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Abstract: The concept of polypharmacology embraces multiple drugs combined in a therapeutic
regimen (drug combination or cocktail), fixed dose combinations (FDCs), and a single drug that
binds to different targets (multi-target drug). A polypharmacology approach is widely applied
in the treatment of acquired immunodeficiency syndrome (AIDS), providing life-saving therapies
for millions of people living with HIV. Despite the success in viral load suppression and patient
survival of combined antiretroviral therapy (cART), the development of new drugs has become
imperative, owing to the emergence of resistant strains and poor adherence to cART. 3′-azido-
2′,3′-dideoxythymidine, also known as azidothymidine or zidovudine (AZT), is a widely applied
starting scaffold in the search for new compounds, due to its good antiretroviral activity. Through the
medicinal chemistry tool of molecular hybridization, AZT has been included in the structure of several
compounds allowing for the development of multi-target-directed ligands (MTDLs) as antiretrovirals.
This review aims to systematically explore and critically discuss AZT-based compounds as potential
MTDLs for the treatment of AIDS. The review findings allowed us to conclude that: (i) AZT hybrids
are still worth exploring, as they may provide highly active compounds targeting different steps of
the HIV-1 replication cycle; (ii) AZT is a good starting point for the preparation of co-drugs with
enhanced cell permeability.

Keywords: HIV; AIDS; zidovudine; polypharmacology; multi-target-directed ligand; hybrid; co-drug

1. Introduction

Nowadays, drugs that act on multiple targets seem an increasingly feasible and
attractive polypharmacology option for drug discovery [1]. The ‘one gene, one target, one
drug’ paradigm has inspired the development of potent and selective ligands for many
years in the past. However, there is a general awareness that they are inadequate to deal
with the complexity of major chronic diseases or the problem of drug resistance. As most of
the currently incurable diseases are caused by multiple factors, the concomitant modulation
of several targets through polypharmacology is required [2,3].

The concept of polypharmacology includes three options [4]: multiple drugs that bind
to different targets (drug combinations or drug cocktails), fixed dose combinations (FDCs),
and single drugs that bind to different targets (multi-target drugs). The effectiveness of
the therapeutic approach based on drug cocktails may be compromised by poor patient
compliance and the risk of drug–drug interactions, commonly caused by induction or
inhibition of hepatic metabolism [5]. However, it is the mainstay for the treatment of
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several multifactorial diseases, such as Alzheimer’s disease, cancer, respiratory diseases,
and acquired immunodeficiency syndrome (AIDS), among others. FDCs improve patient
adherence to therapy by bringing together two or more active pharmaceutical ingredients
(APIs) in a single formulation. On the other hand, FDC limits dose flexibility and is more
expensive than generic drugs. Regarding multi-target drugs, in 2008 Bolognesi and col-
leagues, based on the potential of polypharmacology in the treatment of neurodegenerative
diseases, proposed the term multi-target-directed ligands (MTDLs) to refer to this class of
compounds [6,7]. The purpose of this was to better highlight “their ability to interact with
the multiple targets thought to be responsible for the disease pathogenesis” and to clearly
differentiate them from so-called “promiscuous drugs” [1]. On this basis, in this review the
term MTDLs will be used to refer to these compounds (Figure 1).
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As mentioned, the polypharmacology approach is currently applied in the treatment
of AIDS, which remains a worldwide public health problem. Currently, there is not a cure
or an effective vaccine for AIDS; however, the available therapy provides a better quality of
life for patients, making it a manageable chronic disease. Treatment consists of combined
antiretroviral therapy (cART) [8], and this drug combination strategy is showing good
results in the control of the disease. In the case of AIDS, the reduction in viral load to
undetectable levels in the bodies of patients is fundamental to prevent disease spread [9].

AIDS is caused by the human immunodeficiency virus type 1 (HIV-1) and type 2
(HIV-2), which belong to the Retroviridae family and the Lentivirus genus. According to
the World Health Organization (WHO) estimation, there were approximately 37.7 million
people worldwide living with HIV/AIDS in 2020 [10].

The HIV replication cycle presents several events exclusively related to viral compo-
nents, which can be targets for chemotherapeutic intervention. Figure 2 illustrates that the
HIV life cycle starts when (1) HIV fuses with the surface of a CD4+ T cell, and (2) a capsid
consisting of the virus’s genome and proteins moves into the cell. (3) The disruption of
the capsid shell allows HIV reverse transcriptase to transcribe the viral RNA into DNA.
Then, (4) HIV DNA is transported across the nucleus, where the HIV integrase inserts
the HIV DNA into the CD4+ cell DNA. (5) The host transcription machinery transcribes
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HIV DNA into new RNA copies, which will be used for the genome of a new virus and to
make new HIV proteins. (6) The new HIV RNA and proteins move to the surface of the
cell, where a new, immature HIV forms. Finally, (7) the virus is released from the cell, and
HIV proteases cleave newly synthesized proteins to create a mature infectious virus. The
available drugs act at different stages of this HIV replication cycle and through different
mechanisms of action [11]: (1) acting on glycoproteins (gp120 and gp41) or receptors and
co-receptors present on the host cell surface (CD4 and CCR5 or CXCR4); (2) by blocking
the fixation or fusion process, collectively called “entry inhibitors”; (3) as inhibitors of the
reverse transcriptase (RT) enzyme (RTIs), either nucleosides (NRTIs) or non-nucleoside
(NNRTIs); (4) as inhibitors of integrase, the enzyme that promotes active integration of
the viral DNA double-strand into the host cell genome (integrase inhibitors); or (7) by
“competitive” inhibition of proteases (protease inhibitors, PIs). However, drug resistance
may arise from each of these drug classes. There are essentially two mechanisms by which
resistance to NRTIs can occur: (i) mutations of residues at or near the drug-binding site,
and (ii) mutation of the residues that results in reduced incorporation/enhanced removal
of the drug into/from its binding site. For NNRTI and PI drug classes, resistance occurs
primarily as a result of amino acid mutations within or proximal to the drug-binding site.
Drug combinations have been shown to slow down the evolution of resistance, as the simul-
taneous administration of two drugs, which operate with different mechanisms of action,
can reduce the probability of mutations. Consequently, clinical efficacy has been achieved
with the introduction of cART therapeutic regimens that include three or more drugs from
at least two different drug classes; however, the initial euphoria of the therapeutic advance
was quickly dashed by the appearance of strains resistant to different combinations of the
available drugs. These factors have called for a renewed drug discovery effort in this area,
aiming to obtain new molecules with known or innovative mechanisms of action [11].
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Today it is widely recognized that antiretroviral therapy still needs to be improved.
All available drugs have important side effects, and the patient often does not adhere
to the treatment consistently, resulting in many cases of drug resistance. Drug-resistant
HIV occurs when the virus replicates in subtherapeutic concentrations of antiretrovirals
and compromises the effectiveness of treatment, so new strategies are necessary [12,13].
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Medicinal chemists should concentrate their efforts on the search for new compounds able
to overcome all drawbacks of the current therapy and, ultimately, obtain more effective
alternatives for the treatment of AIDS.

A widely applied drug in the search for new compounds with antiretroviral activity is
3′-azido-2′,3′- dideoxythymidine, also known as azidothymidine or zidovudine (AZT), an
analog of thymidine (Figure 3a). This drug was initially developed as an anti-cancer agent
in the 1960s, but at the end of 1980s the United State regulatory agency, the Food and Drug
Administration (FDA), approved it as an anti-HIV therapeutic agent. Therefore, it was
also the first example of drug repositioning in the history of medicinal chemistry [14,15].
Indicated for adults and children, its administration must occur in combination with other
antiretroviral drugs. Nowadays, this drug is commonly used in the prevention of perinatal
HIV-1 transmission (vertical transmission) that consists of the use of this drug by the
mother before and during delivery, and treatment of the newborn [16]. AZT belongs to
the NRTI class and is a chemically modified prodrug, being an analog of thymidine that
differs by the presence of an azido group replacing the hydroxyl at the C-3′ position in the
deoxyribose ring [17]. The active form of this prodrug is formed upon triphosphorylation
at the 5′-OH position in the cell by kinases. The mechanism of action is characterized by
the conversion into the corresponding 5′-O-triphosphate that inhibits the virus replication
through a competitive binding to RT with subsequent termination of the growing viral
DNA strand (Figure 3b). If the copied DNA is not correctly formed, the viral RNA genome
can be destroyed by enzymes [18].
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Interestingly, some studies show that AZT can partially reverse HIV-associated neu-
rological disorders, such as dementia and peripheral neuropathy, in some patients with
advanced infection. However, these effects seem to be limited and diminish with the
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prolongation of therapy. Furthermore, AZT can also be used to treat other diseases, such as
in blocking T-leukemia virus-1 (human lymphoma) and other mammalian retroviruses [19].

A disadvantage in the use of AZT, as well as of other NRTIs, is toxicity. In the case
of this drug, the main adverse effects observed are nausea/vomiting, diarrhea, headache,
and bone marrow suppression. In order to decrease toxicity, increase potency/selectivity,
and optimize the pharmacokinetic profile, medicinal chemists have been interested in
modifying AZT structure and obtaining improved treatment options [18,20–22].

A recent trend considers AZT as a suitable starting point for new multi-target drug
discovery endeavors. This article will cover some of these medicinal chemistry strategies
that are aimed at identifying new analogs of AZT with a polypharmacological antiretroviral
profile.

2. Harnessing AZT for Polypharmacology: Drug Cocktails, FDCs, and MTDLs

As anticipated, both drug cocktails and FDCs are extensively employed as polypharma-
cological therapies for the treatment of AIDS. Nowadays, there are more than twenty FDCs
FDA-approved, and among them, Combivir® (lamivudine + zidovudine) and Trizivir®

(lamivudine + zidovudine + abacavir) are those containing AZT together with other NRTIs
(Figure 4). Currently, guidelines suggest cART with two NRTIs in combination with a third
active drug, the latter consisting of an integrase inhibitor. Thus, the preferred therapy for
adults consists of an FDC containing tenofovir + lamivudine + dolutegravir (TLD) [23,24]
(Figure 4). In 2021, the FDA approved Cabenuva® (an FDC of the integrase inhibitor, cabote-
gravir and the NNRTI, rilpivirine, co-packaged for intramuscular use) as a once-monthly
or every-two-months treatment.
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Clearly, both approaches have advantages and disadvantages, so when determining
the treatment of a patient, it is necessary to analyze which would be more appropriate.
The main advantage of using drug cocktails is the potential to adjust the dose of each
drug according to the patient’s need, providing personalized medicine. Although this
cannot be achieved with an FDC, the latter generally has better patient compliance due
to the reduction in pharmaceutical forms to be administered [25]. On the other hand, the
identification and validation of new drug cocktails are difficult to implement due to the
variety of options in terms of the number of pairs and the dosage combinations. As a
general feature, associations are more likely to have drug interactions and toxic effects than
single drugs [26].

A newer option in drug development for multifactorial diseases or those requiring
drug combinations is the search for single-molecule MTDLs. By modulating different
targets simultaneously, MTDLs can provide essential advantages over cocktails and FDCs.
Compared to cocktails, MTDLs would eliminate the drug interaction problem in addi-
tion to facilitating adherence to therapy, since the number of administered pills will be
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reduced. Compared to FDCs, they have more predictable pharmacokinetics, do not present
risk of drug interactions in formulation development, and may be better tolerated by pa-
tients [27,28]. MTDLs can be divided into two classes: co-drugs and hybrids (Figure 5) [7].
Co-drugs consist of two distinct synergistic drugs that are connected by a labile covalent
bond, where each one acts as a carrier for the other in a mutual manner. These are prodrugs,
since they only produce their pharmacological effects after metabolic activation. Con-
versely, hybrids may consist of two or more pharmacophores with proven activity and/or
toxicity, combined in a single compound [28]. The classification of hybrid molecules can
be based on their chemical structure or related to their targets. According to the structural
classification, hybrids can be called linked, fused, or merged hybrids. Linked hybrids are
obtained from two pharmacophoric frameworks connected by a metabolically stable spacer,
which is absent in both parent ligands. In fused and merged hybrids no linker is present,
but they differ from each other by their degrees of framework integration (Figure 5). For the
fused ones, the two active units are connected almost directly, whereas in merged hybrids
molecular frameworks overlap through a common structural element. Clearly, merged
hybrids have simpler chemical structures and lower molecular weight when compared to
the combination of the two precursor compounds [2,4].
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Regarding the classification based on targets, according to Barreiro and Fraga [2], two
targets belonging to the same biochemical pathways are classified as dual or mixed ligands.
When the selected targets are of different biochemical pathways but related to the same
pathophysiology, they are classified as symbiotic ligands [2].

A broad theoretical basis is required for the rational design of an MTDL. Classical
concepts of medicinal chemistry are used, such as molecular hybridization, which is one of
the most important tools [27].

In this review, we provide an overview of MTDLs with reported anti-HIV activity,
structurally derived from AZT, as possible future trends in the treatment of AIDS. We
decided to explore the literature by selecting the most relevant papers that showed the
importance of the AZT scaffold in the polypharmacological profile and structure–activity
relationship (SAR) data.
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3. Linked Hybrids as Potential HIV-1 Replication Inhibitors

Caramasa’s group was the first to develop AZT-based hybrids [29]. By combin-
ing the N-3 position of AZT’s thymine ring and NNRTIs, i.e., TSAO-T ([2′,5′-bis-O-(tert-
butyldimethylsilyl)-beta-D-ribofuranosyl]thymine]-3′-spiro-5”-(4”-amino-1”,2”-oxathiole-
2”,2”-dioxide) and HEPT ([(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine), via a non-
cleavable methylene linker of different lengths (n = 3–9), two series of hybrids with the
general formula [AZT]-(CH2)n-[TSAO-T analogs] and [AZT]-(CH2)n-[HEPT analogs] have
been designed and synthesized. Regarding the anti-HIV profile, the most potent hybrid 1
(Figure 6) belongs to the [AZT]-(CH2)n-[TSAO-T analogs] set and showed a half-maximal
effective concentration (EC50) of 0.10 µM against HIV-1 in CEM/0 cells, while being not
cytotoxic up to 100 µM. Of note, the antiviral activity within this series demonstrated a
clear trend in decreasing potency with the increasing number of methylene units of the
linker (n > 6). On the other hand, no derivatives of the [AZT]-(CH2)n-[HEPT analogs]
series proved to be active against HIV-1. Both hybrid sets showed no anti-HIV-2 activity in
CEM/0 and CEM/TK cells. However, although 1 exerted good anti-HIV-1 effect, it was
found to be less potent than the parent compound (Figure 6).
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In a follow-up work [30], the authors designed a second series based on AZT and
TSAO-T scaffolds aimed at exploring the influence on the antiviral activity of chemically
diverse spacers and sugar moieties. The resulting hybrids 2–8 (Figure 7), featuring flex-
ible, rigid and polar linkers, displayed comparable anti-HIV-1 activity with that of the
prototype 1. Notably, replacement of AZT in the prototype 1 by 2′,3′-didehydro-2′,3′-
dideoxythymidine led to compound 7, which resulted in a 5- to 10-fold higher inhibitory
effect against HIV-1 in CEM/0 and MT-4 cells, respectively, in comparison to 1 (Figure 7).
Considering that [AZT]-(CH2)n-[TSAO-T analogs] might not be recognized by cellular
kinases and thus transformed in their active forms, the authors synthesized compounds
with a monophosphate at the C-5′-position of the sugar ring. However, no improvements
in anti-HIV-1 activity were detected. Interestingly, the phenyl phosphoramidate derivative
6 (Figure 7) showed anti-HIV-2 activity (EC50 of 15 ± 7.1 µM).

Pontikis and co-workers designed, synthesized, and biologically evaluated a series of
linked hybrids carrying an NRTI and an NNRTI [31]. Hybrids 9–11 (Figure 8), obtained
by the combination of AZT and a HEPT analog, exhibited the best anti-HIV profile, with
EC50 values of 2.8, 3.3, and 1.7 µM, respectively. However, 9–11 were less active than
AZT (EC50 = 0.002 µM). In addition, 9–11 showed no effects on HIV-2 replication or the
HIV-1 resistant strain with the Y181C mutation. Thus, no synergistic effects were observed,
perhaps because the linker is unable to allow simultaneous binding of the AZT and HEPT
motifs at their respective sites [31].
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Figure 7. Chemical structures of 2–8 and their anti-HIV-1 profile.

Natural compounds may also inspire the development of anti-HIV hybrids. Betulin is
a natural and abundant pentacyclic triterpene that possesses a broad spectrum of biological
activities and inhibits different steps of the HIV replication cycle [32–35]. SAR studies
on the pentacyclic triterpene core demonstrated that the mechanism of antiviral activity
depends on the modification pattern at C-3 or C-28. Modification at C-3 led to bevirimat
(Figure 9), which is able to inhibit HIV-1 maturation [32,33], while modification at C-28
provided LH55, which blocks HIV-1 entry by inhibiting gp-120 [34,35] (Figure 9). For this
reason, betulin emerged as a valuable starting point for the development of novel anti-HIV
hybrids.
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On this basis, and in search of new anti-HIV hybrids, Xiong and co-workers combined
betulin derivatives with AZT, leading to fourteen new hybrids [36]. Among them, nine
showed potent anti-HIV activity in the submicromolar range. Particularly, 12 and 13
(Figure 10) displayed EC50 values against HIV-1-NL4-3-infected MT-4 cells comparable to
those of AZT and bevirimat. Importantly, 12 and 13 outperformed both parent compounds
in terms of inhibition of mock-infected MT-4 cell growth (IC50). A 2,2-dimethylsuccinyl
spacer between the C-28 position of the triterpene scaffold and AZT appeared to be the
best linker [36].
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Previous works indicated that the introduction of a triazolyl group to pentacyclic triter-
penoids could result in compounds with good biological activities [37–43]. Considering
that AZT features an azido group that can react with a terminal alkyne to form the 1,2,3-
triazole ring [44–49], several triazole derivatives have been developed based on AZT and
betulinic acid. 1,2,3-triazole moiety not only provides an easy and fast way for linking
two frameworks, but it is also a valuable motif for the development of novel anti-HIV-1
agents. In fact, triazole derivatives can act by inhibiting different HIV-1 enzymes, such
as RT, integrase, and protease [50]. As an example, compound 14 (Figure 11), featuring a
1,2,3-triazole as a spacer between AZT and the C-28 position of betulinic acid, exhibited
an EC50 value of 0.10 µM, which corresponds to that of AZT (EC50 = 0.10 µM) and is
higher than that of bevirimat (EC50 = 0.077 µM) [37]. Compound 14 also displayed toxicity
comparable to bevirimat (CC50 of 11.2 and 13.2 µM, respectively) and greater than AZT.

Wang and co-workers synthesized novel AZT-betulinic/betulonic acid hybrids using
a 1,2,3-triazole as a linker between the C-2 of the triterpenoid acid and the 3′-azido group
of AZT [51]. However, none of the three hybrids conjugated with AZT (15, 16, and 17)
displayed significant anti-HIV activity (Figure 12).

A successful attempt at clicking AZT into 1,2,3-triazoles carrying a bulky aromatic group
at the C-4 or C-5 position provided potent antivirals [52]. SAR studies pointed out that
hybrid 18 (Figure 13), substituted at the C-5 position of the 1,2,3-triazole ring, was more
potent (83% inhibition of HIV-1 in CEM-SS cells at 10 µM) than the corresponding C-4
substituted compound 19 (33% inhibition of HIV-1 in CEM-SS cells at 10 µM) [52]. However,
18 and 19 showed a reduced anti-viral activity in a single replication cycle WT HIV assay
(EC50 = 1 µM and 7.2 µM, respectively) compared to AZT (EC50 = 0.14 µM). The authors
further characterized the antiviral profile of 18 and 19 against a NNRTI-resistant (NNRTIr)
HIV strain (Figure 13). Notably, 18 (EC50 = 0.6 µM) had 3.5-fold higher efficacy than 19 (EC50
= 2.1 µM) against the resistant strain, but 5-fold lower than AZT (EC50 = 0.12 µM).
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In a subsequent study, the same authors showed that when the naphthyl group is
replaced by a tetrazole as for 20 (Figure 13), a significant loss of activity occurred [53]. Ad-
ditionally, the substitution of the hydroxyl functionality with the silyl group of compound
21 was detrimental to the anti-HIV activity [54].

The substitution at the C-4′ position of the sugar moiety with a 1,2,3-triazole ring
(rather than at the C-3′ position) was evaluated and provided derivative 22 (Figure 14).
Although 22 had the best anti-HIV profile within the series, it had a moderate anti-HIV-1
activity (18–62% inhibition at 10 µM), indicating that the substitution at C-4 negatively
affected the antiviral profile [55].
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For the sake of clarity, it should be noted that while 18–22 share a clear hybrid structure,
it is debatable whether they can be classified as MTDLs. This is because the second moiety
linked to AZT was not deliberately chosen as carrier of a second pharmacological activity.

Olomola and co-workers developed triazole-based anti-HIV hybrids 23 and 24 (Figure 15)
by linking a coumarin-based HIV-1 protease inhibitor (PI) and AZT as RT inhibitor. Hybrids 23
and 24 are able to inhibit the selected HIV targets in a similar manner as dual-acting inhibitors
with a balanced activity [56].

Our research group has been developing several compounds with potential anti-HIV
activity, including hybrids, which bear the AZT core (Figure 16) [57–59]. Knowing the
importance of maintaining the terminal hydroxyl group (5′-OH) to provide the active
compound, we explored the C-3′ position of the sugar ring to generate potential drug
candidates.
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Based on a molecular hybridization strategy, AZT was combined with isatin via a 1,2,3-
triazole ring leading to hybrid 25 (Figure 16). Remarkably, 25 turned out to be 2-fold more
potent (IC50 = 0.6 µM) than the anti-HIV drug tenofovir (IC50 = 1.2 µM) [57]. This result
inspired the development of compound 26 [58] (Figure 16), designed to act against HIV-1
and Mycobacterium tuberculosis (Mtb), which is a clinically relevant co-infection. Assays in
TMZ cells demonstrated the potential for decreasing the HIV-1 infection by 91% (Figure 16).
In 2018, we decided to replace the isatin core with that of efavirenz, a RT inhibitor of the
NNRTI class. The novel hybrid 27 showed the lowest IC50 value (0.9 µM) and the ability to
inhibit HIV-1 RT comparably to tenofovir (Figure 16) [59].

In the search for multi-target compounds against HIV–malaria co-infection, Aminake
and co-workers [60] synthesized hybrids carrying AZT and dihydroartemisinin (DHA)
or chloroquine (CQ), which are effective anti-malaria scaffolds. Taking into consideration
only the HIV-inhibitory activity, compound 28, featuring a protected C-5′ OH-AZT linked
to CQ through a succinyl spacer, was the most potent antiviral hybrid with an IC50 of
0.9 µM (Figure 17). This was partially expected since additive in vitro anti-HIV effects were
observed with AZT-CQ combination. The presence of a protecting group on the hydroxyl
function seemed important for anti-HIV effects. Nevertheless, 28 displayed a reduced
activity compared to AZT (IC50 = 0.04 µM), but greater than that of CQ (IC50 = 12.48 µM).
Additionally, it showed cytotoxicity in HeLa cells (CC50 = 28.65 ± 5.09 µM), but still with a
moderate selectivity (selectivity index (SI) > 30) [60].
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Another important co-infection in which the multi-target approach might be par-
ticularly suitable is HIV–tuberculosis. Senthilkumar and colleagues combined the C-5′

hydroxyl group of AZT with antimycobacterial fluoroquinolones to afford hybrids 29 and
30 (Figure 18) [61]. As reported in Figure 18, compound 29 proved to be the best HIV-1
replication inhibitor in acutely infected C8166 cells (inhibition of syncytium formation, Syn
form) with an EC50 of 0.00098 µM, being 15-fold more active than the parent drug AZT.
Hybrid 29 showed low toxicity and an SI (CC50/EC50) > 6000. In addition, 29 turned out to
be active against HIV-1IIIB replication in MT-4 cell lines with an EC50 of 0.0066 µM. In this
assay, compound 30 emerged as the most potent HIV replication inhibitor, with an EC50 of
0.0012 µM. Moreover, 30 was moderately toxic with a CC50 of 34.05 µM against MT-4 cell
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lines and an SI = 28.37. In spite of the potent antiviral effects, both 29 and 30 had higher
toxicity than AZT.
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4. Co-Drugs as Potential HIV-1 Inhibitors

Generally speaking, the co-drug approach is based on linking two drugs through
a labile covalent bond in a single molecule that acts as a prodrug with an improved
therapeutic efficiency/PK/toxicity profile [7,62]. In the specific MTDL context, the two
starting molecules should be synergistic drugs, which, following metabolic transformation,
have the potential to be released in the same target cells and at the same time. This is
a peculiar feature of MTDL co-drugs with respect to combinations (two single drugs,
each one with an individual pharmacokinetic profile) [63,64]. In 1988, Busso and co-
workers employed this strategy, seeking to obtain a superior pharmacological effect with
nucleotides possessing a dimeric structure [65]. For this purpose, a series of nucleotide
homo- and heterodimers were synthesized and their in vitro antiviral and cytotoxicity
properties compared to their parent monomers (31–34, Figure 19). The authors reported
that nucleotide dimers linked via a phosphate bridge have enhanced in vitro anti-HIV
potency in comparison with the monomers, as presented in Figure 19. The anti-HIV activity
demonstrated by the dimers was quantified through 50% effective dose (ED50) values. All
compounds were more potent HIV inhibitors when compared with the reference molecules
as well as AZT + 2′,3′-dideoxyadenosine (ddA) combination, which exhibited the highest
inhibitory activity. The dimer 31 stood out as it demonstrated an ED50 of 0.7 µM (Figure 19).
According to the value of 50% inhibitory dose (ID50), which is indicative of cell viability, 32
showed the highest toxicity with an ID50 of 60 µM (Figure 19).

Ijichi and co-workers [66] developed co-drugs and evaluated these new nucleotide
heterodimers on HIV-1 replication, including resistant mutants. The novel heterodimers
were designed linking one of the dideoxynucleosides (AZT or didanosine (ddI)) and the
6-[3,5-(dimethyl-phenyl)thio]-5-ethyl-1-[(2-hydroxyethoxy)methyl]uracil (E-HEPU-dM)
or ribavirin. The in vitro inhibitory effects on HIV-1 replication revealed that all com-
pounds featuring AZT were potent in inhibiting HIV-1 (Figure 20). Compounds 35
and 36 (Figure 20) were equipotent to AZT in inhibiting HIV-1 IIIB with an EC50 of
0.002 ± 0.001 µM. When compared with the prototypes ddI (EC50 of 13.3 ± 3.4 µM),
E-HEPU-dM (EC50 of 0.007 ± 0.001 µM), and ribavirin (EC50 > 3.3 µM), the co-drugs 35–37
showed greater HIV-1 inhibitory potential. Remarkably, compared with prototype AZT
(Figure 20), 35 and 36 provided greater cell protection and were significantly active against
AZT and NNRTI-resistant viral strains.



Molecules 2022, 27, 8502 16 of 22Molecules 2022, 27, 8502 16 of 23 
 

 

 
Figure 19. Chemical structures of 31–34 and their anti-HIV profile. 

Ijichi and co-workers [66] developed co-drugs and evaluated these new nucleotide 
heterodimers on HIV-1 replication, including resistant mutants. The novel heterodimers 
were designed linking one of the dideoxynucleosides (AZT or didanosine (ddI)) and the 
6-[3,5-(dimethyl-phenyl)thio]-5-ethyl-1-[(2-hydroxyethoxy)methyl]uracil (E-HEPU-dM) 
or ribavirin. The in vitro inhibitory effects on HIV-1 replication revealed that all com-
pounds featuring AZT were potent in inhibiting HIV-1 (Figure 20). Compounds 35 and 36 
(Figure 20) were equipotent to AZT in inhibiting HIV-1 IIIB with an EC50 of 0.002 ± 0.001 
µM. When compared with the prototypes ddI (EC50 of 13.3 ± 3.4 µM), E-HEPU-dM (EC50 
of 0.007 ± 0.001 µM), and ribavirin (EC50 > 3.3 µM), the co-drugs 35-37 showed greater HIV-
1 inhibitory potential. Remarkably, compared with prototype AZT (Figure 20), 35 and 36 
provided greater cell protection and were significantly active against AZT and NNRTI-
resistant viral strains. 

 
Figure 20. Chemical structures of 35–37 and their anti-HIV profile. 

While exploring the synthesis and biological evaluation of novel symmetrical nucle-
otide-(5′,5′)-dimer phosphotriester derivatives of AZT, McGuigan and co-workers [67] de-
veloped compounds 38 and 39 (Figure 21). Both the AZT derivatives showed anti-HIV-1 
activity, and compound 39, which has 2,2,2-trifluoroethyl, had the best inhibitory HIV-1 
potential (ED50 of 0.4 µM) with high cell protection (CC50 = 600 µM). However, in JM cell 
assays, these compounds were less active than AZT, indicating that they may act primar-
ily as depot forms of the free nucleoside (AZT). 

NH

O

ON

O

N3

O
N

O O P
O

OH

N
N

N

NH2

AZT-P-ddA (33)
ID50 = 200 µM 
ED50 = 0.8 µM

NH

O

ON

O

N3

O
N

O O P
O

O

N
N

N

NH2

AZT-P-CyE-ddA (31)
ID50 = 210 µM
ED50 = 0.7 µM

CN

NH

O

ON

O

N3

O
N

O O P
O

OH

N
HN

N

O

AZT-P-ddI (34)
ID50 = 240 µM
ED50 = 1 µM

NH

O

ON

O

N3

O
N

O O P
O

OH

HN

O

O

AZT-P-AZT (32)
ID50 = 60 µM 

ED50 = 1.5 µM

AZT
ID50 = 100 µM
ED50 = 4.0 µM

ddA
ID50 = 400 µM 
ED50 = 7.0 µM

ddI
ID50 = 450 µM 
ED50 = 7.5 µM

AZT+ddA
ID50 = 80 µM

ED50 = 0.6 µM

N3

NH

O

ON

OOPO
O-

O

N3Na

O
N

NH
O

O

S

35

NH

O

ON

OOPO
O-

O

N3Na

36

ON

N

HN
N

O NH

O

ON

OOPO
O-

O

N3Na

37

ON

OH
HO

N

NH2N

O

EC50 = 0.002±0.001 µM 
CC50 = 15.5±2.9 µM

EC50 = 0.002±0.001 µM 
CC50 = 18.2±2.8 µM

EC50 = 0.004±0.001 µM 
CC50 Not detected

AZT
EC50 = 0.002±0.001 µM 

CC50 = 10.7±1.9 µM

E-HEPU-dM
EC50 = 0.007±0.001 µM 

CC50 = 155±27 µM

ddI
EC50 = 13.3±3.4 µM 
CC50 = 226±17 µM

Figure 19. Chemical structures of 31–34 and their anti-HIV profile.

Molecules 2022, 27, 8502 16 of 23 
 

 

 
Figure 19. Chemical structures of 31–34 and their anti-HIV profile. 

Ijichi and co-workers [66] developed co-drugs and evaluated these new nucleotide 
heterodimers on HIV-1 replication, including resistant mutants. The novel heterodimers 
were designed linking one of the dideoxynucleosides (AZT or didanosine (ddI)) and the 
6-[3,5-(dimethyl-phenyl)thio]-5-ethyl-1-[(2-hydroxyethoxy)methyl]uracil (E-HEPU-dM) 
or ribavirin. The in vitro inhibitory effects on HIV-1 replication revealed that all com-
pounds featuring AZT were potent in inhibiting HIV-1 (Figure 20). Compounds 35 and 36 
(Figure 20) were equipotent to AZT in inhibiting HIV-1 IIIB with an EC50 of 0.002 ± 0.001 
µM. When compared with the prototypes ddI (EC50 of 13.3 ± 3.4 µM), E-HEPU-dM (EC50 
of 0.007 ± 0.001 µM), and ribavirin (EC50 > 3.3 µM), the co-drugs 35-37 showed greater HIV-
1 inhibitory potential. Remarkably, compared with prototype AZT (Figure 20), 35 and 36 
provided greater cell protection and were significantly active against AZT and NNRTI-
resistant viral strains. 

 
Figure 20. Chemical structures of 35–37 and their anti-HIV profile. 

While exploring the synthesis and biological evaluation of novel symmetrical nucle-
otide-(5′,5′)-dimer phosphotriester derivatives of AZT, McGuigan and co-workers [67] de-
veloped compounds 38 and 39 (Figure 21). Both the AZT derivatives showed anti-HIV-1 
activity, and compound 39, which has 2,2,2-trifluoroethyl, had the best inhibitory HIV-1 
potential (ED50 of 0.4 µM) with high cell protection (CC50 = 600 µM). However, in JM cell 
assays, these compounds were less active than AZT, indicating that they may act primar-
ily as depot forms of the free nucleoside (AZT). 

NH

O

ON

O

N3

O
N

O O P
O

OH

N
N

N

NH2

AZT-P-ddA (33)
ID50 = 200 µM 
ED50 = 0.8 µM

NH

O

ON

O

N3

O
N

O O P
O

O

N
N

N

NH2

AZT-P-CyE-ddA (31)
ID50 = 210 µM
ED50 = 0.7 µM

CN

NH

O

ON

O

N3

O
N

O O P
O

OH

N
HN

N

O

AZT-P-ddI (34)
ID50 = 240 µM
ED50 = 1 µM

NH

O

ON

O

N3

O
N

O O P
O

OH

HN

O

O

AZT-P-AZT (32)
ID50 = 60 µM 

ED50 = 1.5 µM

AZT
ID50 = 100 µM
ED50 = 4.0 µM

ddA
ID50 = 400 µM 
ED50 = 7.0 µM

ddI
ID50 = 450 µM 
ED50 = 7.5 µM

AZT+ddA
ID50 = 80 µM

ED50 = 0.6 µM

N3

NH

O

ON

OOPO
O-

O

N3Na

O
N

NH
O

O

S

35

NH

O

ON

OOPO
O-

O

N3Na

36

ON

N

HN
N

O NH

O

ON

OOPO
O-

O

N3Na

37

ON

OH
HO

N

NH2N

O

EC50 = 0.002±0.001 µM 
CC50 = 15.5±2.9 µM

EC50 = 0.002±0.001 µM 
CC50 = 18.2±2.8 µM

EC50 = 0.004±0.001 µM 
CC50 Not detected

AZT
EC50 = 0.002±0.001 µM 

CC50 = 10.7±1.9 µM

E-HEPU-dM
EC50 = 0.007±0.001 µM 

CC50 = 155±27 µM

ddI
EC50 = 13.3±3.4 µM 
CC50 = 226±17 µM

Figure 20. Chemical structures of 35–37 and their anti-HIV profile.

While exploring the synthesis and biological evaluation of novel symmetrical nucleotide-
(5′,5′)-dimer phosphotriester derivatives of AZT, McGuigan and co-workers [67] developed
compounds 38 and 39 (Figure 21). Both the AZT derivatives showed anti-HIV-1 activity,
and compound 39, which has 2,2,2-trifluoroethyl, had the best inhibitory HIV-1 potential
(ED50 of 0.4 µM) with high cell protection (CC50 = 600 µM). However, in JM cell assays, these
compounds were less active than AZT, indicating that they may act primarily as depot forms
of the free nucleoside (AZT).

Another linkage used in the design of co-drugs is the ester bond, as shown by AZT-
triterpenoid hybrids 40–44 (Figure 22) [68]. All molecules, with the exception of 40, showed
potent anti-HIV activity. Among them, 41 was the most potent with an IC50 of 0.010 µM
and a CC50 of 35 µM, which resulted in the best SI (SI = 3500) (Figure 22).

Taourirte et al. [69] used carbonates and carbamates as a linkage in co-drugs based on
homo- and hetero- dimers of AZT and stavudine (d4T). The authors based their design on
two arguments: 1) they expected that the linkage between the nucleosides (AZT and d4T)
would not be extracellularly hydrolyzed, and the delivery and the bioavailability might be
enhanced, depending on the lipophilic character of these new molecules; 2) some synergetic
effects on HIV replication inhibition could be expected following intracellular hydrolysis to
regenerate the two nucleosides. All carbonates were active and the homodimer 45 showed
the best HIV-1 inhibition activity (EC50 of 0.0028 µM) (Figure 23), with a similar effect to
AZT (EC50 of 0.0022 µM). Compound 45 was also active against HIV-2 replication, and it
showed no toxicity. The opposite was observed in the carbamate series, which exhibited
a weak HIV-1 inhibitory profile. This may be explained by the faster chemical and/or
enzymatic hydrolytic cleavage of carbonate co-drugs leading to the active free form of AZT.
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Aiming to enhance antiviral activity and improve cell membrane permeability, Mat-
sumoto et al. [70,71] described co-drugs that combine a PI (KNI-413 or KNI-272) with
AZT via an ester bond (Figure 24). As a result, compound 46 (KNI-413-AZT) (Figure 24)
showed a more potent anti-HIV activity (EC50 of 19 nM) than AZT (EC50 of 126 nM) and
the parent PI (EC50 of KNI-413 = 52 nM) [70]. Regarding conjugates KNI-272-AZT, the best
results were obtained for compound 47 (EC50 of 0.1 nM), which features glutarylglycine
as linker. Notably, 47 was 920- and 62-fold more potent than the parent PI (EC50 of 40 nM
for KNI-272) and AZT (EC50 of 6.2 nM), respectively (Figure 24). This excellent result can
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be attributed to its better ability to cross the cell membrane and release both parent drugs
inside the cell, or the better activity due to the direct interaction of the entire hybrid with
its target.
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Of note, while 32, 38–39, and 45 are indeed co-drugs developed with the aim of
achieving a superior drug-like profile compared to the parent compound, they cannot be
classified as MTDLs. This is because they share a homodimeric structure, which, following
metabolic transformation, releases a single individual drug.
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5. Conclusions

AIDS is a disease that still affects millions of people worldwide. Following the
introduction of cART, its morbidity and mortality has been drastically curtailed so that
today it is categorized as a manageable chronic disease and patients have a much better
quality of life compared to the time when this uncommon immunodeficiency was identified
in the early 1980s. In 1987, the approval of AZT, the first antiretroviral agent to tackle
the disease, set a milestone in HIV/AIDS history. Since then, several other drugs and
therapeutic regimens were introduced into clinics. However, side effects and viral resistance
have been observed, leading to constant revisions in the therapy; the search for new and
more powerful drugs with fewer side effects is imperative.

Polypharmacology has had a key role in the fight against AIDS and can still be
instrumental with the development of new MTDLs [62]. A more modern alternative to
drug combinations and FDCs for treating multifactorial diseases is that based on MTDLs,
which can be obtained by molecular hybridization. The development of hybrids is a
versatile strategy that in some applications allows the discovery of new molecules using
already well-known drugs. In the AIDS drug discovery field, the design of new MTDLs
based on the AZT scaffold seems highly significant.

Based on the reported examples, antiretroviral MTDLs based on AZT deserve fur-
ther exploration as they may provide compounds with higher activity than the parent
compound. From a chemical point of view, the structure of AZT allows for exploration
in the preparation of both hybrids and co-drugs, enhancing in many cases the anti-HIV-1
profile, either by improving cell permeability (co-drugs) or through the direct interaction
between the hybrids with the intended targets. However, as far as we know, since no
in vivo proof-of-concept has been reported for the discussed AZT-based co-drugs and
hybrids, it is impossible to predict their clinical translation and if they offer greater in vivo
efficacy with respect to cART.

In summary, this review analyzes the antiretroviral activity of molecules containing the
AZT scaffold, which were purposely designed to act as MTDLs. As discussed elsewhere [7],
medicinal chemists should look at polypharmacology as a continuum of pharmacological
opportunities, from drug combinations to MTDLs. Co-drugs and hybrids have unique
features that can be effectively exploited. We argue that understanding peculiar advantages
and drawbacks would be very helpful in choosing the proper anti-HIV polypharmacology
strategy and in blowing the potential of MTDLs against AIDS.
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