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Abstract: The formation of inherently chiral calix[4]arenes by the intramolecular cyclization approach
suffers from a limited number of suitable substrates for these reactions. Here, we report an easy
way to prepare one class of such compounds: calixquinolines, which can be obtained by the reaction
of aldehydes with easily accessible aminocalix[4]arenes in acidic conditions (Doebner–Miller reac-
tion). The synthetic procedure represents a very straightforward approach to the inherently chiral
macrocyclic systems. The complexation studies revealed the ability of these compounds to com-
plex quaternary ammonium salts with different stoichiometries depending on the guest molecules.
At the same time, the ability of enantioselective complexation of chiral N-methylammonium salts
was demonstrated.

Keywords: calixarene; inherent chirality; complexation; mercuration; meta-substitution; quinoline
formation; chiral recognition

1. Introduction

Calixarenes [1–4] are macrocyclic compounds which are widely used in supramolecu-
lar chemistry. The reason for their popularity can be found in the combination of several
factors: easy multi-gram preparation, variable size and tuneable shape of the cavity, simple
derivatization, etc. Depending on the substitution, calixarenes exhibit good complexation
properties towards cations, anions or neutral compounds [5–9]. However, unlike some
other macrocycles (e.g., cyclodextrins, pillararenes), calixarenes themselves are achiral
molecules, which makes them useless as chiral receptors without further derivatization.
One possible solution to chirality issues is to convert calixarenes into so-called inherently
chiral systems [10–12], where the combination of nonplanar molecules with suitable sub-
stitution patterns can lead to chirality without the introduction of stereogenic units. For
example, calix[4]arenes in the cone conformation with WXYZ (Figure 1a) or XY (Figure 1b)
substitution patterns (upper rim or lower rim) exhibit such chirality because the presence of
different substituents gives the system a particular sense of rotation (Figure 1a). Similarly,
the meta substitution [13] of calix[4]arenes yields chiral compounds (Figure 1c) and, as
such, represents the most straightforward approach to such systems. However, an ob-
vious drawback of this approach is the lack of corresponding derivatization techniques
enabling selective substitution of the meta position. In fact, the electrophilic aromatic mer-
curation is so far the only procedure known to provide meta substituted products from an
unsubstituted calix[4]arenes [14].

Intramolecular cyclization represents a different way for the synthesis of inherently
chiral meta substituted calixarenes. This approach consists of two steps: (i) the introduction
of a suitable functional group to the para position of calixarene; and (ii) intramolecular
cyclization, leading to calixarenes with fused rings. As an example, we can mention the
preparation of the naphthalene moiety (A) starting from an aldehyde [15], phenanthrene
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moiety (B) by the photocyclization of stilbene [16], the formation of calixarene-fused
phosphols [17] (C) and the preparation of calixquinazolines (D) (Figure 2) [18]. However,
most of these approaches suffer from a complicated synthesis of starting compounds
or a low-yielding cyclization step. Miao et al. [19] also synthesized calixquinolines (E);
however, this approach required the utilization of bifunctional reagents (crotonaldehyde or
ethyl acetoacetate).
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Figure 2. Examples of calix[4]arenes with fused rings.

In this paper, we report on the synthesis of calixquinolines from easily accessible
aminocalix[4]arenes derivatives (both meta- and para-) in the cone conformation by the
tandem reaction with simple aldehydes (acetaldehyde, bromoacetaldehyde). Although the
reaction conditions were initially designed for the Pictet–Spengler condensation [20,21]
of meta-aminocalixarene with aldehydes, the unexpected formation of calixquinolines
(Doebner–Miller reaction) turned out to be general and worked with para-aminocalixarenes
as well. This synthetic procedure represents a very straightforward approach to calixquino-
line derivatives representing the inherently chiral macrocyclic systems.
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2. Results and Discussion

Our original intention was to prepare amine-bridged macrocycles 5 starting from the
meta-aminocalix[4]arenes (Scheme 1). These compounds would represent a reduced form
of our recently reported imine-bridged calixarenes [22,23]. Using the known procedure,
4-aminocalix[4]arenes 2 was prepared in three steps from the starting calixarene 1 (Scheme 1).
Thus, the initial mercuration of 1 with one equivalent of Hg(TFA)2 gave the corresponding
meta HgCl derivative in 65% yield [14]. Subsequent reaction with isoamyl nitrite/HCl gave
nitroso compound (91%) [24], which was finally reduced by N2H4/Ni(R) to the desired
amine 2 (89%) [22].
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Surprisingly, the Pictet–Spengler reaction of calixarene 2 with aliphatic aldehydes did
not provide the expected amine-bridged compounds 5. Conversely, the reaction of amine 2
with acetaldehyde in the presence of TFA in toluene at 80 ◦C gave the quinoline derivative
4a in 46% yield (Scheme 1). Similarly, the same reaction conditions and bromoacetaldehyde
diethyl acetal gave compound 4b in 37% yield. The unexpected hydroxy group was
probably introduced into the molecule by the substitution of the bromine atom during
the workup. The formation of these compounds can be explained by a Doebner–Miller
reaction [25,26] consisting of the initial aldol reaction, followed by the conjugate addition
and the final ring closure. Indeed, benzaldehyde, which does not work as a substrate in
aldol reactions, provided a complex mixture of products. The same holds for the ketones
acetone and acetophenone. These results indicated that only aliphatic aldehydes are
suitable for this type of reaction.

To test the general applicability within the calixarene series, the para-amino-substituted
derivative 3 was prepared by the nitration of starting 1 with 100% HNO3 in the presence of
glacial acetic acid in dichloromethane [27] and the subsequent reduction of nitro intermedi-
ate with SnCl2 [28]. The reaction with acetaldehyde carried out under identical conditions
as for 2 (TFA in toluene at 80 ◦C) provided quinoline derivative 6a in 18% yield (Scheme 1).

The structure of compound 4a was confirmed by the combination of NMR and HRMS
techniques. The 1H NMR spectrum (400 MHz, CDCl3) showed the presence of two sets of
four doublets for the methylene bridge protons at 5.03, 4.66, 4.52, 4.51 and 4.35, 3.37 and 3.19
(2×) with typical geminal coupling constants (~13.5 Hz) consistent with the C1-symmetrical
calix[4]arenes. The spectrum also contained a singlet at 2.76 ppm, revealing the presence
of a methyl group. Moreover, the presence of a significantly downfield-shifted doublet at
8.00 ppm suggested the presence of a strong electron-withdrawing group (nitrogen) within
the aromatic structure. The HRMS ESI+ analysis showed signals at m/z = 658.3892 and
680.3705 corresponding to [M+H]+ (658.3891) and [M+Na]+ (680.3710) predicted for 4a.
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As the above synthetic protocol represents a very straightforward approach to inher-
ently chiral calixarene derivatives, we decided to prepare a library of diaminocalixarenes,
which are synthetically available (Scheme 2).
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The starting tetrapropoxycalix[4]arenes 1 was transformed into diamines 7 and 8 using
the procedure described by our group. Briefly, a reaction with two equivalents of Hg(TFA)2
in chloroform provided a mixture of two distally dimercurated calixarenes: meta,meta and
meta,para isomers [29]. The mixture was reacted with isoamyl nitrite in the presence of
HCl and AcOH in chloroform to yield the corresponding nitroso derivatives, which are
easily separated by column chromatography on silica gel. The resulting amines 7 and 8
were obtained by reduction with hydrazine in the presence of Raney-nickel in refluxing
ethanol [23]. To synthesize the para-diamino derivatives 9 and 10, calix[4]arene 1 was
nitrated with 100% HNO3 in glacial acetic acid and dichloromethane as a solvent [27].
The corresponding distal and proximal dinitro derivatives were separated by column
chromatography and finally reduced by SnCl2 in refluxing toluene [28].

Compound 8 represents a rather unusual structural motif as it contains both para-
and meta-amino groups within the molecule. In order to study possible differences in the
reactivity of the two regioisomeric groups, the substance was reacted with an excess of
(CF3CO)2O in the presence of TEA in THF to form diamide 11 in 94% yield (Scheme 2). A
careful hydrolysis of this compound finally gave monoamines 12 (meta) and 13 (para) in 22
and 17% yield, respectively, after a column chromatography on silica gel [23].

Not all of the amino derivatives shown in Scheme 2 proved useful for the prepara-
tion of calixquinolines. Thus, the reaction of acetaldehyde with calixarene 7 (meta, meta
substitution) gave quinoline 14 in 37% yield (Scheme 3). Unlike the previous example,
the cyclization of amine 8 provided a mixture of the two regioisomers/diastereoisomers
15a and 15b in low yield (14%). Unfortunately, the mixture was not separable using
conventional separation techniques (column chromatography, preparative TLC, flash chro-
matography). On the other hand, the unexpected by-product 15c possessing ethylamino
group in the para-position was also isolated in 10% yield.

Although cyclization of diamines 9 and 10 should provide only 2 or 3 regioisomers,
respectively, in both cases the reaction with acetaldehyde turned out to be much more
complicated, and we were unable to isolate any expected quinoline product from complex
reaction mixtures. In contrast, meta-amine 12 smoothly provided quinoline 16 in 47%
yield (Scheme 3). The cyclization of its para- congener 13 resulted in the formation of two
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regioisomers 17a and 17b, which were isolated by column chromatography on silica gel
in 22% and 17% yields, respectively. The unambiguous proof of the structure of 16 was
obtained from single crystal X-ray analysis. The monocrystals of 16 were obtained from
dichloromethane/MeOH mixture as a methanol solvate (1:1) in the triclinic system, P-1
space group. As shown in Figure 3a,b the macrocycle adopts the pinched cone conformation,
which is common for solid-state structures of the cone isomers. Defining the main plane of
the calixarene by the four bridging carbon atoms (C2, C8, C14, C20), the aromatic moiety
bearing trifluoroacetamide is tilted out of the cavity with the interplanar angle Φ = 131.40◦.
The opposite aromatic subunit with quinoline moiety exhibits similar geometrical parame-
ters (Φ = 127.36◦). The remaining two phenolic subunits cross the main plane at almost right
angles (Φ = 79.48◦ and 84.75◦) and are directed slightly into the cavity. This arrangement
with large substituents on the subunits facing out of the cavity is apparently the result of
steric hindrance minimization (Figure 3b).
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Interesting supramolecular interactions were found within the crystal packing of 16.
As shown in Figure 3c, the opposite enantiomers of 16 are held together via hydro-
gen bond interactions between the carbonyl oxygen and NH groups from amidic func-
tions (NH···O = C distance = 2.128 Å). This bonding is further strengthened by the con-
comitant HB interaction between the carbonyl and ortho hydrogen of aromatic subunit
(CH···O = C = 2.522 Å). Interestingly, methanol is included in the form of dimer with
OH···O distance of 1.817 Å, indicating a strong HB between methanol molecules (Figure 3c).
This dimer is held at both ends by HBs from quinoline nitrogen (N···HO = 2.129 Å) and
from amidic NH moiety (NH···O = 1.927 Å).

Common lower rim peralkylated calix[4]arenes immobilized in the cone conformation
are known to exhibit so called pinched cone—pinched cone interconversion in solution, where
two border conformations mutually equilibrate (Figure 4). The above X-ray analysis
revealed that the introduction of heterocyclic moiety into the upper rim of calix[4]arenes
leads to a single pinched cone conformer in the solid state with substituted aromatic subunits
pointing out of the cavity. This means that only one of the two theoretically possible
pinched cone conformations is preferred, obviously as a consequence of the steric hindrance
minimization within the upper rim.
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To show the general behaviour of our products in solution, compounds 4a and 6a
representing the meta- and para-amino substituted calixarene systems were selected for
dynamic 1H NMR study. As shown in ESI (Figures S45–S50), both compounds 4a and 6a
did not show any changes within the whole temperature range studied (298-173 K, CD2Cl2,
500 MHz). This is strong evidence that both compounds also exist in solution in only one
thermodynamically preferred pinched cone B conformation as a direct consequence of the
attachment of the heterocyclic moiety.
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As all quinoline derivatives described above represent the inherently chiral systems,
we have carried out a study of their possible resolution on a chiral column. On an analyt-
ical scale, the separation of racemic 4a into enantiomers was feasible with Chiralpak IA
(250 × 4.6 ID, 5 µm) column, using heptane/ethyl acetate (95/5, v/v) as a mobile phase.
However, these conditions turned out to be unsuitable for the separation in a preparative
scale. On the other hand, the preparative resolution of compound 6a was successfully
carried out using a polysaccharide column ChiralArt Amylose-SA (250 × 20 mm ID, 5 µm)
with cyclohexane/DCM: 92/8 v/v as a mobile phase. The resulting individual enantiomers
6a_1 and 6a_2 were used for titration study.

Calixquinolines represent systems with enlarged aromatic cavities potentially capable
of interacting with molecules bearing an acidic CH3 group (C-H···π interactions). The 1H
NMR titration experiments revealed the possible use of newly prepared compounds as
receptors for ammonium salt complexation (Figure 5). The complexation constant was
determined by analyzing the complexation-induced shifts (CIS) of host signals (hydrogen
in position 3- of quinolinium moiety) using a nonlinear curve-fitting procedure (program
BindFit) [30]. The titration (C2D2Cl4) of 4a with N-methylquinolinium iodide (NMQI) and
N-methylisoquinolinium iodide (NMII) revealed the formation of 1:1 complexes with com-
plexation constants 12.2 and 16.6 M−1, respectively (Standard deviations for NMR titrations
are generally estimated to be around 10%). Surprisingly, the titration by a structurally
similar N-methylpyridinium iodide (NMPI) showed the formation of complexes with 2:1
stoichiometry and complexation constants K11 = 13.0 M−1 and K21 = 2798 M−1.
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Based on these results, we attempted the enantioselective recognition of (S)-
N-methylnicotinium iodide (NMNI) with separated enantiomers 6a_1 and 6a_2 (Figure 4).
The resulting complexation constants 37.3 M−1 for 6a_1 and 72.1 M−1 for 6a_2 showed the
fairly good ability of our substances in enantioselective recognition of chiral guest molecules.

The presence of a trifluoroacetamide motif in several of our compounds led us to the
idea of testing the anion-binding capacity as well. Indeed, compound 16 was shown to
complex tetrabutylammonium acetate and benzoate in CDCl3 solution with corresponding
constants of K(Ac) = 23.6 M−1 and K(Bz) = 29.9 M−1.

3. Materials and Methods
3.1. General Experimental Procedures

All chemicals were purchased from commercial sources and used without further
purification. Solvents were dried and distilled using conventional methods. Melting
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points were measured on Heiztisch Mikroskop—Polytherm A (Wagner & Munz, Germany).
NMR spectra were performed on Agilent 400-MR DDR2 (1H: 400 MHz, 13C: 100 MHz).
Deuterated solvents used are indicated in each case. Chemical shifts (δ) are expressed in
ppm and refer to the residual peak of the solvent or TMS as an internal standard; coupling
constants (J) are in Hz. The mass analyses were performed using the ESI technique on a
Q–TOF (Micromass) spectrometer. Elemental analyses were carried out on Perkin–Elmer
240, Elementar vario EL (Elementar, Germany) or Mitsubishi TOX–100 instruments. All
samples were dried in the desiccator over P2O5 under vacuum (1 Torr) at 80 ◦C for 8 h.
The IR spectra were measured on an FT–IR spectrometer Nicolet 740 or Bruker IFS66
spectrometers equipped with a heated Golden Gate Diamante ATR–Unit (SPECAC) in KBr.
A total of 100 Scans for one spectrum were co–added at a spectral resolution of 4 cm−1.
The courses of the reactions were monitored using TLC aluminium sheets with Silica gel 60
F254 (Merck). The column chromatography was performed on Silica gel 60 (Merck). HPLC
was performed on Büchi Pure 850 FlashPrep chromatography instrument using Prontosil,
150 × 20 mm, 5 µm column.

3.2. Synthetic Procedures
3.2.1. Quinoline Derivative 4a

Calixarene 2 (0.122 g, 0.20 mmol) was dissolved in 5 mL of toluene at room temperature.
Acetaldehyde (0.020 mL, 0.36 mmol) was added, and the resulting solution was stirred
for 10 min. Then, trifluoroacetic acid (0.13 mL) was added and the colour of the solution
immediately turned red. The reaction mixture was heated to 80 ◦C and stirred for 17 h. The
solution was quenched by saturated NaHCO3 (5 mL). The organic phase was separated,
washed with water (2 × 20 mL) and dried over magnesium sulphate. The solvent was
removed under reduced pressure to yield a crude product, which was further purified by
thin-layer chromatography on silica gel (cyclohexane:ethyl acetate 20:1, v/v) to give the
title compound 4a as a yellow amorphous solid (0.061 g, 46%), m.p. 173–176 ◦C.

1H NMR (CDCl3, 400 MHz, 298 K) δ 8.00 (d, 1H, J = 8.6 Hz, Ar-H), 7.51 (s, 1H, Ar-H),
7.20 (d, 1H, J = 8.2 Hz, Ar-H), 7.16–7.08 (m, 2H, Ar-H), 6.92 (t, 1H, J = 7.4 Hz, Ar-H),
6.22–6.05 (m, 5H, Ar-H), 5.96–5.89 (m, 1H, Ar-H), 5.03 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar),
4.66 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 4.52 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 4.51 (d, 1H,
J = 13.3 Hz, Ar-CH2-Ar), 4.35 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 4.25–4.13 (m, 2H, O-CH2),
4.13–4.03 (m, 2H, O-CH2), 3.90–3.80 (m, 1H, O-CH2), 3.79–3.69 (m, 3H, O-CH2), 3.37 (d, 1H,
J = 13.3 Hz, Ar-CH2-Ar), 3.24–3.14 (m, 2H, Ar-CH2-Ar), 2.76 (s, 3H, Ar-CH3), 2.11–1.87 (m,
8H, O-CH2-CH2), 1.21–1.09 (m, 6H, O-CH2-CH2-CH3), 0.99–0.87 (m, 6H, O-CH2-CH2-CH3)
ppm. 13C NMR (CDCl3, 100 MHz, 298 K) δ 159.1, 158.1, 157.3, 155.3 (2×), 147.4, 137.4, 137.3,
137.0, 135.6, 134.4, 133.5, 133.0, 132.8, 132.4, 128.9, 128.8, 127.6, 127.4, 127.2, 126.9, 125.5,
122.9, 122.1, 122.0, 121.7, 119.8, 77.1, 76.9, 76.8, 76.5, 31.5, 31.1, 31.0, 26.9, 25.6, 23.6, 23.1,
23.0, 22.8, 10.9 (2×), 9.9 (2×) ppm. IR (KBr) ν 2961.1, 2931.8, 2874.3, 1590.4, 1454.9, 1383.1,
1245.0, 1193.7, 1005.9 cm−1. HRMS (ESI+) calcd for C44H51NO4 658.3891 [M+H]+, 680.3710
[M+Na]+, found m/z 658.3892 [M+H]+ (100%), 680.3705 [M+Na]+ (10%).

3.2.2. Quinoline Derivative 4b

Calixarene 2 (0.101 g, 0.17 mmol) was dissolved in 5 mL of toluene at room temperature.
Bromoacetaldehyde diethyl acetal (0.080 mL, 0.53 mmol) was added, and the resulting
solution was stirred for 10 min. Then, trifluoroacetic acid (0.25 mL) was added and the
colour of the solution immediately turned red. The reaction mixture was heated to 80 ◦C
and stirred for 17 h. The solution was quenched by saturated NaHCO3 (5 mL). The organic
phase was separated, washed with water (2 × 20 mL) and dried over magnesium sulphate.
The solvent was removed under reduced pressure to yield a crude product, which was
further purified by thin-layer chromatography on silica gel (cyclohexane:ethyl acetate
6:1, v/v) to give the title compound 5b as a brown amorphous solid (0.061 g, 37%), m.p.
179–182 ◦C.
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1H NMR (CDCl3, 400 MHz, 298 K) δ 8.24 (s, 1H, Ar-H), 7.41 (s, 1H, Ar-H), 6.98 (dd,
2H, J = 7.4, 1.2 Hz, Ar-H), 6.93 (dd, 1H, J = 7.4, 1.2 Hz, Ar-H), 6.76 (t, 1H, J = 7.4 Hz,
Ar-H), 6.25–6.16 (m, 4H, Ar-H), 6.11 (dd, 1H, J = 6.3, 2.7 Hz, Ar-H), 6.02 (dd, 1H, J = 6.3,
2.7 Hz, Ar-H), 5.30 (s, 1H, CH2-OH), 4.89 (s, 2H, Ar-CH2-OH), 4.74 (d, 1H, J = 13.7 Hz,
Ar-CH2-Ar), 4.65 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 4.47 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar),
4.46 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 4.42 (d, 1H, J = 13.7 Hz, Ar-CH2-Ar), 4.15 (dd, 1H,
J = 8.6, 7.0 Hz, O-CH2), 4.07–3.95 (m, 2H, O-CH2), 3.87–3.66 (m, 5H, O-CH2), 3.37 (d, 1H,
J = 13.3 Hz, Ar-CH2-Ar), 3.16 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 3.15 (d, 1H, J = 13.7 Hz,
Ar-CH2-Ar), 2.06–1.96 (m, 3H, O-CH2-CH2), 1.95–1.84 (m, 5H, O-CH2-CH2), 1.10 (t, 6H,
J = 7.4 Hz, O-CH2-CH2-CH3), 0.93 (t, 3H, J = 7.4 Hz, O-CH2-CH2-CH3), (t, 3H, J = 7.4 Hz,
O-CH2-CH2-CH3) ppm. 13C NMR (CDCl3, 125 MHz, 298 K) δ 159.6, 157.7, 155.5 (2×), 154.2,
144.2, 139.2, 138.7, 136.9, 136.5, 134.1, 133.7, 133.5, 132.5, 132.2, 128.7 (2×), 128.0, 127.5, 127.4,
127.3, 125.3, 124.9, 122.1 (2×), 121.8, 113.2, 77.0 (2×), 76.9, 76.5, 63.7, 31.5, 31.1, 31.0, 23.7,
23.5, 23.4, 23.2, 23.1, 10.8 (2×), 10.00 (2×) ppm. IR (KBr) ν 2961.6, 2931.8, 2874.7, 1729.8,
1588.2, 1455.7, 1383.8, 1203.5, 1086.9 cm−1. HRMS (ESI+) calcd for C44H50NBrO5 776.2744
[M+Na]+, 792.2484 [M+K]+, found m/z 776.2748 [M+Na]+ (100%), 792.2476 [M+K]+ (5%).

3.2.3. Quinoline Derivative 6a

Calixarene 3 (0.101 g, 0.14 mmol) was dissolved in 5 mL of toluene at room temperature.
Acetaldehyde (0.020 mL, 0.36 mmol) was added, and the resulting solution was stirred
for 10 min. Then, trifluoroacetic acid (0.11 mL) was added and the colour of the solution
immediately turned red. The reaction mixture was heated to 80 ◦C and stirred for 15 h. The
solution was quenched by saturated NaHCO3 (5 mL). The organic phase was separated,
washed with water (2 × 20 mL) and dried over magnesium sulphate. The solvent was
removed under reduced pressure to yield a crude product, which was further purified by
thin-layer chromatography on silica gel (cyclohexane:ethyl acetate 3:1, v/v) to give the title
compound 6a as a brown amorphous solid (0.019 g, 18%), m.p. 170–173 ◦C.

1H NMR (CDCl3, 400 MHz, 298 K) δ 8.35 (d, 1H, J = 8.6 Hz, Ar-H), 7.79 (s, 1H, Ar-H),
7.26 (d, 1H, J = 9.0 Hz, Ar-H), 7.01 (dd, 1H, J = 7.4, 1.6 Hz, Ar-H), 6.94 (dd, 1H, J = 7.4, 1.2 Hz,
Ar-H), 6.76 (t, 1H, J = 7.4 Hz, Ar-H), 6.22–6.13 (m, 5H, Ar-H), 5.94 (dd, 1H, J = 7.0, 1.6 Hz,
Ar-H), 4.63 (d, 1H, J = 12.9 Hz, Ar-CH2-Ar), 4.60 (d, 1H, J = 13.7 Hz, Ar-CH2-Ar), 4.46 (d,
1H, J = 13.3 Hz, Ar-CH2-Ar), 4.46 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 4.14 (dt, 1H, J = 10.6,
5.5 Hz, O-CH2), 4.05–3.95 (m, 3H, O-CH2), 3.92 (d, 1H, J = 14.1 Hz, Ar-CH2-Ar), 3.83–3.70
(m, 4H, O-CH2), 3.42 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 3.19–3.13 (m, 2H, Ar-CH2-Ar), 2.75 (s,
3H, Ar-CH3), 2.07–1.86 (m, 8H, O-CH2-CH2), 1.11 (t, 3H, J = 7.4 Hz, O-CH2-CH2-CH3), 1.10
(t, 3H, J = 7.4 Hz, O-CH2-CH2-CH3), 0.96–0.89 (m, 6H, O-CH2-CH2-CH3) ppm. 13C NMR
(CDCl3, 100 MHz, 298 K) δ 157.7, 156.1, 155.6, 155.5, 155.4 (2×), 136.8, 136.7 (2×), 133.7
(2×), 133.2, 132.3, 130.3, 128.8, 128.6 (2×), 127.7 (2×), 127.6, 126.8, 125.8, 122.1 (3×), 121.7,
121.0, 76.9 (3×), 76.4, 31.7, 31.1, 30.9, 24.2, 23.5 (2×), 23.4, 23.1, 23.0, 10.8, 10.7, 10.0, 9.9 ppm.
IR (KBr) ν 2960.5, 2920.4, 2874.1, 1455.4, 1383.7, 1208.3, 1086.9 cm−1. HRMS (ESI+) calcd
for C44H51NO4 658.3891 [M+H]+, 696.3450 [M+Na]+, found m/z 658.3894 [M+H]+ (100%),
696.3443 [M+Na]+ (3%).

3.2.4. Bis-Quinoline Derivative 14

Calixarene 7 (0.104 g, 0.17 mmol) was dissolved in 5 mL of toluene at room temperature.
Acetaldehyde (0.040 mL, 0.71 mmol) was added, and the resulting solution was stirred
for 10 min. Then, trifluoroacetic acid (0.22 mL) was added and the colour of the solution
immediately turned red. The reaction mixture was heated to 80 ◦C and stirred for 15 h. The
solution was quenched by saturated NaHCO3 (5 mL). The organic phase was separated,
washed with water (2 × 20 mL) and dried over magnesium sulphate. The solvent was
removed under reduced pressure to yield a crude product which was further purified by
thin-layer chromatography on silica gel (cyclohexane:ethyl acetate 6:1, v/v) to give the title
compound 14 as a yellow amorphous solid (0.061 g, 37%), m.p. 185–188 ◦C.
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1H NMR (CDCl3, 400 MHz, 298 K) δ 8.00 (d, 2H, J = 8.2 Hz, Ar-H), 7.52 (s, 2H, Ar-H),
7.20 (d, 2H, J = 8.2 Hz, Ar-H), 6.21–6.05 (m, 2H, Ar-H), 6.03–5.95 (m, 2H, Ar-H), 5.84 (dd,
2H, J = 6.7, 2.0 Hz, Ar-H), 5.04 (d, 2H, J = 13.3 Hz, Ar-CH2-Ar), 4.67 (d, 2H, J = 13.3 Hz,
Ar-CH2-Ar), 4.35 (d, 2H, J = 13.3 Hz, Ar-CH2-Ar), 4.25–4.16 (m, 2H, O-CH2), 3.90–3.68 (m,
6H, O-CH2), 3.38 (d, 2H, J = 13.3 Hz, Ar-CH2-Ar), 2.75 (s, 6H, Ar-CH3), 2.13–1.85 (m, 8H,
O-CH2-CH2), 1.17 (t, 6H, J = 7.4 Hz, O-CH2-CH2-CH3), 0.91 (t, 6H, J = 7.4 Hz, O-CH2-CH2-
CH3) ppm. 13C NMR (CDCl3, 100 MHz, 298 K) δ 159.2, 157.3, 155.4, 147.4, 137.6, 135.6,
134.7, 133.0, 131.8, 127.5, 126.7, 125.5, 122.9, 122.1, 119.8, 76.9 (2×), 31.5, 25.6, 23.6, 23.1,
22.6, 10.9, 9.9 ppm. IR (KBr) ν 2960.1, 2921.7, 2874.2, 1602.4, 1492.0, 1453.8, 1382.6, 1184.0,
1085.3 cm−1. HRMS (ESI+) calcd for C48H54N2O4 723.4156 [M+H]+, 745.3976 [M+Na]+,
found m/z 723.4156 [M+H]+ (100%), 745.3972 [M+Na]+ (25%).

3.2.5. Quinoline Derivatives 15a and 15b

Calixarene 8 (0.119 g, 0.19 mmol) was dissolved in 5 mL of toluene at room temperature.
Acetaldehyde (0.040 mL, 0.71 mmol) was added, and the resulting solution was stirred
for 10 min. Then, trifluoroacetic acid (0.25 mL) was added and the colour of the solution
immediately turned red. The reaction mixture was heated to 80 ◦C and stirred for 17 h. The
solution was quenched by saturated NaHCO3 (5 mL). The organic phase was separated,
washed with water (2 × 20 mL) and dried over magnesium sulphate. The solvent was
removed under reduced pressure to yield a crude product which was further purified
by thin-layer chromatography on silica gel (cyclohexane:ethyl acetate 4:1, v/v) to give an
inseparable mixture of title compounds 15a and 15b as a yellow amorphous solid (0.020 g,
14%), m.p. 152–155 ◦C.

1H NMR (CDCl3, 400 MHz, 298 K) δ 8.39 (t, 2H, J = 9.0 Hz, Ar-H), 7.98 (d, 2H,
J = 8.6 Hz, Ar-H), 7.87 (s, 2H, Ar-H), 7.51 (s, 2H, Ar-H), 7.29 (d, 2H, J = 9.0 Hz, Ar-H), 7.19
(d, 2H, J = 8.2 Hz, Ar-H), 6.09–5.95 (m, 7H, Ar-H), 5.93 (t, 1H, J = 7.4 Hz, Ar-H), 5.86 (dd,
1H, J = 7.4, 1.6 Hz, Ar-H), 5.81 (dd, 1H, J = 7.4, 1.6 Hz, Ar-H), 5.78–5.71 (m, 2H, Ar-H), 5.03
(d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 5.02 (d, 1H, J = 13.7 Hz, Ar-CH2-Ar), 4.70–4.55 (m, 4H,
Ar-CH2-Ar), 4.33 (d, 1H, J = 12.9 Hz, Ar-CH2-Ar), 4.31 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar),
4.26–4.00 (m, 8H, O-CH2), 3.94 (d, 1H, J = 14.1 Hz, Ar-CH2-Ar), 3.94 (d, 1H, J = 13.3 Hz,
Ar-CH2-Ar), 3.87–3.68 (m, 8H, O-CH2), 3.45 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 3.44 (d, 1H,
J = 12.9 Hz, Ar-CH2-Ar), 3.36 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 3.35 (d, 1H, J = 13.3 Hz,
Ar-CH2-Ar), 2.76 (s, 3H, Ar-CH3), 2.73 (s, 3H, Ar-CH3), 2.14–1.83 (m, 16H, O-CH2-CH2),
1.19–1.10 (m, 12H, O-CH2-CH2-CH3), 0.97–0.84 (m, 12H, O-CH2-CH2-CH3) ppm. HRMS
(ESI+) calcd for C48H54N2O4 723.4156 [M+H]+, 745.3976 [M+Na]+, found m/z 723.4162
[M+H]+ (100%), 745.3974 [M+Na]+ (20%).

3.2.6. Quinoline Derivative 15c

Calixarene 15c was isolated from the same reaction mixture as compounds 15a and 15b.
The product was obtained as a yellow amorphous solid (0.014 g, 10%), m.p. 163–166 ◦C.

1H NMR (CDCl3, 500 MHz, 298 K) δ 7.98 (d, 1H, J = 8.2 Hz, Ar-H), 7.48 (s, 1H, Ar-H),
7.18 (d, 1H, J = 8.2 Hz, Ar-H), 6.43 (s, 1H, Ar-NH-CH2), 6.26–6.01 (m, 5H, Ar-H), 5.89 (d, 1H,
J = 7.0 Hz, Ar-H), 4.99 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 4.62 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar),
4.43 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 4.42 (d, 1H, J = 12.9 Hz, Ar-CH2-Ar), 4.21–4.08 (m,
2H, O-CH2), 3.98–3.89 (m, 2H, O-CH2), 3.83–3.65 (m, 4H, O-CH2), 3.34 (d, 1H, J = 13.3 Hz,
Ar-CH2-Ar), 3.16 (q, 2H, J = 7.0 Hz, NH-CH2-CH3), 3.05 (d, 2H, J = 13.3 Hz, Ar-CH2-Ar),
2.74 (s, 3H, Ar-CH3), 2.10–1.83 (m, 8H, O-CH2-CH2), 1.29 (t, 3H, J = 7.0 Hz, NH-CH2-CH3),
1.12 (t, 3H, J = 7.4 Hz, O-CH2-CH2-CH3), 1.11 (t, 3H, J = 7.4 Hz, O-CH2-CH2-CH3), 0.90 (t,
3H, J = 7.4 Hz, O-CH2-CH2-CH3), 0.87 (t, 3H, J = 7.4 Hz, O-CH2-CH2-CH3) ppm. 13C NMR
(CDCl3, 125 MHz, 298 K) δ 157.2, 155.3, 155.2, 137.7, 137.3, 135.6, 134.3, 133.5, 132.8, 132.3,
127.6, 127.3, 127.1, 126.8, 125.4, 122.8, 122.0, 121.9, 119.7, 77.0, 76.9, 76.7, 76.6, 31.5, 31.2, 31.1,
29.7, 25.5, 23.6, 23.5, 23.0, 22.9, 15.0, 10.9, 10.8, 9.9 (2×) ppm. IR (KBr) ν 2959.7, 1219.1, 173.9,
1958.3, 1604.5, 1454.2, 1383.3, 1087.7 cm−1. HRMS (ESI+) calcd for C46H56N2O4 701.4313
[M+H]+, 723.4132 [M+Na]+, found m/z 701.4318 [M+H]+ (100%), 723.4134 [M+Na]+ (75%).
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3.2.7. Quinoline Derivative 16

Calixarene 12 (0.101 g, 0.14 mmol) was dissolved in 5 mL of toluene at room temper-
ature. Acetaldehyde (0.020 mL, 0.36 mmol) was added, and the resulting solution was
stirred for 10 min. Then, trifluoroacetic acid (0.09 mL) was added and the colour of the
solution immediately turned red. The reaction mixture was heated to 80 ◦C and stirred
for 17 h. The solution was quenched by saturated NaHCO3 (5 mL). The organic phase
was separated, washed with water (2 × 20 mL) and dried over magnesium sulphate. The
solvent was removed under reduced pressure to yield crude product, which was further
purified by thin-layer chromatography on silica gel (cyclohexane:ethyl acetate 4:1, v/v) to
give the title compound 16 as a yellow amorphous solid (0.051 g, 47%), m.p. 163–166 ◦C.

1H NMR (CDCl3, 400 MHz, 298 K) δ 7.92 (d, 1H, J = 8.2 Hz, Ar-H), 7.72 (br s, 1H,
Ar-H), 7.40 (s, 1H, Ar-H), 7.14 (d, 1H, J = 8.2 Hz, Ar-H), 7.09 (br s, 1H, Ar-H), 6.32–6.07
(m, 6H, Ar-H), 4.92 (d, 1H, J = 12.9 Hz, Ar-CH2-Ar), 4.62 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar),
4.53–4.42 (m, 1H, Ar-CH2-Ar), 4.34 (d, 1H, J = 12.9 Hz, Ar-CH2-Ar), 4.17–3.93 (m, 4H,
O-CH2), 3.89–3.79 (m, 1H, O-CH2), 3.79–3.67 (m, 3H, O-CH2), 3.35 (d, 1H, J = 13.3 Hz,
Ar-CH2-Ar), 3.17 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar), 3.15 (d, 1H, J = 13.3 Hz, Ar-CH2-Ar),
2.72 (s, 3H, Ar-CH3), 2.07–1.82 (m, 8H, O-CH2-CH2), 1.18–1.03 (m, 6H, O-CH2-CH2-CH3),
1.00–0.85 (m, 6H, O-CH2-CH2-CH3) ppm. 13C NMR (CDCl3, 100 MHz, 298 K) δ 158.8, 158.7,
157.1, 156.0, 155.5 (2×), 137.9, 137.5, 137.2, 136.9, 135.4, 134.8, 134.5, 133.0 (2×), 132.2, 128.6,
128.3, 127.7, 127.6, 126.9, 125.6, 122.9, 122.2, 121.9, 120.8 (2×), 119.7, 117.3, 77.0, 76.9 (2×),
76.1, 31.3, 31.0 (2×), 25.5, 23.5 (3×), 23.1, 23.0, 10.7, 10.0 (2×), 9.6 ppm. IR (KBr) ν 3305.1,
2962.0, 2933.1, 2875.5, 1710.2, 1605.4, 1455.9, 1183.1, 758.4 cm−1. HRMS (ESI+) calcd for
C46H51F3N2O5 769.3823 [M+H]+, 791.3642 [M+Na]+, 807.3382 [M+K]+, found m/z 769.3827
[M+H]+ (100%), 791.3638 [M+Na]+ (30%), 807.3375 [M+K]+ (18%).

3.2.8. Quinoline Derivative 17a

Calixarene 13 (0.124 g, 0.17 mmol) was dissolved in 5 mL of toluene at room temper-
ature. Acetaldehyde (0.020 mL, 0.36 mmol) was added, and the resulting solution was
stirred for 10 min. Then, trifluoroacetic acid (0.11 mL) was added and the colour of the
solution immediately turned red. The reaction mixture was heated to 80 ◦C and stirred
for 17 h. The solution was quenched by saturated NaHCO3 (5 mL). The organic phase
was separated, washed with water (2 × 20 mL) and dried over magnesium sulphate. The
solvent was removed under reduced pressure to yield a crude product, which was further
purified by preparative HPLC to give the title compounds 17a as a yellow amorphous solid
(0.023 g, 17%), m.p. 120–123 ◦C. In the 13C NMR spectrum, the number of signals does not
correspond to the number of carbons due to the low intensity of certain signals.

1H NMR (CDCl3, 500 MHz, 298 K) δ 7.73 (s, 1H, Ar-H), 7.23–6.73 (m, 8H, Ar-H, Ar-
NH-COCF3), 6.67–6.53 (m, 1H, Ar-H), 6.26–6.05 (m, 2H, Ar-H), 4.84 (d, 1H, J = 14.0 Hz,
Ar-CH2-Ar), 4.61 (d, 1H, J = 13.5 Hz, Ar-CH2-Ar), 4.47 (d, 1H, J = 14.9 Hz, Ar-CH2-Ar),
4.40 (d, 1H, J = 13.5 Hz, Ar-CH2-Ar), 4.01–3.90 (m, 4H, O-CH2), 3.80 (d, 1H, J = 14.6 Hz,
Ar-CH2-Ar), 3.77–3.59 (m, 4H, O-CH2), 3.37 (d, 1H, J = 13.5 Hz, Ar-CH2-Ar), 3.19–3.05 (m,
2H, Ar-CH2-Ar), 2.52 (s, 3H, Ar-CH3), 1.98–1.74 (m, 8H, O-CH2-CH2), 1.10 (t, 3H, J = 7.1 Hz,
O-CH2-CH2-CH3), 1.04 (t, 3H, J = 7.4 Hz, O-CH2-CH2-CH3), 0.92 (t, 3H, J = 7.1 Hz, O-CH2-
CH2-CH3), 1.06–0.81 (m, 3H, O-CH2-CH2-CH3) ppm. 13C NMR (CDCl3, 125 MHz, 298 K)
δ 155.7, 145.1, 132.4, 129.8, 129.1, 129.0, 128.6, 128.4, 122.6, 122.3, 121.9, 118.2, 114.9, 114.1,
77.2, 77.1, 76.9, 76.3, 31.1, 30.9, 29.7, 26.9, 24.6, 23.5, 23.4, 23.1, 21.9, 10.7 (2×), 10.0, 9.6. ppm.
IR (KBr) ν 3360.6, 2961.8, 2920.2, 2875.8, 1729.1, 1454.9, 1203.2, 1157.5 cm−1. HRMS (ESI+)
calcd for C46H51F3N2O5 769.3823 [M+H]+, 791.3642 [M+Na]+, 807.3382 [M+K]+, found m/z
769.3827 [M+H]+ (100%), 791.3638 [M+Na]+ (30%), 807.3375 [M+K]+ (15%).

3.2.9. Quinoline Derivative 17b

Calixarene 17b was isolated from the same reaction mixture as compound 17a. This
product was isolated as a yellow amorphous solid (0.020 g, 15%), m.p. 122–125 ◦C. In the
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13C NMR spectrum, the number of signals does not correspond to the number of carbons
due to the low intensity of certain signals.

1H NMR (CDCl3, 400 MHz, 298 K) δ 8.03 (s, 1H, Ar-H), 7.77 (s, 1H, Ar-NH-COCF3),
7.06–6.99 (m, 2H, Ar-H), 6.83–6.48 (m, 6H, Ar-H), 6.29–5.96 (m, 2H, Ar-H), 4.73 (d, 1H,
J = 14.1 Hz, Ar-CH2-Ar), 4.60 (d, 1H, J = 13.7 Hz, Ar-CH2-Ar), 4.44 (d, 1H, J = 14.4 Hz,
Ar-CH2-Ar), 4.38 (d, 1H, J = 13.8 Hz, Ar-CH2-Ar), 4.04–3.90 (m, 4H, O-CH2), 3.88–3.72
(m, 5H, O-CH2, Ar-CH2-Ar), 3.39 (d, 1H, J = 13.8 Hz, Ar-CH2-Ar), 3.24 (d, 1H, J = 14.5 Hz,
Ar-CH2-Ar), 3.10 (d, 1H, J = 13.8 Hz, Ar-CH2-Ar), 2.60 (s, 3H, Ar-CH3), 2.02–1.77 (m, 8H,
O-CH2-CH2), 1.08–0.92 (m, 12H, O-CH2-CH2-CH3) ppm. 13C NMR (CDCl3, 100 MHz,
298 K) δ 156.0, 144.9, 140.2, 132.8, 130.4, 128.9, 128.3, 127.9, 124.8, 122.4, 121.9, 120.2, 118.7,
117.2, 77.0, 76.8 (2×), 31.7, 31.1, 29.7, 26.9, 24.8, 23.3, 23.2, 22.9, 10.5, 10.4, 10.2 (2×) ppm.
IR (KBr) ν 3352.4, 2961.7, 2920.3, 2875.9, 1728.4, 1454.4, 1203.9, 1157.9 cm−1. HRMS (ESI+)
calcd for C46H51F3N2O5 769.3823 [M+H]+, 791.3642 [M+Na]+, 807.3382 [M+K]+, found m/z
769.3815 [M+H]+ (100%), 791.3635 [M+Na]+ (8%), 807.3375 [M+K]+ (20%).

3.3. Chiral Separation

Chiral separation of 6a was performed using a Büchi Pure 850 FlashPrep chromatogra-
phy instrument consisting of a binary pump module, UV-vis detector, column manager
and fraction collector. The suitable conditions allowing for efficient enantioseparation
were first proven on the analytical scale using chiral polysaccharide column ChiralArt
Amylose-SA (250 × 4.6 mm ID, 5 µm). In preparative mode, a polysaccharide column
ChiralArt Amylose-SA (250 × 20 mm ID, 5 µm) was employed using cyclohexane/DCM:
92/8 v/v as a mobile phase.

3.4. NMR Titrations

In each case, calixarene was dissolved in a specified amount of CDCl3 or C2D2Cl4 and
0.5 mL of calixarene solution was put in an NMR tube. A specific amount of guest was
added to the calixarene solution (0.6 mL), and the aliquots of guest were gradually added
to the NMR tube to achieve different calixarene/guest ratios, ensuring constant calixarene
concentration during the experiment. The complexation constants were determined by an-
alyzing CIS (complexation induced chemical shifts) of calixarene protons using a nonlinear
curve-fitting procedure (program BindFit) [30].

3.5. X-ray Measurements

Crystallographic data for 16. M = 800.94 g·mol−1, triclinic system, space group P-1,
a = 15.52150 (2) Å, b = 18.08924 (3) Å, c = 18.11720 (2) Å, α = 77.920 (3)◦, β = 71.014 (2)◦,
γ = 64.684 (2)◦ Z = 4, V = 4333.46 (9) Å3, Dc = 1.228 g·cm−3, µ(Cu-Kα) = 0.73 mm−1, crystal
dimensions of 0.41 × 0.29 × 0.26 mm. Data were collected at 200 (2) K on a Bruker D8 Ven-
ture Photon CMOS diffractometer with Incoatec microfocus sealed tube Cu-Kα radiation.
The structure was solved by charge flipping methods [31] and anisotropically refined by
full matrix least squares on F squared using the CRYSTALS [32] to final value R = 0.085
and wR = 0.242 using 15,813 independent reflections (θmax = 68.4◦), 1370 parameters and
481 restrains. The hydrogen atoms bonded to carbon atoms were placed in calculated
positions refined with riding constrains, while hydrogen atoms bonded to oxygen and
nitrogen were refined using soft restraints. The disordered functional group positions were
found in difference electron density maps and refined with restrained geometry. MCE [33]
was used for visualization of electron density maps. The occupancy of the disordered
functional group was fully constrained. The structure was deposited into the Cambridge
Structural Database under the number CCDC 2215763.

4. Conclusions

In summary, the construction of inherently chiral calixarenes by the intramolecular
cyclization of suitable intermediates suffers from a limited number of suitable substrates
for these reactions. Here, we report on an easy way to prepare one class of such com-
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pounds: calixquinolines, which can be obtained by the reaction of aldehydes with easily
accessible aminocalix[4]arenes under acidic conditions (Doebner–Miller reaction). The
synthetic procedure represents a very straightforward approach to the inherently chiral
macrocyclic systems. The complexation studies revealed the ability of these compounds
to complex quaternary ammonium salts with different stoichiometries depending on the
guest molecules; moreover, we demonstrated their ability to carry out the enantioselective
complexation of chiral N-methylammonium salts.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27238545/s1. Spectral characterization of all new compounds
(1H NMR, 13C NMR, HRMS, IR) and the NMR complexation studies.
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