonicamid at the recommended dose in cucumber, cabbage,
peach and cotton does not present dietary risks to Chinese consumers.
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Table 5. Chronic dietary risk assessment of flonicamid based on Chinese dietary patterns.

Food Classification Fi(kg) Reference Residue Limits Sources NEDI (mg) ADI (mg) Risk Quotient (%)

Rice and its products 0.2399 0.5 China 0.11995

ADI × 63
Tubers 0.0495 0.2 China 0.00990

Light vegetable 0.1837 0.0994 STMR 0.01826
Fruits 0.0457 1 China 0.04570

Vegetable oil 0.0327 0.2 China 0.00654
Total 0.5515 0.20035 4.41 4.4

4. Conclusions

A reliable, sensitive, general and accurate method based on QuEChERS and UHPLC-
MS/MS was developed for the simultaneous determination of flonicamid in peach, cu-
cumber, cabbage and cotton. Optimization and purification of the composite materials
used in the method resulted in a high recovery, low RSDs and a low detection limit. The
method was used to evaluate the dissipation and terminal residue of flonicamid in peach,
cucumber, cabbage and cotton at several experimental sites. Flonicamid exhibited a high
dissipation rate for various experimental sites and different matrices and a half-life be-
tween 2.28 and 9.74 days. The dissipation of flonicamid in various crops will certainly
be influenced by environmental conditions. The terminal residue of flonicamid was less
than the MRL. This result shows an acceptable exposure risk from applying flonicamid
at the recommended dose. The low RQs of flonicamid indicate a low long-term dietary
risk to Chinese consumers. A simple and rapid method is presented in this study for
the simultaneous determination of flonicamid residues in four different crops. The data
presented in this study provide guidance for the rational use of flonicamid and a reference
for establishing the MRL of flonicamid in China.
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