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Abstract: The [V6O13]2− cluster is successfully immobilized to the polymeric framework of cy-
clomatrix polyphosphazene via the facile precipitation polymerization between the phenol group
symmetrically modified [V6O13]2− and hexachlorocyclotriphosphazene. The structure of the as-
prepared polyoxometalate-containing polyphosphazene (HCCP-V) was characterized by FT-IR, XPS,
TGA, BET, as well as SEM and zeta potential. The presence of a rigid polyoxometalate cluster not only
supports the porous structure of the polymeric framework but also provides an improved catalytic
oxidation property. By using H2O2 as an oxidant, the as-prepared HCCP-V exhibited improved
catalytic oxidation activity toward MPS, DBT, and CEES, which can achieve as high as 99% conversion.
More importantly, the immobilization of POMs in the network of cyclomatrix polyphosphazene also
provides better recyclability and stability of the heterogeneous catalyst.

Keywords: polyoxometalate; cyclomatrix polyphosphazene; catalytic oxidation; sulfides

1. Introduction

Metal-containing polymers (MCPs) receive broad attention due to the synergetic
effect from the functionality of the metal unit and the processability of the polymeric
framework [1–5]. As one of the potential candidates for the functional metal units [6],
polyoxometalates (POMs) have been introduced to the polymeric framework via either
covalent modification [7,8] or ionic interactions [9,10], due to their diverse applications
in many fields, such as catalysis, energy conversion, memory storage, medicine, and so
on [11–13]. The variety of POMs structures and components as well as the topology of
polymers provide rational design of POMs-containing polymers for specific application [14],
especially in the field of flexible electronics [15].

As a special class of POMs, vanadium-containing POMs have received extensive
attention in recent years due to their unique properties [16]. The rich redox properties of
vanadium enabled its application in the construction of a high-performance zinc-ion bat-
tery [17] as well as electrochemical capacitors [18]. Polyoxovanadates (POVs) also showed
interesting biomedical applications, as antidiabetic, antibacterial, antiprotozoal, antiviral,
and anticancer drugs [19]. For example, both decavanadate and metformin-decavanadate
exert antiproliferative effects on melanoma cells at 10 times lower concentrations than
monomeric vanadate [20].

More importantly, POVs have also been reported to be powerful catalysts for the
catalytic oxidation of sulfides owing to their multiple redox state [21,22]. For example,
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isopolyoxovanadate [H3V10O28]3− showed high catalytic activity in oxidation of diben-
zothiophene (DBT) to corresponding sulfone by using molecular oxygen as an oxidant
under mild conditions [23]. Moreover, POVs also exhibited excellent catalytic properties
in the decontamination of chemical warfare agents, such as sulfur mustard. For example,
Hu and coworkers reported that H13[(CH3)4N]12[PNb12O40(VVO)2·(VIV

4O12)2]·22 H2O can
effectively catalyze both the hydrolysis of the nerve agent simulant diethyl cyanophos-
phonate (DECP) and selective oxidation of the mustard simulant 2-chloroethyl ethyl sul-
fide (CEES) [24]. To improve the recyclability and stability of POVs-based catalysts, dif-
ferent strategies have been developed to immobilize POVs: (i) Introduce POVs to the
metal-organic framework (MOF) or other porous materials [25], such as zeolite, via non-
covalent interaction. For example, several POVs-based MOFs, [Co(HDTBA)V2O6] [26],
[Co2L0.5V4O12]·3DMF [27], and [Cu(mIM)4]V2O6 [28], were synthesized and can efficiently
catalyze the H2O2- or tert-butyl hydroperoxide-based oxidation of sulfides and oxidative
detoxification of the sulfur mustard simulant CEES. (ii) Immobilize POVs to the polymeric
framework via covalent bonds [29]. For example, ring-opening metathesis polymerization
of a POMs-based norbornene monomer was developed by Wang’s group [30]. Hill and
coworkers reported the POMs-based gelating network via the polycondensation between
[H3V10O28]3− and polyol precursors [31]. To extend the polymeric framework of POM-
based MCPs, we developed a facile preparation method of POMs-containing cyclomatrix
polyphosphazenes through the precipitation polymerization of hydroxyl-functional POMs
and hexachlorocyclotriphosphazene [14]. It is hypothesized that if POVs can be introduced
to such structure, the homogeneous distribution of POVs in the cyclomatrix framework and
its porosity may provide multiple interaction sites between the catalyst and the substrate,
which will enable better oxidation activity and recyclability for the selective oxidation of
sulfides [32,33].

Herein, we report the immobilization of [V6O13]2− to the cyclomatrix polyphosp-
hazene microspheres via the precipitation polymerization between phenyl symmetrically
modified [V6O13]2− and hexachlorocyclotriphosphazene. The resulted HCCP-V displayed
versatile properties in the selective oxidation of different sulfides, including methyl phenyl
sulfide (MPS), DBT, and CEES. It is believed that the design of POMs-based cycloma-
trix polyphosphazene microspheres may provide a new platform for the construction of
POMs-based MCPs toward task-specific applications.

2. Results and Discussion
2.1. Structural and Morphological Characterization of HCCP-V

As shown in Scheme 1A, there are mainly two strategies to incorporate polyoxovana-
dates (POVs) into the polymeric framework: (i) poly-condensation between [H3V10O28]3−

and polyol precursors [31], and (ii) free radical polymerization of vinyl groups symmet-
rically modified [V6O13]2− [34–36]. Owing to the multiple redox states of vanadium,
the yield of such condensation is usually low, limiting the practical application of POV-
based materials. To overcome such disadvantage, inspired by our previous study on the
polyoxometalate-containing cyclomatrix polyphosphazene microspheres [14], precipitation
polymerization was used to immobilize functional POV to the framework of cyclomatrix
polyphosphazene. As shown in Scheme 1B, the synthetic methodology of target POV-
containing cyclomatrix polyphosphazene HCCP-V is very straightforward. To improve
the reactivity of the hydroxyl group of V6O13-OH toward P−Cl, phenol groups were in-
troduced via the 1,1′-carbonyldiimidazole (CDI)-mediated condensation. Then, the target
POV-containing cyclomatrix polyphosphazene microsphere can be facile-prepared via the
precipitation polymerization between V6O13-PhOH and hexachlorocyclotriphosphazene
(HCCP) with the aid of triethylamine as a base. As shown in Figure S2A, the peaks at 9.04,
8.19, 7.17, and 6.67 ppm can be assigned to the phenol groups, indicating the successful
grafting of phenol groups to the [V6O13]2− cluster, which is in good accordance with the
literature [14]. Meanwhile, the modification of phenol groups can also be demonstrated
by the characteristic peaks of N–H at 3280 cm−1 and benzene ring at 1606 and 1553 cm−1
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(Figure S2B). Moreover, the presence of characteristic peaks of V–O and V–O–V stretch-
ing at 951, 835, and 712 cm−1 indicated the structure integrity of the V6O13 cluster after
CDI modification.
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polymers. (B) Synthetic route of polyoxovanadate-based cyclomatrix polyphosphazene microspheres,
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The phenol groups endowed V6O13-PhOH with improved reactivity towards HCCP,
facilitating the preparation of HCCP-V. As shown in Figure 1A, the peaks at 1238 and
906 cm–1 can be assigned to P=N and P–O–Ph [37,38], indicating the successful precipitation
polymerization. Furthermore, the characteristic peaks of V–O at 955 cm−1 and V–O–
V at 805 and 706 cm−1 indicated that the vanadium clusters were introduced into the
crosslink network. The characteristic peaks of the N–H bond and benzene ring were found
at 3140, 1543 cm−1 and 1508, 1606 cm−1, indicating the existence of V6O13-PhOH. The
introduction of the [V6O13]2− cluster to the framework of HCCP-V can be further proven
by corresponding thermal gravimetric analysis (TGA). As shown in Figure 1B, the presence
of [V6O13]2− not only improved the thermal stability of the cyclomatrix polyphosphazene
but also increased the residual weight at a high temperature. According to the 42% residual
of P2O5 and V2O5 at 900 ◦C, it can be calculated that there is ca. 18.85 wt.% of the [V6O13]2−

cluster in the resulted HCCP-V (calculation is presented in the Supplementary Materials).
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Figure 1. The FT-IR spectra (A) and TGA curve in O2 (B) of HCCP-V.
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To further characterize the detailed structure of HCCP-V, X-ray photoelectron spec-
troscopy (XPS) was used. As shown in Figure 2A,B, the successful introduction of V6O13-
PhOH to the polymeric framework can be proven by the presence of N1s signals from
N–H of TBA+ at 401.1 eV and P=N at 398.8 eV, as well as the O1s signals from C–O–P at
533.8 eV and V–O at 531.6 eV. Moreover, the P2p signals at 135, 134, and 132.9 eV (Figure 2C)
can be assigned to P–Cl (I), P=N (II), and C–O–P (III), respectively, indicating that most of
the phosphazenes were involved in the cross-linked framework [14,39,40]. Furthermore,
as shown in Figure 2D, the signals of V2p at 524 and 516.7 eV indicated that the valence
state of V mostly retained +5, demonstrating that their redox properties were retained in
the resulted HCCP-V, and enabled their potential application in the selective oxidation
of sulfides.
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(D) V2p.

As expected, the resulted HCCP-V displayed a spherical aggregated structure with a
diameter of ca. 60 nm (Figure 3A and Figure S3). Due to the homogeneous distribution of
the anionic [V6O13]2− cluster in the cyclomatrix structure, the resulted HCCP-V displayed
a negative zeta potential of −32 mV (Figure 3B), which also indicated the relatively stable
nature of such particles. In agreement with our previous study, the rigidity of the V6O13-
PhOH cluster supported the porous structure of the resulted HCCP-V very well (typical
IV-type isotherm), although the BET surface area was as low as 12.73 m2/g (Figure 3C)
due to the possible occupation of the pores by the bulky TBA cations [34,41]. The pore
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size distribution calculated from the desorption curve mainly ranged from 30 to 65 nm
(Figure 3D), revealing the nature of the mesoporous structure.
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2.2. Catalytic Oxidation of MPS by HCCP-V

The [V6O13]2− clusters are known to be active towards the oxidation of sulfides [42].
To demonstrate the applicability of HCCP-V for H2O2-based oxidative removal reactions,
different sulfides, including MPS, DBT, and CEES, were used as substrates in the catalytic
oxidation [43] (as shown in Scheme 2).
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Scheme 2. Schematic illustration for the selective oxidation of sulfides by HCCP-V.

Firstly, the catalytic oxidation of MPS was used as a model reaction to explore the
heterogeneous catalytic activity of HCCP-V. Generally, the catalytic oxidation was carried
out at different temperatures (25 ◦C, 40 ◦C, and 55 ◦C) with [MPS]:[H2O2]:[catalyst] =
1:1.2:1/400. As a control experiment, it can be found that no oxidation was observed
when no catalyst was added or organic cyclomatrix phosphazenes HCCP-BPS was used
(Figure S5). In contrast, the presence of V6O13-PhOH in HCCP-V enables the catalytic
oxidation of MPS to methyl phenyl sulfoxide (MPSO). The reaction was monitored by
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HPLC (Figure 4), and it can be seen that with the prolongation of the reaction time, the peak
of MPS at 7.6 min gradually decreased, and the peak of MPSO at 2.7 min increased, which is
in good agreement with corresponding 1H NMR results (Figure S6). More importantly, the
overoxidation was relatively suppressed, as less than 2% of methyl phenyl sulfone (MPSO2)
was detected at a retention time of 3.3 min. The oxidation of MPS can be completed within
180 min with MPSO conversion as high as 99% at 25 ◦C. Moreover, the reaction rate can be
promoted at high temperatures. For example, the reaction can be completed within 20 min
at 55 ◦C (Table 1). The relationship between ln(Ct/C0) and the reaction time reveals that
the kinetics of the catalytic oxidation of MPS by HCCP-V follows the second-order kinetics,
with the highest reaction rate constant of 0.01189 min−1 at 55 ◦C.
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of HCCP-V and 1.2 eq of H2O2 at different temperatures: (A–C) 25 ◦C, (D–F) 40 ◦C, and (G–I) 55 ◦C.
Naphthalene with a retention time of 10.2 min was used as an internal standard.

By comparing the catalytic oxidation results at different temperatures (Figure 4 and
Table 1) it can be found that the reaction rate was greatly improved with the increase of the
reaction temperature. However, the conversion of MPS was reduced at high temperatures.
Therefore, 40 ◦C was chosen as the optimized reaction temperature for catalytic oxidation
of MPS.
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Table 1. The catalytic oxidation results of MPS by HCCP-V in CH3CN.

Catalyst T/◦C [MPS]:[H2O2]:
[Catalyst] t/min k/min−1 TOF/min−1 Conversion/%

HCCP-
BPS 40 1:1.2:1/400 180 - - -

HCCP-V 25 1:1.2:1/400 180 0.00013 2.20 99.0
HCCP-V 40 1:1.2:1/400 50 0.00139 7.98 99.6
HCCP-V 55 1:1.2:1/400 20 0.01189 18.71 93.4
HCCP-V 25 1:1:1/400 120 0.00013 2.86 85.6
HCCP-V 40 1:1:1/400 50 0.0008 6.58 82.1
HCCP-V 55 1:1:1/400 12 0.0128 25.21 75.5

To explore the effect of the oxidant dosage on the catalytic oxidation of MPS, the
reaction was also investigated with [MPS]:[H2O2]:[catalyst] = 1:1:1/400 at different temper-
atures (25 ◦C, 40 ◦C, and 55 ◦C). As shown in Figure 5, the oxidation of MPS was completed
in 120 min, and the conversion of MPS was 85.6% at 25 ◦C, which is lower than that of
[MPS]:[H2O2]:[catalyst] = 1:1.2:1/400. Therefore, a slightly excess amount of the oxidant
should be better for such kind of reaction. Similarly, increasing the reaction temperature
can accelerate the oxidation by reducing the reaction time from 120 min at 25 ◦C to almost
12 min at 55 ◦C. However, the conversion of MPS was also decreased.
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Naphthalene with a retention time of 10.2 min was used as an internal standard. 
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Figure 5. HPLC, conversion, and kinetics curves during the catalytic oxidation of MPS by 1/400 eq
of HCCP-V and 1.0 eq of H2O2 at different temperatures: (A–C) 25 ◦C, (D–F) 40 ◦C, and (G–I) 55 ◦C.
Naphthalene with a retention time of 10.2 min was used as an internal standard.

By comparing the catalytic results of MPS with different ratios of HCCP-V (Table 1), it
can be concluded that (i) the reaction rate and TOF increased with the temperature, and
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(ii) under the same temperature, the excess amount of oxidant favored the catalytic oxida-
tion reaction.

2.3. Catalytic Oxidation of DBT by HCCP-V

Besides MPS, dibenzothiophene (DBT) was also selected as the substrate to explore the
potential application of HCCP-V in the oxidative desulfurization of diesel [44,45]. Generally,
the oxidation of DBT was more challenging than MPS. Therefore, excess amounts of catalyst
and high temperatures were usually used in the oxidation of DBT. The catalytic experiment
was monitored by HPLC and performed at 70 ◦C (or 80 ◦C) in acetonitrile (solvent, 5 mL)
with DBT (115.16 mg, 1 eq), catalyst (10 mg, 1/100 eq), H2O2 (313.4 µL, 5 eq or 0.5 mL, 8 eq),
and naphthalene (internal standard). As shown in Figure 6A–C, in the case of 70 ◦C and
5 eq of H2O2, the peak of DBT with a retention time of 17.6 min gradually decreased, and
the peaks of DBTSO at 3.7 min and DBTSO2 at 4.6 min gradually increased, indicating the
successful catalytic oxidation of DBT. However, only 79.8% conversion of DBT and 52.5%
conversion of DBTSO2 were achieved after 50 min, indicating that the amount of oxidant
was insufficient to fully convert DBT. Moreover, the oxidative desulfurization catalyzed by
HCCP-V followed the second-order kinetics with a reaction rate constant of 0.0007 min−1

(Figure 6C). By increasing the temperature to 80 ◦C, the reaction time was reduced from
50 min for 70 ◦C to 15 min, however, the conversion of both DBT and DBTSO2 was also
decreased (Figure 6D–F).
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Figure 6. HPLC spectra, conversion curves, and kinetics curves during the catalytic oxidation of
DBT by HCCP-V under different conditions: (A–C) 70 ◦C, 5 eq of H2O2, (D–F) 80 ◦C, 5 eq of H2O2,
and (G–I) 70 ◦C, 8 eq of H2O2. Naphthalene with a retention time of 10.2 min was used as an
internal standard.
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Interestingly, by increasing the dosage of H2O2 from 5 to 8 eq and keeping the temper-
ature at 70 ◦C, the oxidative desulfurization of DBT can be completed within 50 min. More
importantly, the conversion curves of DBT and DBTSO2 were greatly improved to 92.2%
and 98.9%, respectively (Figure 6G–I, Table 2).

Table 2. The catalytic oxidation results of DBT by HCCP-V in CH3CN.

Catalyst T/◦C [DBT]:[H2O2]:
[Catalyst] t/min k/min−1 TOF/min−1 Conversion/%

HCCP-V 70 1:5:1/100 50 0.0007 1.60 79.8
HCCP-V 70 1:8:1/100 50 0.00099 1.84 92.2
HCCP-V 80 1:5:1/100 15 0.006 4.70 70.5

2.4. Catalytic Oxidation of CEES by HCCP-V

To further explore the potential application of HCCP-V in the decontamination of
chemical warfare agents, the catalytic oxidation of the mustard simulant 2-chloroethyl ethyl
sulfide (CEES) [46,47] has been explored. As monitored by 1H NMR (Figure 7A), the proton
b in CEES gradually disappeared and proton f in the oxidized product CEESO appeared in
the down field [24], indicating that CEES is completely and rapidly oxidized in the presence
of HCCP-V and H2O2 at room temperature, showing its promise as an effective catalyst for
the removal of mustard under mild conditions. Moreover, this reaction selectively forms
the less toxic 2-chloroethyl ethyl sulfoxide (CEESO) without overoxidation to the harmful
2-chloroethyl ethyl sulfone (CEESO2) product (Figure 7B).
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Figure 7. Catalytic oxidation of CEES by HCCP-V:H2O2 = 1:1.2 at room temperature: (A) 1H NMR
spectra of the catalytic oxidation process (CDCl3). (B) The conversion curves of CEES and CEESO.

2.5. Recyclability of HCCP-V

All the above results demonstrated the versatility of HCCP-V in the catalytic oxidation
of sulfides. To investigate the stability of such heterogeneous catalyst, the recyclability
of HCCP-V was studied. Generally, the model reaction of MPS catalytic oxidation was
carried out with oxidant dosage of 1.2 eq and temperature of 40 ◦C. According to HPLC
and the conversion curves (Figure S8), the reaction time for the complete oxidation of
MPS was ca. 20 min, and the conversion of MPS was above 99% during 4 cycles, in-
dicating the tight immobilization of V6O13-PhOH in the polymeric framework and the
robustness of the catalyst. However, the conversion of MPSO in repeated experiments
slightly decreased from 85.72% to 72.65% (Figure 8A). More importantly, the structure of
the catalyst also remained intact, as shown in Figure 8B. It can be found that after 4 cycles of
catalytic oxidation, the peaks of the V–O bond at 954 cm−1 and the V–O–V bond at 754 and
681 cm−1 did not change, indicating that the structures of V6O13-PhOH clusters were stable.
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Figure 8. (A) The conversion of MPS and MPSO during 4 cycles of reuse of HCCP-V. (B) FT-IR spectra
for the catalyst HCCP-V during 4 cycles of reuse.

3. Materials and Methods
3.1. Materials

Hexachlorocyclotriphosphazene (HCCP) and sodium metavanadate were purchased
from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Pentaerythritol and p-
aminophenol were supplied by Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China).
HCCP was purified by sublimation in vacuum at 60 ◦C, three times. Acetonitrile, dimethyl
sulfoxide (DMSO), and N,N-dimethylformamide (DMF) were stirred overnight with CaH2
and distilled before use. Triethylamine (TEA) was dried with KOH and distilled before use.
Other reagents and chemicals were analytical grade and used as received.

3.2. Synthetic Procedures of Polyoxovanadate-Based Cyclomatrix Polyphosphazene Microspheres
3.2.1. Synthesis of [N(C4H9)4]2[V6O13{(OCH2)3CCH2OH}2] (V6O13-OH)

The synthetic procedure of V6O13-OH has been reported already [48], and the modified
method was as follows: NaVO3 (4 g, 2 eq) and pentaerythritol (2.23 g, 1 eq) were dissolved
in 50 mL of deionized water at 60 ◦C. After cooling to room temperature, the pH of the
solution was adjusted to 1.0 with 1.0 M HCl. The reaction mixture was heated at 80 ◦C for
6 h in the dark. Then, the dark green insoluble precipitate was removed by filtration to
afford a deep red solution. To this solution, tetrabutylammonium bromide (TBABr) aqueous
solution (4 g in 25 mL) was added dropwise and stirred for 1–2 h at room temperature. The
resulted brick red precipitate was collected by filtration and washed with ethanol 3 times
to afford the final product. Yield: 34%, based on V. FT-IR (KBr, cm−1): 3410 (−OH, m),
2961 (CH, s), 2923 (CH, s), 2853 (CH, m), 1637 (−OH, w), 1480 (CH, s), 1380 (s), 1126 (s),
1130 (m), 1067 (m), 1039 (C−O, m), 956 (V−O, s), 944 (vs), 811 (V−O−V, m), 720 (V−O−V,
s), 582 (m). 1H NMR (400 MHz, DMSO-d6, δ): 5.74 (s, 2H, −OH), 4.87 (s, 12H, −CH2C−),
4.46 (s, 4H, −CCH2−), 3.15 (br, 16H, −NCH2−), 1.56 (br, 16H, −CH2−), 1.30 (br, 16H,
−CH2−), 0.93 (br, 24H, −CH3).

3.2.2. Synthesis of [N(C4H9)4]2[V6O13{(OCH2)3CCH2OCONHC6H4OH}2] (V6O13-PhOH)

The solutions of p-aminophenol (523.8 mg, 1 eq) in 4 mL of DMSO and N,N’-carbonyldiimidazole
(CDI, 934 mg, 1.2 eq) in 2 mL of DMSO were degassed by purging N2 for 30 min. The
CDI solution was added dropwise to the Schlenk flask with p-aminophenol under N2 and
stirred at room temperature in the dark for 5 h to obtain a 0.8 M stock solution. V6O13-
OH (1.64 g, 1 eq) was dissolved in 7 mL of dry acetonitrile and purged N2 for 30 min in
the dark. Then, 3.9 mL of the stock solution was added dropwise to the above solution.
Dibutyltin dilaurate (0.92 mL, 1.2 eq) was used as a catalyst, and the reaction was stirred
at 80 ◦C in the dark for 60 h. The reaction was monitored with FT-IR. After the reaction,
precipitates were removed by centrifugation (9000 rpm, 5 min), and the supernatant was
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concentrated and added dropwise to TBABr aqueous solution (4 g in 25 mL). The resulted
precipitate was collected and washed with dichloromethane and deionized water to af-
ford the target compound. Yield: 44%, based on V. FT-IR (KBr, cm−1): 3280 (−NH, m),
2957 (CH, s), 2925 (CH, s), 2871 (CH, m), 1744 (w), 1693 (C=O, m), 1606 (Ph, s), 1553 (Ph, w),
1460 (CH, s), 1378 (s), 1220 (s), 1130 (m), 1068 (m), 1032 (C−O, m), 951 (V−O, s), 944 (vs),
835 (V−O−V, m), 712 (V−O−V, s), 579 (m) [49]. 1H NMR (DMSO-d6, 400 MHz, δ):
9.04 (s, 2H, −OH from phenol), 8.19 (s, 2H, −NH−), 7.17 (br, 4H, Ar−H), 6.67 (br, 4H,
Ar−H), 4.87 (s, 6H, −CH2C−), 4.47(s, 4H, −CCH2−), 3.18 (br, 16H, −NCH2−), 1.57 (br,
16H, −CH2−), 1.23 (br, 16H, −CH2−), 0.93 (br, 24H, −CH3).

3.2.3. Precipitation Polymerization to Prepare Polyoxovanadate-Based Cyclomatrix
Polyphosphazene Microspheres (HCCP-V)

The preparation was similar to our previous method [14,50], and the detailed pro-
cedure was as follows: V6O13-PhOH (0.8 g, 3 eq), TBABr (1.12 g, 20 eq), and HCCP
(60.26 mg, 1 eq) were dissolved in a mixture solvent of 0.2 mL of DMF and 2.5 mL of
acetonitrile. The reaction mixture was degassed with N2 for 30 min, followed by the
addition of TEA (0.44 mL, 18 eq), then stirred at 90 ◦C in the dark for 72 h. The reaction
was monitored with FT-IR. After the reaction, the resultant precipitate was collected by
centrifugation (9000 rpm, 5 min), then washed with acetonitrile and ethanol to afford the
target product. Yield: 71%. FT-IR (KBr, cm−1): 3140 (−NH, m), 2920 (CH, s), 2852 (CH, m),
1606 (Ph, s), 1543 (N−H, s), 1508 (Ph, m), 1238 (P=N, s), 955 (V−O, s), 906 (P−O−Ph, s),
805 (V−O−V, m), 706 (V−O−V, s), 650 (s).

3.3. Characterization

FT-IR spectra were recorded on a Bruker TENSOR27 with a resolution of 0.4 cm−1

over the range of 4000−400 cm−1. 1H NMR spectra were recorded with a Bruker Avance
400 spectrometer at 400 MHz in CDCl3 and DMSO-d6 using tetramethylsilane (TMS) as an
internal standard. Thermal stability was investigated on a Mettler Toledo TGA 2 instrument
with a heating rate of 10 ◦C/min in O2 atmosphere. X-ray photoelectron spectroscopy (XPS)
spectra were recorded on a Kratos AXIS Ultra DLD spectrometer with a monochromatic Al
Kα X-ray source. The nitrogen adsorption and desorption isotherm was measured at 77 K
on an American Mike TriStar II 3020 analyzer. The morphology of the sample was observed
on a FEI Verios G4 scanning electron microscope (SEM). The samples were coated with a
thin sputtered Au before SEM characterization. High-performance liquid chromatography
(HPLC) results were collected by the Shimadzu Essentia LC-16 with ultraviolet detector.

3.4. The Catalytic Oxidation Experiments

General procedure of the catalytic oxidation of methyl phenyl sulfide (MPS): MPS
(78 mg, 1 eq) was dissolved in 5 mL of acetonitrile, and naphthalene (80.1 mg, 1 eq) was
added as an internal standard. The mixture was stirred for 10 min (500 rpm) and an aliquot
was taken as the t0 sample. Freshly ground HCCP-V (2.5 mg, 1/400 eq) was added as a
catalyst, and after stirring for 10 min, 30 wt.% H2O2 (77 µL, 1.2 eq or 63 µL, 1 eq) was added
as an oxidant. The reaction temperature was set at 25 ◦C, 40 ◦C, or 55 ◦C, respectively, and
the whole process was monitored by HPLC (1 mL/min, acetonitrile:H2O = 7:3, injection
volume: 10 µL, detector wavelength: 254 nm). After the reaction, the catalyst was collected
by centrifugation, and the final product was characterized by 1H NMR.

General procedure of the catalytic oxidation of dibenzothiophene (DBT): DBT
(115.16 mg, 1 eq) was dissolved in 5 mL of acetonitrile, and naphthalene (80.1 mg,
1 eq) was added as an internal standard. The mixture was stirred for 10 min (500 rpm) and
an aliquot was taken as the t0 sample. Freshly ground HCCP-V (10 mg, 1/100 eq) was
added as a catalyst, and after stirring for 10 min, 30 wt.% H2O2 (313.4 µL, 5 eq or 0.5 mL,
8 eq) was added as an oxidant. The reaction temperature was set at 70 ◦C or 80 ◦C, and the
whole process was monitored by HPLC (the condition was the same as the one for MPS).
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General procedure of the catalytic oxidation of 2-chloroethyl ethyl sulfide (CEES):
CEES (75 µL, 1 eq) was dissolved in 5 mL of acetonitrile. After stirring for 10 min (500 rpm),
an aliquot was taken as the t0 sample. Freshly ground HCCP-V (2.5 mg, 1/400 eq) was
added as a catalyst, and after stirring for 10 min, 30 wt.% H2O2 (77 µL, 1.2 eq) was added
as an oxidant. The whole process was monitored by 1H NMR.

4. Conclusions

Functional polyoxovanadate [V6O13]2− were successfully immobilized to cyclomatrix
polyphosphazene microspheres via precipitation polymerization. The rigidity and anionic
nature of [V6O13]2− endowed the resulted HCCP-V with porosity and a negative charged
surface. Owing to the homogeneous distribution of the [V6O13]2− cluster in the network
and the high stability of the P=N framework, HCCP-V exhibited versatility in the catalytic
oxidation of sulfides. By using H2O2 as an oxidant, the conversion of MPS, DBT, and CEES
could be achieved as high as 99.6%, 92.2%, and 100% within 60 min, respectively. Moreover,
the selectivity of MPSO, DBTSO2, and CEESO could be as high as 99%. Furthermore,
the conversion of MPS was above 99% during 4 cycles, demonstrating the high stability
and recyclability of such heterogeneous catalyst. This work provides facile methodology
for the preparation of POMs-based MCPs for selective oxidation of sulfides. Moreover,
the catalytic oxidation activity may be further improved by introducing other functional
groups to the cyclomatrix polyphosphazene structure via synergetic interaction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238560/s1, Figure S1: FT-IR spectrum (A) and 1H
NMR spectrum (B) of V6O13-OH in DMSO-d6; Figure S2: 1H NMR spectrum (A) in DMSO-d6 and
FT-IR spectrum (B) of V6O13-PhOH; Figure S3: SEM image of HCCP-V dispersed in EtOH; Figure S4:
HPLC and standard curve of MPSO; Figure S5: Catalytic oxidation of MPS with H2O2 as oxidant:
(A) no catalyst; (B) HCCP-BPS; Figure S6: 1H NMR spectra in CDCl3 for the product of the catalytic
oxidation of MPS with different ratio of HCCP-V at different temperature (25 ◦C, 40 ◦C, and 55 ◦C):
(A) 1.2 eq, (B) 1 eq; Figure S7: HPLC and standard curve of DBTSO2; Figure S8: HPLC traces and
conversion curve of MPS oxidation during recycle experiment; Table S1: Comparison with other
POM-based catalysts for catalytic oxidation of different sulfides. [51–59].
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