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Ideas for FEP+ Calculations of SARS-CoV-2 PLpro Inhibitors
Njabulo Joyfull Gumede
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ngumede@mut.ac.za; Tel.: +27-31-907-9396

Abstract: A global pandemic caused by the SARS-CoV-2 virus that started in 2020 and has wreaked
havoc on humanity still ravages up until now. As a result, the negative impact of travel restrictions
and lockdowns has underscored the importance of our preparedness for future pandemics. The
main thrust of this work was based on addressing this need by traversing chemical space to design
inhibitors that target the SARS-CoV-2 papain-like protease (PLpro). Pathfinder-based retrosynthesis
analysis was used to generate analogs of GRL-0617 using commercially available building blocks by
replacing the naphthalene moiety. A total of 10 models were built using active learning QSAR, which
achieved good statistical results such as an R2 > 0.70, Q2 > 0.64, STD Dev < 0.30, and RMSE < 0.31,
on average for all models. A total of 35 ideas were further prioritized for FEP+ calculations. The
FEP+ results revealed that compound 45 was the most active compound in this series with a ∆G
of −7.28 ± 0.96 kcal/mol. Compound 5 exhibited a ∆G of −6.78 ± 1.30 kcal/mol. The inactive
compounds in this series were compound 91 and compound 23 with a ∆G of −5.74 ± 1.06 and
−3.11 ± 1.45 kcal/mol. The combined strategy employed here is envisaged to be of great utility in
multiparameter lead optimization efforts, to traverse chemical space, maintaining and/or improving
the potency as well as the property space of synthetically aware design ideas.

Keywords: Pathfinder; reaction-based enumeration; active learning QSAR; FEP+; SARS-CoV-2
papain-like protease

1. Introduction

A global pandemic, caused by what was initially referred to as the 2019 nCov virus,
which started in 2019 in China and still ravages now, has wreaked havoc on humanity [1–3].
It was hypothesized that this virus is transmitted between humans through sneezing,
coughing, and small saliva droplets released when an infected person speaks [4]. As
a result, scientists were able to pinpoint the new virus as a member of the coronavirus
family [5]. Later, a change in taxonomy was made from the 2019 nCoV, to the SARS-CoV-
2 virus by the Corovidae study group of the International Committee on Taxonomy of
Viruses [6]. The change was made since this new virus was derived from a similar type of
virus, the severe acute respiratory syndrome (SARS-CoV), that led to a pandemic between
2002 and 2003 [1,6,7].

Coronaviruses were first discovered in the 1960s and were thought to be a group of
related viruses causing common colds [4]. These common colds were found to be caused
by viral strains such as HCoV 229E and HCoV OC43 [8]. The groups of these viruses are
classified as α-, β-, γ-, and δ-CoVs from the point they were discovered in the 1960s [1,9].
Coronaviruses are single-stranded RNA-enveloped viruses that infect the host leading
to respiratory, gastrointestinal, and neurological diseases [1,3,8,10]. CoVs throughout
history have been transmitted from animals to humans through a zoonotic transmission
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event [1,11]. SARS-CoV-2 is different from the other related viruses in its class in that it
is highly infectious, and the effect of a secondary attack is just as severe as the primary
attack [12]. The main protease (MPpro) and papain-like protease (PLpro) are validated drug
targets for the SARS-CoV-2 virus [13,14]. Inhibitors of the former work by blocking viral
infection, while inhibitors of the latter block viral replication. Furthermore, PLpro is also
important for innate immunity [13,15]. As such, PLpro is a clinically relevant drug target
for its multiple roles, as it overcomes innate immunity by virtue of reversing processes
related to ubiquitination and ISGylation [7,13,16]. In fact, for the successful infection of the
host by the virus to occur, the cleavage of host proteins responsible for ubiquitination and
ISGylation needs to occur, which is facilitated by PLpro enzyme activities [17,18].

Efforts have been made in the past to use molecular modeling to design PLpro inhibitors
for SARS-CoV [19]. Ghosh et al. [20] and Ratia et al. [21] performed high-throughput
screening assays in independent studies to screen commercial libraries of diverse drug-like
molecules. The experimental results revealed that a non-covalent inhibitor GRL-0617, an
analog of compound 7724772 (see Figure 1a), shows the highest level of potency. The lead
compound 7724772 inhibits SARS-CoV PLpro with an IC50 of 20 µM, while the optimized
analog GRL-0617 (see Figure 1b) shows an IC50 of 0,60 µM. Further studies revealed that
GRL-0617 inhibits Vero E6 cell lines for SARS-CoV viral replication with an EC50 of 15 µM,
without any form of cytotoxicity demonstrated [18,19]. Recent studies by Freitas et al. [7]
have also revealed that GRL-0617 is more potent than an analog, which is compound 6
from their study, and inhibits SARS-CoV-2 PLpro with an IC50 of 2.4 µM, whilst compound
6 inhibits SARS-CoV-2 PLpro with an IC50 of 5.0 µM. Attempts have recently been made to
use Artificial Intelligence/Machine Learning (AI/ML) tools by several research groups to
design SARS-CoV-2 drug-like molecules [21–23]. In fact, ML tools such as deep learning
have transformed drug discovery and development. The ML models are trained using
molecules with known activities to the target of interest [21,23,24]. Arshia et al. [24]
have recently employed a combined strategy of the De Novo based design of SARS-CoV-
2 Mpro inhibitors employing deep learning, docking, and MD simulations successfully.
Furthermore, Murugesan et al. [25] and Patel et al. [26], in independent studies, have
successfully screened phytochemical compounds derived from medicinal plants and used
docking and MD simulations to predict their binding affinities when bound to SARS-
CoV-2 Mpro. With this in mind, the main aim of this study is to demonstrate the synergy
between active learning-based Glide docking tools in tandem with Pathfinder reaction-
based enumeration tools and physics-based relative binding affinity estimation tools. This
study aims to optimize GRL-0617, a lead compound targeting SARS-CoV-2 PLpro, by
traversing chemical space, designing its analogs, and predicting their binding affinities
using FEP+. The design ideas that are predicted to be the most active will be selected and
prioritized for synthesis. Further biological activities of the design ideas will be performed
in the future and will be relevant as therapeutic interventions for our preparedness for
future pandemics.
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Figure 1. Structures of compound 7724772 (a) IUPAC name 2-methyl-N-[1-(naphthalen-2-yl) ethyl]
benzamide and its optimized derivative GRL-0617 (b) with an IUPAC name 5-amino-2-methyl-N-[1-
(naphthalen-1-yl) ethyl] benzamide.
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2. Materials and Methods
2.1. Computational Details

Schrödinger Life-Sciences Suite 2021-2 was utilized for all computational calcula-
tions. Maestro (v12.8) was used as a Graphical User Interface comprising various, diverse
Schrödinger modules. Pathfinder, LigPrep, Protein Preparation Wizard, Prime, Glide,
Induced Fit Docking, Desmond for Molecular Dynamics Simulation, Maximum Common
Substructural (MCS) Docking, AutoQSAR, Force-field builder, and FEP+ were used.

2.2. Reaction-Based Enumeration Using Pathfinder

The 2-D sketcher panel on Maestro was used to draw the structure of GRL-0617,
a lead compound with activity against the SARS-CoV-2 PLpro drug target. Pathfinder-
driven enumeration was performed on GRL-0617 with a maximum depth of 1. A total of 4
pathways were generated from a commercial library of building blocks via the retrosyn-
thesis of known coupling reactions as follows: Pathway 1—amide_coupling_1, Pathway
2—amide_coupling_2, Pathway 3—curtius_3, and Pathway 4—Suzuki_2 (see Figure S1).
In the first round of enumeration using Pathway 1, reactant 1 was retained as the original
reactant and reactant 2 was selected from the reactant library of N containing heterocycles.
The rest of the enumerations were composed of hydrazine aryl, primary and secondary
amines, acid chloride, carboxylates, isocyanates, aryl, and vinyl halides. In all the enumera-
tion runs, Smiles Arbitrary Target Specification (SMARTS) was used to remove ligands with
reactive functional groups and Pan assay Interfering Structures (PAINS) offenders affecting
the design ideas were filtered. A physicochemical filtering criterion was also used to filter
design ideas that fall outside of the desired drug-like chemical space. Such as design ideas
with an MW between 150 and 500, LogP between −1.50 and 5.0, TPSA between 30 and 150,
HBA between 0 and 12, and HBD between 0 and 5, and a maximum number of rotatable
bonds less than 10 was retained.

2.3. Ligand and Protein Preparation
2.3.1. Ligand Preparation

A total of 89,529 enumerated design ideas were divided according to their enumeration
circles from 1 to 10, as explained in the previous section. The 3-D coordinates of the design
ideas were prepared by subjecting them to Ligprep [27]. We employed Epik [28–30] to
generate possible ionization states, tautomers, stereoisomers, and conformers at pH 7.4.
The OPLS4 forcefield was used for the restrained minimization of the resulting conformers.

2.3.2. Protein Preparation

The X-ray crystal structure of SARS-CoV-2 PLpro in complex with GRL-0617 (PDB ID:
7JIR) with a resolution of 2.09 Å was uploaded from RCSB Protein Data Bank (PDB) [31].
Bond orders were assigned, creating zero bonds to metals, creating disulfide bonds, and
filling in missing side chains and loops using Prime, [32–34] using the default parameters.
The protonation states of PLpro and GRL-0617 were simulated at pH 7.4 using Epik [28–30].
Hydrogen bond assignment was optimized to sample water orientations, using crystal
symmetry, and minimizing hydrogens of altered species. An interactive optimizer was
performed at pH 7.0 using PROPKA [29] to minimize steric hindrance. Waters within 3 Å
of the co-crystallized ligand in the active site were removed. Restrained minimization was
undertaken by using a customized version of OPLS4 force field [27–37] to converge heavy
atoms at a Root-Mean-Square Deviation (RMSD) of 0.30 Å.

2.4. Glide SP Docking and Auto QSAR Active Learning Models

The prepared structure of PLpro described in Section 2.3.2 was used as an initial
structure for receptor grid generation. The co-crystalized structure of GRL-0617 was used
to identify the active site of PLpro for positional constraints. The hydrogen bond constraints
were employed by selecting all hydrogen bonds that the ligand makes with the amino acids
of PLpro. Rotatable groups of the amino acids of PLpro were selected including the excluded
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regions in the receptor that the ligand could not occupy. Glide docking [38], employing
the SP mode, was used to place the enumerated compounds in the active site cavity of
PLpro. Furthermore, Hydrogen bond constraints from the receptor grid were selected for
docking. Finally, all default parameters for Glide docking were used as they were. A
total of 10 rounds of Glide SP docking were performed on enumerated compounds to
filter compounds that do not bind with PLpro and those that exhibited weak binding when
predicted with the Auto QSAR models [39]. The Auto QSAR models using the enumerated
dataset were trained, tested, and re-trained using the enumerated dataset. This process
continued until some sort of convergence was attained after 10 rounds of active learning
Glide SP Auto QSAR modeling.

2.5. Induced Fit Docking (IFD) to Screen the Library of Enumerated Design Ideas

Top-scoring design ideas that were screened with Glide SP were used as starting
structures for IFD [40,41] calculations. The co-crystalized ligand was picked to mark
the active site cavity of PLpro using an enclosing box in the prepared structure of 7JIR.
A standard protocol for docking was selected, to generate 20 poses. Hydrogen bond
constraints were applied and were selected from those between GRL-0617 and amino acids
such as Asp164, Tyr273, and Gln269 in the active site cavity of PLpro. Default parameters
for ligand conformational sampling during the first round of Glide docking were employed
in IFD. Glide redocking was performed using the XP mode in the IFD panel. Rank ordering
of the top-scoring poses was performed by using the procedures that we developed in prior
publications [42,43].

2.6. Molecular Dynamics Simulations

Molecular dynamics simulations (MDS) [44,45] were performed on 7JIR using the
Desmond package on Maestro v2.8, by setting up the system first. A predefined SPC explicit
solvent system was enclosed in an orthorhombic box shape. The solvation model was
placed in an enclosing box with a diameter of 10 Å. The model system was then neutralized
by adding a NaCl salt solution at a concentration of 0.15 M. The minimization of the system
was undertaken by using OPLS4 force field. Once the model system was created the output
file was uploaded into the MDS panel on Maestro. The MD simulation time was set at
100 ns and a simulation trajectory of 100 ps with a total of 1000 frames. The NPT ensemble
class was selected at a temperature of 300 K and a pressure of 1.01 bar.

2.7. Maximum Common Substructural (MCS) Docking

MCS docking [46] was performed using the MCS docking panel on Maestro to align
all the structures of design ideas prioritized for FEP+, using the last 2ns frame of 7JIR
generated by MDS in Section 2.6 above. The structure of GRL-0617 was extracted from the
2ns MDS frame and used as a reference compound in MCS docking. The structures of the
selected design ideas were extracted as input structures from the IFD pose with the highest
docking score.

2.8. Free Energy Perturbation Plus (FEP+) to Predict the Relative Binding Affinities of the
Design Ideas

Prior to FEP+ [47–50] calculation, the MCS poses from Section 2.7 above were used
as starting structures for FEP+ calculations. FEP+ methodology was performed by first
using the last frame of MDS for 7JIR as an input structure for the protein, where 7JIR
was split into the protein, ligand, and water. Then the unliganded 7JIR was added to the
project table where all ligands’ outputs from the MCS docking were placed. The Force
Field builder panel was used to sample the force field parameters, such as torsions, for the
enumerated design ideas that are absent in OPLS4 force field. Ideally, Force Field builder
employs quantum mechanical simulations available in Jaguar to fit the torsion parameters
simulated and is then compared to those obtained from OPLS4 force field [51,52], since
newly designed chemical entities usually contain torsion parameters that are not specifically
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represented by parameters in forcefield databases [53]. A ligand health check in the FEP+
panel was performed to establish whether the ligands fit the criteria of having new torsional
parameters explicit. Relative binding affinity calculations were performed by using an FEP+
panel on Maestro. FEP+ is based on the Replica Exchange with Solution Tempering (REST)
using an MD algorithm that utilizes OPLS4 force field and is available on the Desmond
package [51–53]. The FEP+ simulation parameters used included the NVT ensemble, a
simulation time of 20ns, and a random seed of 2007. Several λ windows started with
a default of 12 λ windows, followed by core hopping with 16 λ windows, and lastly
charged hopping with 16 λ windows. A cycle closure technique was used to generate a
perturbation map, which was applied to attain the convergence error estimates of relative
binding affinities, at a simulation window of 20 ns. GRL-0617 was used as a reference
compound with known experimental IC50 to PLpro. As such, FEP+ is a well-established
method for reliably predicting the relative and/or absolute binding affinities of novel
compounds. In the literature, various scientists have prospectively and retrospectively
demonstrated the great utility of FEP+ in hit-to-lead identification and lead optimization
efforts [51–56]. Furthermore, a detailed theory behind the FEP+ method and the detailed
protocols can be obtained from the original publications that were also adopted in this
work [47–50,53,55–61].

3. Results and Discussions
3.1. Pathfinder Reaction-Based Enumeration

In the Pathfinder reaction-based enumeration panel, the structure of GRL-0617 was up-
loaded to rapidly explore the chemical space of the library of building blocks. The aim was
to explore the structure–activity relationship and potency of the design ideas. Furthermore,
the multiparameter optimization of the lead compound is also aimed at improving and/or
maintaining the physicochemical and Adsorption Distribution Metabolism and Excretion
(ADME) properties important in drug discovery and development. Various design test
cycles (Figure 2) were performed with the aim of yielding optimum design ideas, using
the method adapted from Konze et al. [54] and Ghanakoda et al. [61]. All 10 rounds of
ideation involved enumerating building blocks such as Nitrogen containing-heterocycles
(1st round of enumeration), primary and secondary amines (2nd round of enumeration),
aryl and vinyl halides (3rd round of enumeration), acid chlorides (4th round of enumera-
tion), carboxylates (R1) and primary and secondary amines (R2) (5th round of enumeration),
carboxylates only (7th round of enumeration), Isocyanates (8th round of enumeration),
and carboxylates and trifluoroborates (9th and 10th round of enumerations). Appropriate
physicochemical, SMARTS, and PAINS filters were employed on the Pathfinder panel
(Figure S1).

Molecules 2022, 27, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 2. Pathfinder-driven reaction-based enumeration, active learning Glide QSAR modeling, 
IFD, and FEP+ screening workflow. 

3.2. Glide SP Docking and Filtering of Enumerated Design Ideas 
Glide SP docking employing hydrogen bond and core constraint was used to place 

the design ideas in the active site cavity of a prepared grid file for PLpro. Different rounds 
of Glide SP docking calculations were performed, informed by the number of enumera-
tions runs, which generated diverse ideas with the hope of expanding the chemical space 
of PLpro inhibitors. Firstly, ligprep generated 30,514 output structures of Nitrogen-contain-
ing heterocycle design ideas. This was followed by filtering design ideas based on a pro-
prietary set of SMARTS patterns and PAINS filters. This step was performed since the 
conversion of structures from 2D to 3D in some cases generates improper tautomers [60]. 
Design ideas with a formal charge of zero were retained, generating neutral drug-like de-
sign ideas including GRL-0617 and its 10 analogs with known experimental IC50 values 
from the literature for further Glide SP docking. The positive controls used were analogs 
of compound 7,724,772 (Figure 1a) and were designed together with GRL-0617 and tested 
for bioanalysis using the same assay. These were included because they already have the 
IC50 values, so they could train, test, re-train, and re-test the QSAR models. A total of 10 
rounds of Glide SP docking facilitated by active learning QSAR models were performed. 
This was accomplished by training and testing QSAR model_1 up to QSAR model_10 to 
predict the docking scores of design ideas. The docking of Nitrogen-containing heterocy-
cles generated 638 poses that fit the active site cavity of PLpro. The Glide SP docking of a 
hydrazine-aryl-containing subset generated a total of 997 poses, and 88 poses were se-
lected. The Glide SP docking of an acid chlorides-containing subset generated a total of 
996 poses, and only 65 poses were selected. Furthermore, the Glide SP docking of acid 
chlorides and primary and secondary amine ideas to PLpro generated 582 poses, and 55 of 
those were selected. The Glide SP docking of aryl and vinyl halides generated 963 poses, 
and 222 of those were selected. Furthermore, the Glide SP docking of carboxylates and 
primary and secondary amine series generated 900 poses, and 92 of those were selected. 
The Glide SP docking of a carboxylate-only series generated 557 poses, of which 147 were 
selected. The Glide SP docking screening of design ideas containing isocyanate building 
blocks generated 146 top-scoring poses that were selected. These 10 rounds of screening 
the design ideas with Glide SP docking and predicting their docking scores using various 
Auto QSAR models prior to docking demonstrated the capabilities of the active learning 
approach coupled with docking to screen a large database of enumerated compounds 
against the PLpro receptor (Figure 2). 

Figure 2. Pathfinder-driven reaction-based enumeration, active learning Glide QSAR modeling, IFD,
and FEP+ screening workflow.



Molecules 2022, 27, 8569 6 of 18

3.2. Glide SP Docking and Filtering of Enumerated Design Ideas

Glide SP docking employing hydrogen bond and core constraint was used to place the
design ideas in the active site cavity of a prepared grid file for PLpro. Different rounds of
Glide SP docking calculations were performed, informed by the number of enumerations
runs, which generated diverse ideas with the hope of expanding the chemical space of
PLpro inhibitors. Firstly, ligprep generated 30,514 output structures of Nitrogen-containing
heterocycle design ideas. This was followed by filtering design ideas based on a proprietary
set of SMARTS patterns and PAINS filters. This step was performed since the conversion
of structures from 2D to 3D in some cases generates improper tautomers [60]. Design
ideas with a formal charge of zero were retained, generating neutral drug-like design
ideas including GRL-0617 and its 10 analogs with known experimental IC50 values from
the literature for further Glide SP docking. The positive controls used were analogs of
compound 7724772 (Figure 1a) and were designed together with GRL-0617 and tested for
bioanalysis using the same assay. These were included because they already have the IC50
values, so they could train, test, re-train, and re-test the QSAR models. A total of 10 rounds
of Glide SP docking facilitated by active learning QSAR models were performed. This was
accomplished by training and testing QSAR model_1 up to QSAR model_10 to predict the
docking scores of design ideas. The docking of Nitrogen-containing heterocycles generated
638 poses that fit the active site cavity of PLpro. The Glide SP docking of a hydrazine-aryl-
containing subset generated a total of 997 poses, and 88 poses were selected. The Glide
SP docking of an acid chlorides-containing subset generated a total of 996 poses, and only
65 poses were selected. Furthermore, the Glide SP docking of acid chlorides and primary
and secondary amine ideas to PLpro generated 582 poses, and 55 of those were selected.
The Glide SP docking of aryl and vinyl halides generated 963 poses, and 222 of those were
selected. Furthermore, the Glide SP docking of carboxylates and primary and secondary
amine series generated 900 poses, and 92 of those were selected. The Glide SP docking
of a carboxylate-only series generated 557 poses, of which 147 were selected. The Glide
SP docking screening of design ideas containing isocyanate building blocks generated 146
top-scoring poses that were selected. These 10 rounds of screening the design ideas with
Glide SP docking and predicting their docking scores using various Auto QSAR models
prior to docking demonstrated the capabilities of the active learning approach coupled with
docking to screen a large database of enumerated compounds against the PLpro receptor
(Figure 2).

3.3. Auto QSAR-Based Active Learning Models to Prioritize Ideas for Glide/IFD XP Docking

As previously discussed in Section 3.3 above, the Auto QSAR models were trained on
Pathfinder-generated molecules that were filtered by Glide SP docking based on their ability
to bind with PLpro. An active learning approach was adopted to develop models that were
used to filter enumerated compounds and select compounds that would further be docked
with a more in-depth scoring function such as IFD (Figure 2). The models were built to
further assess their ability to predict the Glide SP docking scores (an independent variable)
against physicochemical properties and topological descriptors (dependent variables)
retrieved from Canvas in situ. Multivariate statistical methods such as Multiple Linear
Regression (MLR), Partial Least Squares Regression (PLS), and Kernel-based PLS (KPLS)
were employed on the enumerated compounds. The descriptors used include binary
fingerprints i.e., radial, linear, dendritic, and 2-D molecular prints. These were used in
combination with numeric descriptors such as topographical, physicochemical, and ligand
filters. A numerical rather than a categorical model was applied to the Auto QSAR panel to
generate and build the Auto QSAR models.
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Table 1 details the models built using the subsets of enumerated design ideas, ac-
companied by their statistical parameters following an active learning approach. In this
approach, all models reported in Table 1 were trained to learn to predict the docking scores
of a diverse set of design ideas targeting SARS-CoV-2 PLpro. The models, Auto QSAR
_model_1 up to Auto QSAR _model_10, were generated using KPLS, but they differed in
terms of binary fingerprints, since the enumerated design ideas have different building
blocks attached in place of the naphthalene moiety (Tables 1 and 2). The most significant
models with good R2 > 0.70, Q2 > 0.64, STDDEV < 0.30, and RMSE < 0.31 were models 6, 7,
8, and 10 (Table 1). Hence, models 8 and 10 were selected to predict the binding affinities
of the compounds that remained and did not undergo Glide SP docking before all the
QSAR models were built. Auto QSAR _model_1 was trained with design ideas exhibiting
Glide SP docking scores ranging between −7.4 and −8.4 kcal/mol. Given that the Auto
QSAR plot displayed some noise in this model, a decision was made to change the activity
data to range from −6.00 and −8.9 kcal/mol for Auto QSAR _model_2 (see Figure S2a,b).
An improved regression coefficient was observed for Auto QSAR _model_3. It was no-
ticed that the dynamic range was narrow and as expected, the correlation coefficient is
poor. Therefore, a decision was made to add more molecules in the low-activity range of
−6.0 kcal/mol. The next model was then able to predict the activity of the compounds
in this range. As can be seen for Auto QSAR _model_4 up to Auto QSAR _model_7, and
even with Auto QSAR _model _9, the same upward trend was observed (see Figure S2c–h).
The challenge now was to improve the ability of the models to predict the activities of the
top-scoring compounds.

Table 1. The most optimum models generated by Auto QSAR to train the enumerated design ideas
to predict their docking scores, following an active learning approach to assess their ability to bind to
SARS-CoV-2 PLpro.

Model Name Model Code STDEV RMSE R2 Q2 #Factors #Training
Set

#Test
Set

Auto QSAR _model_1 KPLS_linear_10 0.1805 0.2230 0.4310 0.1571 1 478 160
Auto QSAR _model_2 KPLS_radial_44 0.2261 0.2354 0.6262 0.5929 3 816 273
Auto QSAR _model_3 KPLS_radial_26 0.2284 0.2398 0.6090 0.5630 3 865 289
Auto QSAR _model_4 KPLS_radial_32 0.2474 0.2615 0.6227 0.5793 3 906 303
Auto QSAR _model_5 KPLS_molprint2D_8 0.2743 0.2983 0.6980 0.6450 3 1073 358
Auto QSAR _model_6 KPLS_molprint2D_48 0.2853 0.3040 0.7084 0.6676 3 1142 381
Auto QSAR _model_7 KPLS_molprint2D_47 0.3014 0.3091 0.7086 0.6910 3 1252 418
Auto QSAR _model_8 KPLS_radial_42 0.2833 0.3053 0.7579 0.7191 4 1362 454
Auto QSAR _model_9 KPLS_molprint2D_15 0.3323 0.3424 0.6718 0.6476 3 1662 554

Auto QSAR_model_10 KPLS_linear_39 0.3444 0.5292 0.7410 0.3868 3 2391 797

R2: Regression coefficient of the training set data; STDEV: Standard deviation; Q2: Regression quotient to
determine the predictive ability of the test set; RMSE: Root-Mean-Square Error; # Factors: Number of multivariate
factors.
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Table 2. Physicochemical parameters simulated during model building of the design ideas including positive control inhibitors from the literature with their
predicted docking scores obtained using Auto QSAR_model_10 and their associated IFD binding affinity parameters.

Rank Order
No.

Enumeration Coupling Building
Blocks/Pathway

Compound
ID TPSA Num Num Mol Mol Pred Y Pred Y Docking Glide IFD Exp IC50

HDonors HAcceptors LogP Wt SD Score E-Model Score (uM)

1 N-Heterocycles 58 109.98 3 6 1.32 394.456 ND * ND * −12.39 −103.831 −664.209
2 R1–R2_Carboxylates 39 110.52 3 5 3.60 425.529 −6.86 0.098 −10.93 −95.015 −664.167
3 Pathway 10 1 135.08 3 8 2.64 546.481 −6.62 0.072 −10.87 −113.770 −673.770
4 N-Heterocycles 128 83.8 3 3 3.01 320.396 ND * ND * −9.91 −78.744 −660.799
5 N-Heterocycles 96 141.17 4 7 2.20 396.451 ND * ND * −9.64 −102.840 −660.007
6 Carboxylates 5 82.05 2 5 1.26 310.357 −6.60 0.075 −9.44 −71.375 −660.109

7 R1 (vinyl and aryl halides)
R2 (Carboxylates)

2 82.05 2 5 1.26 310.357 −6.60 0.075 −9.44 −71.375 −660.109

8 R1–R2_Carboxylates 36 123.13 3 7 3.02 449.845 −6.64 0.213 −9.12 −80.291 −659.220
9 Carboxylates 1 75.43 2 4 2.63 309.369 −6.68 0.032 −8.81 −63.709 −658.183

10 25 a ND * ND * ND * ND * ND * ND * ND * −8.69 −76.159 −658.503 2.64
11 R1–R2_Carboxylates 49 120.56 3 7 2.61 388.431 −6.62 0.150 −8.55 −69.600 −653.725
12 Pathway 10 24 99.42 2 4 5.13 448.906 −6.61 0.122 −8.53 −80.814 −658.802
13 Primary and secondary amines 30 87.9 2 4 3.84 377.492 −7.60 0.090 −8.40 −76.477 −657.629
14 vinyl and aryl halides_Trifluoroborates 24 53.71 1 4 4.53 403.469 −6.79 0.065 −8.39 −78.794 −658.165
15 N-Heterocycles 67 103.77 4 3 3.34 372.428 ND * ND * −8.34 −90.436 −658.944

16 R1 (vinyl and aryl halides)
R2 (Carboxylates)

4 63.4 1 3 2.06 252.273 −6.76 0.054 −8.31 −53.957 −657.165

17 Pathway 10 27 107.69 4 4 4.90 500.643 −6.79 0.091 −8.26 −97.525 −659.060
18 2 a ND * ND * ND * ND * ND * ND * ND * −8.25 −56.924 −656.513 8.70
19 24 a ND * ND * ND * ND * ND * ND * ND * −8.14 −72.533 −658.903 0.56
20 N-Heterocycles 116 83.8 3 3 3.61 358.804 ND * ND * −8.10 −75.467 −658.695
21 N-Heterocycles 57 70.91 3 2 4.49 377.822 ND * ND * −7.98 −76.563 −659.233
22 N-Heterocycles 172 95.24 3 4 3.47 364.449 ND * ND * −7.94 −54.584 −656.907

23 R1 (vinyl and aryl halides)
R2 (Carboxylates)

1 89.34 3 4 0.72 273.13 −6.69 0.035 −7.77 −54.137 −660.284

24 N-Heterocycles 91 83.8 3 3 3.13 320.396 ND * ND * −7.58 −87.783 −657.771
25 1 a ND * ND * ND * ND * ND * ND * ND * −7.48 −59.646 −655.252 200
26 N-Heterocycles 37 122.71 4 5 2.45 356.817 ND * ND * −7.46 −73.976 −657.600
27 Primary and secondary amines 23 114.01 3 5 1.91 342.33 −7.55 0.077 −7.29 −60.112 −659.115
28 Hydrazine-aryl 15 119.39 3 7 2.51 378,436 −7.55 0.068 −7.28 −66.860 −652.823
29 Primary and secondary amines 24 80.9 2 4 3.81 360.461 −7.42 0.123 −7.25 −70.170 −657.073
30 R1–R2_ Carboxylates 5 130.21 4 5 2.25 378.388 −6.62 0.090 −7.10 −59.593 −661.117
31 Hydrazine-aryl 54 110.16 3 6 3.71 396.882 −7.55 0.068 −6.67 −57.155 −653.216
32 vinyl and aryl halides_Trifluoroborates 11 92.51 3 7 3.94 425.558 −6.86 0.084 −6.52 −87.781 −658.149
33 N-Heterocycles 45 117.94 3 5 2.66 400.504 ND * ND * −6.52 −74.218 −657.538
34 N-Heterocycles 204 83.8 3 3 4.37 342.402 ND * ND * −6,56 −75.146 −655.866
35 Hydrazine-aryl 35 110.16 3 6 2.95 380.427 −7.51 0.056 −6.51 −66.176 −653.539

* ND—Not determined as the said compounds were part of the training set during Auto QSAR model building active learning process. a Compounds obtained from the literature with
their experimental IC50 results [18,19]. TPSA—Total Polar Surface Area. LogP—Octanol/water partition coefficient. Mol Wt—Molecular Weight. Predicted Y—Predicted docking score
(Y-intercept). PredY SD—Standard Deviation of the predicted docking score.
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A plot showing activity (observed) vs. activity (predicted) is presented in Figure 3
for the most optimal active learning Auto QSAR models 8 and 10. It is evident that
Auto QSAR model_8 has some noisy data in the region between −6.5 kcal/mol and
−9.5 kcal/mol. Therefore, it was then important to extend the range of the docking scores
from −3.5 kcal/mol to −9.5 kcal/mol in Auto QSAR _model_10. The training data was
improved with little noise in the region from −5 kcal/mol to −8.5 kcal/mol. Therefore,
Auto QSAR _model_10 was able to predict the docking scores of the design ideas in the
region between −5 kcal/mol and −8.5 kcal/mol, though it struggled to predict the activities
of compounds with docking scores less than −5 kcal/mol. This is expected, as the model
was not trained in the least active design ideas. Auto QSAR_model_10 was used to predict
the docking scores of all the remaining compounds from all the rounds of enumerations.
A total of 1252 poses were retrieved by docking the remaining design ideas against PLpro.
Next, a core-constraint IFD docking approach was performed to filter compounds that do
not meet the criteria. A total of 35 poses were selected with binding modes consistent with
the native binding mode of co-crystalized GRL-0617 to SARS-CoV-2 PLpro (PDB ID: 7JIR).
This criterion further included selecting compounds with good docking scores, a good
E-model score, and a good IFD score (Table 2), even though IFD did not manage to capture
the binding mode of GRL-0617, our reference compound. Therefore, the compounds in
Table 2 are ranked and ordered according to their docking scores. Each of the compounds
generated a total of five poses and the top-scoring poses for each of the design ideas were
selected and reported here.
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Figure 3. Auto QSAR active learning plots for model 8 (a) with an R2 of 0.7579 and a Q2 of 0.7191
and model 10 (b) with an R2 of 0.7410 and a Q2 of 0.3868.

The visual inspection of binding poses for decision-making purposes in drug discovery
projects is very important [61]. Furthermore, the selection of the correct binding pose in
docking is very important not only for decision-making purposes, but also for docking post-
processing procedures such as MD simulations, and FEP+ simulations [46,51]. Therefore,
in the literature, scientists have used procedures such as MD simulations employing
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binding pose metadynamics, [62] MD simulations, [14,63,64] and more recently, MCS
docking, [50] including the most exhaustive and premium IFD-MD module [65], as docking
post-processing procedures. This is aimed at modeling the correct native binding mode of
a compound designed by De Novo to its prospective target.

Figure 4 details the distribution of docking scores to measure the activities of the design
ideas that were prioritized for further relative binding affinity estimation using FEP+. Most
of the design ideas exhibited docking scores ranging from −8 kcal/mol to −10 kcal/mol.
Interestingly, even though the Auto QSAR models were trained on compounds with
docking scores ranging from −3 to −10 kcal/mol, IFD was able to capture compounds with
docking scores ranging from −10 to −12 kcal/mol (see Figure 4). Interestingly, the diverse
set of enumerated ideas did not yield ideas that deviated from the initial physicochemical
space and that had diminished potency (see Table 2). This demonstrated the applicability
of the enumerated compounds to traverse chemical space and design ideas that are potent
and can further be optimized against PLpro.
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Figure 4. Histogram detailing the distribution of docking score (kcal/mol) for a diverse set of
enumerated compounds measured using IFD, that were selected and prioritized for FEP+.

Concurring with this, Gentile et al. [66] proposed a deep-docking protocol that was
used to dock an ultra-large library of drug-like molecules. The deep-docking scores were
used to train and predict the potency of the subset of compounds from the database.
Furthermore, Boyles et al. [67] performed a comparative study of training and testing a
machine-learning model based on ligand poses from co-crystalized proteins against poses
generated by docking scoring functions. The results revealed that the predictive power
of machine learning models derived from docking poses had the same effect as poses
generated from co-crystalized ligands in terms of their predictive ability of docking scores
of the models [67]. Thus, this screening criteria interactively filters ideas with undesirable
properties and low-scoring compounds. As a result, this approach is gaining traction in
speeding up drug discovery efforts and allows for the rapid and accurate prediction of
docking scores, which facilitates the prioritization of compounds for more thorough and
computationally rigorous approaches like FEP+ prior to synthesis [54,60].

3.4. Relative Binding Affinity Prediction Using FEP+

Here, MDS was used to refine the PDB structure of 7JIR prior to FEP+ calculations.
Since it has been reported in the literature that the bound conformation of a ligand sought
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from MDS improves the prediction of relative binding affinity by FEP+ [51]. As such, the
100 ns MDS frame was used to extract the bound conformation of GRL-0617 and was used
as a reference compound to perform MCS docking and align the structures of the design
ideas to the GRL-0617 MDS conformation. This was possible because the 100 ns MDS frame
revealed that GRL-0617 was stable during the simulation window. Ligand fluctuations
with respect to the receptor were below 3 Å (Figure 5a) during the 100 ns MDS trajectory.
This indicates that the ligand did not move out of the active site pocket. Moreover, this
further indicates that MDS was able to reproduce the native binding conformation of
GRL-0617, which is similar to that exhibited by co-crystalized GRL-0617 to 7JIR. Again, the
use of MCS docking has been reported to improve the relative binding affinities for FEP+
simulation [46].
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with an error estimate of 1.40 kcal/mol (Figure S4). 
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centage of the interaction between ligands 1 and 2, and PLpro. The ligand interaction dia-
gram shows the hydrogen bond between the carbonyl group of GRL-0617 and Gln269, 
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Figure 5. MD simulation of x-ray crystallography solved structure 7JIR and MCS docking overlay of
the design ideas using the binding mode of GRL-0617 as a reference compound. (a) Root-mean-square
deviation of GRL-0617 in the active site cavity of SARS-CoV-2 PLpro obtained with an MD simulation
time of 100 ns. (b) MCS docking overlay of design ideas selected prioritized and FEP+ amenable with
GRL-0617 (grey carbon atoms) as a reference compound taken with the 100 ns MDS optimized frame.
The carbon atoms of GRL-0617 are shown in grey, compound 45 in green, compound 91 in orange,
compound 5 in faded green, and compound 23 in violet. The amino acids in the active site cavity
were removed to provide a clear depiction of the overlay of the structures. (c) Histogram detailing
the interaction between GRL-0617 and PLpro. (d) Ligand interaction diagram revealing hydrogen
bonds, π–π, and hydrophobic interactions between GRL-0617 and PLpro.

Of the 35 compounds that were selected for FEP+ analysis, only 5 were calculated
by FEP+, as some were not FEP+ amenable and others were not selected because of
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limited license tokens for FEP+. Therefore, after the ligand and protein health check was
performed, the experimental IC50 value of GRL-0617 was converted to establish the extent
of the change in free energy, ∆G. A blind 20 ns FEP+ simulation of the 4 design ideas
that are FEP+ amenable was performed with GRL-0617 as a reference compound. FEP
mapper was used to create a map with edges based on the ligand similarities (Figure S4).
The MCS docking overlay of GRL-0617, and the design ideas demonstrate the structural
activity relationship of the subset of compounds (Figure 5b) in the active site cavity of
PLpro. The protein–ligand contacts between GRL-0617 and SARS-CoV-2 PLpro reveal the
native binding mode of GRL-0617 (Figure 5c,d). It should be noted that buried waters
can decrease the binding energy, as the entropy of binding is penalized by the presence of
buried waters, which should be displaced by the ligand (Figure 5d). A full-cycle closure
technique was used for this 15 λ simulation window employing 20ns of MD simulation as
per the procedure described in Section 2.7.

Figure 6a,b detail the plots of the free energy convergence and total change in free
energy (∆G in kcal/mol) between GRL-0617 (ligand 1) and compound 45 (ligand 2), as a
function of time in the solvent and complex legs. The three plots for each leg also detail the
reverse, forward, and sliding window with respect to the accumulated energy during the
simulation window of the 20 ns trajectory. Therefore, the perturbation between the two
ligands converged with a ∆G of −82.11 kcal/mol in the solvent leg and −81.63 kcal/mol
in the complex leg. Further, the bootstrapping error estimates and analytical errors of 0.061
and 0.028 kcal/mol for the solvent leg and 0.108 and 0.028 kcal/mol for the complex leg,
respectively, were achieved. Wang et al. [47], Cappel et al. [46], and Schindler et al. [68] have
suggested that an accuracy of 1.4 kcal/mol is suitable in a drug discovery lead optimization
stage. Concurring with this, Figure S4 shows a full-circle closure perturbation map of
design ideas and GRL-0617 detailing the difference in the binding free energy, ∆∆G (pink),
between two ligands in an edge/node and their associated ligand similarity scores (green).
As can be seen, GRL-0617 is 0.47 kcal/mol more active than compound 45, with an error
estimate of 0.88 kcal/mol, while GRL-0617 is 0.97 kcal/mol more active than compound 5,
with an error estimate of 1.40 kcal/mol.

On the other hand, GRL-0617 is 2.01 kcal/mol more active than compound 91, with
an error estimate of 0.99 kcal/mol. Furthermore, GRL-0617 is 4.64 kcal/mol more active
than compound 23, with an error estimate of 1.40 kcal/mol. On the other hand, compound
45 is 0.50 kcal/mol more active than compound 5, with an error estimate of 0.88 kcal/mol,
whilst compound 5 is 1.04 kcal/mol more active than compound 91, with an error estimate
of 1.40 kcal/mol. Lastly, compound 91 is 2.63 kcal/mol more active than compound 23,
with an error estimate of 1.40 kcal/mol (Figure S4).

Figure 6c,d, on the other hand, detail the histogram and ligand interaction diagram
for the two ligands for the 15 endpoint λ replicas. This essentially demonstrates the
percentage of the interaction between ligands 1 and 2, and PLpro. The ligand interaction
diagram shows the hydrogen bond between the carbonyl group of GRL-0617 and Gln269,
which occurs for 100% of the simulation window. A hydrogen bond between the NH
group of GRL-0617 and Asp164 occurs for 50% of the simulation time, (Figure 6d) as is
shown below, even though the MD simulation did not capture this hydrogen bonding
between Asp164 and the NH group of GRL-0617 (Figure 5d). However, the binding mode
is maintained between the active site cavity of PLpro and GRL-0617. Furthermore, the π–π
interaction network between 5-amino-2-methyl benzamide moiety and Tyr268, including
the naphthalene moiety is shown. The ligand interaction diagram in Figure 6d also revealed
the binding mode of compound 45 in the active site cavity of PLpro. There is a hydrogen
bond between the carbonyl group in compound 45 and Gln269, which also occurs for 100%
of the simulation time. There is a water-mediated hydrogen bond between the NH group
of benzimidazole moiety and Gly266, which occurs for 41% of the simulation time. There is
also another water-mediated hydrogen bond between the oxygen of the methyl sulfonyl
moiety and Tyr268, which occurs for 21% of the simulation time. There is a further π–π
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interaction between Tyr268 and the benzene rings of 5-amino-2-methyl benzamide moiety
and benzimidazole moieties.
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interaction between Tyr268 and the benzene rings of 5-amino-2-methyl benzamide moiety
and benzimidazole moieties.
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The free energy convergence and total change in free energy (∆G in kcal/mol) for
compound 5 (ligand 1) and compound 91 (ligand 2) can be seen in Figure S3a,b. Again,
the perturbation between the two ligands converged with a ∆G of −58.81 kcal/mol in
the solvent leg and −59.34 kcal/mol in the complex leg. Further, the bootstrapping error
estimates and analytical errors of 0.050 and 0.039 for the solvent leg and 0.195 and 0.039
for the complex leg, respectively, were achieved. Figure S3c,d show the histogram and
ligand interaction diagram for the two ligands for the 15 endpoint λ replicas. The carbonyl
group in the compound 5 hydrogen bonds with Gln269 for 100% of the simulation time and
Tyr264 for 46% of the simulation time. Further, the hydrogen bond between the NH group
of the benzamide moiety hydrogen bonds with Asp164 for 81% of the simulation time.
The amino acid Asp164 and the Tyr273 hydrogen bond with the NH2 group in compound
5, which occurs for 51% and 61% of the simulation time, respectively. A π–π interaction
network between the aromatic ring of the benzamide moiety and Tyr264 including Tyr268
is observed.

Figure 6. FEP+ simulation results for relative binding affinity prediction for the perturbation cycle of
GRL-0617 (ligand 1) and compound 45 (ligand 2). (a) Free energy convergence of the perturbation
cycle in solvent leg. (b) Free energy convergence of the perturbation cycle in complex leg. (c) His-
togram depicting protein–ligand interactions for endpoint λ-replicas. (d) Ligand interaction diagram
(Ligand 1 at the top and ligand 2 at the bottom) detailing the type of interactions observed between
the two ligands and the receptor.

The free energy convergence and total change in free energy (∆G in kcal/mol) for
compound 5 (ligand 1) and compound 91 (ligand 2) can be seen in Figure S3a,b. Again,
the perturbation between the two ligands converged with a ∆G of −58.81 kcal/mol in
the solvent leg and −59.34 kcal/mol in the complex leg. Further, the bootstrapping error
estimates and analytical errors of 0.050 and 0.039 for the solvent leg and 0.195 and 0.039
for the complex leg, respectively, were achieved. Figure S3c,d show the histogram and
ligand interaction diagram for the two ligands for the 15 endpoint λ replicas. The carbonyl
group in the compound 5 hydrogen bonds with Gln269 for 100% of the simulation time and
Tyr264 for 46% of the simulation time. Further, the hydrogen bond between the NH group
of the benzamide moiety hydrogen bonds with Asp164 for 81% of the simulation time.
The amino acid Asp164 and the Tyr273 hydrogen bond with the NH2 group in compound
5, which occurs for 51% and 61% of the simulation time, respectively. A π–π interaction
network between the aromatic ring of the benzamide moiety and Tyr264 including Tyr268
is observed.
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Table S1 revealed that GRL-0617 exhibited a relative binding affinity estimate of
−7.75 ± 0.40 kcal/mol which is consistent with the experimental binding affinity of
−7.75 kcal/mol. Therefore, this explains the accuracy of FEP+ in reproducing the ex-
perimental binding affinity of this reference compound. Compound 45 in this series was
the most active compound with a ∆G of −7.28 ± 0.96 kcal/mol. Compound 5 followed next
with a ∆G of −6.78 ± 1.30 kcal/mol. The inactive compounds in this series were compound
91 and compound 23 with a ∆G of −5.74 ± 1.06 and −3.11 ± 1.45. In a drug discovery
and development campaign, an error estimate of >1 kcal/mol is not acceptable [47,53,68].
However, the binding affinity error estimate can be improved by increasing the simulation
window and using the MDS to model the system for starting structures prior to FEP+
simulations.

Figure S5 shows buried waters in the node representation of GRL-0617 and in com-
pound 45’s binding poses predicted by FEP+, in the active site cavity of PLpro. We suggest
the use of Water map to model the effect of active site waters on the enthalpy-entropy com-
pensation. This will in turn, allow the determination of favorable and unfavorable waters
that can be displaced by inserting functional groups that displace unfavorable waters to
achieve a gain in potency [69]. Several researchers in the industry and in academia have
used Water map for this purpose prior to FEP+ calculations with the aim of improving
the relative binding affinities of the design ideas and repurposed drugs [70], an approach
that we aim to follow for future studies in this research area. As such, the design of
novel chemical matter containing 2-[2-(methanesulfonyl)propan-2-yl]-1H-benzimidazole,
1,3-dimethyl-1,3-dihydro-2H-benzimidazol-2-one, 3-[(S)-amino(4-fluorophenyl)methyl]-
1,2,4-oxadiazol-5(4H)-one, and (S)-1-(4-methylphenyl)-1-(1H-pyrazol-3-yl)methanamine
moieties, instead of the naphthalene moiety that is in GRL-0617, was successfully performed.
Therefore, a combined strategy to demonstrate the synergy between active learning-based
Glide docking tools in tandem with Pathfinder reaction-based enumeration tools and
physics-based relative binding affinity estimation tools was successfully employed in
this study.

4. Conclusions

The work reported here describes the use of Pathfinder-driven reaction-based enumer-
ation to traverse chemical space by inserting building blocks and replacing the naphthalene
moiety of GRL-0617, a lead compound, as an inhibitor of SARS-CoV-2 PLpro. This was
followed by using PAINS, SMARTS, and physicochemical filters on the enumerated ideas.
A subset of randomly selected ideas was placed into the active site cavity of PLpro utilizing
Glide SP, this was performed to filter ideas that do not bind with PLpro. Ideas with a
docking score between −3 kcal/mol to −10.7 kcal/mol were selected to build the Auto
QSAR models. The models were then used to predict the docking scores of the enumerated
compounds. This process was repeated ten times, where the models were trained on
compounds that were enumerated, tested, and re-scored. Interestingly, the models that
were built and demonstrated good statistical results on average were models 6, 7, 8, and 10,
with an R2 > 0.70, Q2 > 0.64, STDDEV < 0.30, and RMSE < 0.31. Furthermore, Auto QSAR
model_10, was used to finally predict the docking scores of the candidate compounds from
each of the rounds of enumerations. The top-scoring compounds were then selected for
IFD calculations employing a core constraint. IFD generated a total of 1 252 poses and 35
of those poses were selected for FEP+ calculations based on visual inspection, IFD score,
docking score, and E-model score.

MDS and MCS docking shed some light on the binding mode and structure–activity
relationships of the design ideas through their alignment with the reference compound
GRL-0617. Due to limitations with respect to license tokens for FEP+ webservices, we
selected only 5 compounds to run the FEP+ calculations. The FEP+ results revealed that
compound 45 and compound 5 were the most active compounds in the series with ∆G
of −7.28 ± 0.96 kcal/mol, and −6.78 ± 1.30 kcal/mol. These binding affinities were
due to strong hydrogen bonds, π–π interactions, and hydrophobic interactions, which
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were revealed by FEP+ analysis. The design ideas predicted here will be synthesized and
tested in the future for their biological activities against wild-type PLpro and viral cell lines
containing various splice variations, and mutants of the SARS-CoV-2 spike protein. This
will in turn help in preparing for future pandemics and the associated variants of SARS-
CoV-2 and related viruses. Therefore, these combined strategies for lead optimization
have great potential for exploring the unexplored regions of chemical space, with the
hope of designing potent compounds with desirable physicochemical properties, which is
important in drug discovery and development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules27238569/s1, Figure S1: Reaction based enumeration generated pathway for GRL-
0617; Figure S2: Plot of Active learning Glide SP and Auto QSAR models to predict the binding
affinities of enumerated compounds (a) Auto QSAR_model_1 with an R2 of 0.4310 and a Q2 of
0.1571 (b) Auto QSAR_model_2 with an R2 of 0.6262 and a Q2 of 0.5929 (c) Auto QSAR_model_3
with an R2 of 0.6090 and a Q2 of 0.5630 (d) Auto QSAR_model_4 with an R2 of 0.6227 and a Q2 of
0.5793 (e) Auto QSAR_model_5 with an R2 of 0.6980 and a Q2 of 0.6450 (f) Auto QSAR_model_6
with an R2 of 0.7084 and a Q2 of 0.6676 (g) Auto QSAR_model_7 with an R2 of 0.7086 and a Q2 of
0.6910 (h) Auto QSAR_model_9 with an R2 of 0.6718 and a Q2 of 0.6476; Figure S3: FEP+ simulation
results for relative binding affinity prediction for the perturbation cycle of compound 5 (ligand 1) and
compound 45 (ligand 2). (a) Free energy convergence of the perturbation cycle in solvent leg. (b) Free
energy convergence of the perturbation cycle in complex leg. (c) Histogram depicting protein-ligand
interactions for endpoint λ-replicas. (d) Ligand interaction diagram detailing the type of interactions
observed between the two ligands and the receptor; Figure S4: A circle closure perturbation map
of design ideas and GRL-0617 detailing the difference in binding free energy, ∆∆G (pink) and its
associated error estimate between two ligands in an edge/node, as well as their associated ligand
similarities scores (green); Figure S5: FEP+ node representation for GRL-0617 (grey carbons) on
the left and compound 45 (green carbons) on the right frame in the active site cavity of PLpro with
favourable and unfavourable waters shown; Table S1: Relative binding affinity prediction and its
associated predicted error in kcal/mol of the design ideas and GRL-0617 as a reference compound
against SARS-CoV-2 PLpro using FEP+.
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